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Introduction 

The Moving and Stationary Target Acquisition 
and Recognition (MSTAR) program was initiated 
by the U.S. Defense Advanced Research Projects 
Agency (DARPA) and the U.S. Air Force Re-
search Laboratory (AFRL) in the summer of 1995.  
The goal of this project was to advance the state 
of Automatic Target Recognition (ATR) using 
synthetic aperture radar (SAR) imagery by devel-
oping the technology of model-based vision.  
Now, in the year 2000, the project has largely 
achieved its goals, and is prepared to transition 
technology to operational systems that exploit 
SAR imagery.  While new approaches and tech-
nology development for the purpose of target rec-
ognition will continue to be developed and pur-
sued in other programs, the MSTAR program 
provides a case study in the progress that can be 
achieved through a concerted effort.  The central 
ingredients to this effort were: 

• Data collections, and sufficient data at a 
sufficient resolution; 

• System development in modules, together 
with incremental build cycles; 

• Thorough performance evaluations with 
specific goals and milestones. 

The keystone to the project was a synthetic SAR 
prediction capability, which permits the genera-
tion of synthetic SAR images from parameterized 
target models.  This latter piece relies, in part, on 
the Xpatch software developed in cooperation 
with other programs. 

This paper provides a retrospective discussion 
of the progress made in the course of the MSTAR 
project. 

ATR Problem 

The automatic target recognition (ATR) prob-
lem addressed by the MSTAR is the recognition 
of ground military vehicles in one-foot resolution 
SAR imagery. Figure 1 shows a SAR scene with 

embedded vehicular targets, and depicts recogni-
tion of a couple of those targets.  SAR imagery 
was collected using X-band sensors operating in 
small aircraft, observing carefully ground-truthed 
military vehicles.  In order to achieve one-foot 
resolution, the radar imager must have approxi-
mately 600 MHz of bandwidth, and must observe 
the target array in spotlight mode for approxi-
mately 2.85 degrees of arc.  Eventually, hundreds 
of thousands of instances of targets were imaged, 
and hundreds of square kilometers of background 
imagery (without target vehicles) were also col-
lected.  The background imagery is termed “clut-
ter” data.  Some of this data was approved for 

Figure 1.  The recognition problem in syn-
thetic aperture radar data. 



public release, and made available to the general 
public; other data was made available only to 
MSTAR developers and others under contract to 
the U.S. government, and still other data was held 
“sequestered” and used only for evaluation pur-
poses. 

Figure 2 shows a close-up of a target in the 
SAR imagery, still at one-foot resolution.  The 
ATR problem can be summarized by the task of 
converting the observed signature (as in Figure 2) 
into a 3-D description of the vehicle that has been 
imaged. 

With one-foot resolution, the typical vehicular 
target will have several hundred pixels in the tar-

get region.  In addition, there will be information 
in the shape of the shadow.  With coarser resolu-
tion, say one-meter resolution, there will only be a 
few dozen pixels on the typical target.  With hun-
dreds of pixels, one can reasonably expect to ex-
tract dozens of “features,” such as locations of 
peaks, shape information, and locations of internal 
edges.  These are among the features that MSTAR 
uses to perform recognition. 

Architecture 

For computational efficiency, an ATR system 
will generally be constructed hierarchically.  That 
is, rather than processing each pixel in the image 
uniformly, testing every possible target hypothe-
sis, a system can dismiss most pixel locations 
from consideration by applying ATR filters.  The 
MSTAR system consists of three stages: The “Fo-

cus of Attention” module, the “Indexer,” and the 
“PEMS” subsystem (Figure 3).  “PEMS” stands 
for “Predict, Extract, Match, and Search,” and 
refers to an iterative subsystem that refines and 
verifies target identifications by making use of a 
prediction capability using high-fidelity models of 
targets.  We discuss each of the three stages be-
low. 

 

The “Focus of Attention” (FOA) stage filters 
out all but “interesting” regions of the input im-
age.  It does this by looking for bright regions in 
the image, and assuring that those bright regions 
have the size and shape characteristic of targets.  
The output of the FOA stage is a set of “regions of 
interest” (ROI’s).  Even in “clutter” imagery with 
no targets in the scene, we expect the FOA stage 
to produce a stream of ROI’s.  The rate of ROI’s 
that do not actually contain true targets is the 
“False Alarm Rate” (FAR) of the FOA module.  
The FAR will depend on the complexity of the 
clutter data.  This stage is in fact composed of 
several sub-stages.  The first is a standard 
“CFAR” algorithm, which provides a “constant 
false alarm rate,” and looks for regions that are 
sufficiently brighter than the surround, where the 
surround is chosen as an annulus that surrounds a 
target-size region.  Subsequent sub-stages exam-
ine global features of the putative bright region, 
such as the size, shape, contrast, and fill ratio, and 
perform classic pattern recognition discrimination 
functions so as to filter out clutter data, without 
eliminating true targets. 

Notably, the FOA module makes certain as-
sumptions about the environment of the target.  A 
particular difficulty arises if the target is in close 
proximity to another vehicle, or to clutter that 
causes the bright region of the target response to 
be adjacent to other bright return.  In order to 
handle proximity, the FOA algorithm should pass 
as regions of interest bright regions that are target-

 

Figure 2.  A target signature. 
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Figure 3.  The MSTAR Architecture. 



 

size or larger.  Depending upon how well one fil-
ters out large-size clutter, this will increase the 
processing load on subsequent stages. 

The Index stage, also known as the “Indexer,” 
examines each region of interest (ROI) to produce 
a list of hypotheses as to the target type and orien-
tation of each target hypothesis.  The Indexer ac-
complishes this function in much the same way 
that a standard ATR produces an identification 
result.  That is, it compares the observed signature 
in the region of interest with a set of pre-stored 
signature “templates.”  The signature information 
is not necessarily the complex image values, nor 
even the magnitude of those values, in the SAR 
image.  In the MSTAR system, the features used 
in the comparison are the zero-crossings of the 
“Laplacian of Gaussian” (LoG) of the imagery 
magnitude data, and also ridges in the magnitude 
data.  These features are extracted in the “target 
region” extracted from the observed image, as 
well as features that have been previously ex-
tracted from the pre-stored exemplars.  The exem-
plars cover all “mission” targets (i.e., possible 
hypothesis target types), as well as samples of the 
possible aspect and depression angles at which the 
targets can be observed.  Features are compared 
using a “two-sided” metric, which first compares 
the target region of the observed image with the 
pre-stored data, and then compares the stored fea-
tures from the exemplar target region with the 
observed data.  The comparison makes use of a 
penalty function that measures the degree of 
match of the features, and also provides for some 
robustness by smoothly dropping the penalty 
when the distance becomes large.  The Indexer 
takes the scores that it obtains by comparing the 
data in an ROI against all possible hypotheses, 
and producing a list of candidate hypotheses.  If 

the top candidate has a sufficiently high score, and 
its nearest competition is sufficiently small, the 
Indexer module can make the call without any 
further processing.  If there is some ambiguity, 
then the list of hypotheses with scores above some 
threshold are passed to the final stage. 

The PEMS module then examines operates on 
each ROI and the associated list of hypotheses. 
The purpose of the PEMS module is to reorder the 
hypothesis list by reasoning about the three-
dimensional structure of the target environment, 
and to optimize the match between each candidate 
hypothesis and the observed data.  Notionally, this 
requires an iterative process with each hypothesis, 
to optimize the position, aspect, configuration, 
and other parameters that compose the target hy-
pothesis, and affect the expected observed data.  
The fundamental tenet of the MSTAR system is 
that it is necessary to reason about the structure of 
the target in order to achieve robustness to “ex-
tended operating conditions” (EOC’s).  Example 
EOC’s include: 

• Position, aspect, squint; 
• Configuration variations; 
• Manufacturing variations; 
• Ground conditions; 
• Articulation parameters; 
• Revetments, obscurations, and other 

neighboring confounding conditions. 

The PEMS system needs to consider not only 
these EOC’s, but combinations of EOC’s.  Of 
course, when it is possible to perform recognition 
using features that are independent of a particular 
EOC, then it is desirable to use those features.  
However, variability due to EOC’s is greater than 
the separation of the target signatures due to target 
type differences, and thus it fundamental in the 
MSTAR philosophy that a certain amount of rea-
soning, particularly three-dimensional reasoning, 
is critical to robust, accurate identification. 

Since the PEMS module is so fundamental to 
the MSTAR system, we discuss this module in 
greater detail in the next section. 

Figure 2.  A CAD model of a target. 



PEMS 

The PEMS stage depends on a SAR signature 
prediction capability.  We explain this capability, 
which is embodied in the “Predictor” module, 
very briefly below; algorithmic and mathematical 
details are beyond the scope of this brief sum-
mary. 

The Predictor module begins with a CAD 
model (computer-aided design model) of a target, 
as depicted in Figure 4.  Typical CAD models that 
are used by the Predictor can have a million trian-
gular facets.  These models are obtained by 
“climbing over top” of an example target, re-
cording accurate three-dimensional positions, and 
facetizing the resulting structure.  The modeling 
process requires an instance of the target, and a 
labor-intensive facetizing process.  As a result of 
the DARPA-funded “Rapid Target Model Inser-
tion” program, we have examples of the construc-
tion of a CAD model in two weeks. 

Using the CAD model, the Xpatch software 
code is applied to produce synthetic SAR data 
from a discretized collection of viewpoint aspects.  
The Xpatch code uses the “Shooting and Bounc-
ing Ray” approach to computational electro-
magnetics. The far-field response of the target is 
computed based on shooting an array of rays at 
the target, and understanding the response by per-
forming a ray-tracing process to locate the exit 
path of each ray.  The result is pruned to produce 
a collection of “scatterers” in 3-D space, together 
with tags as to which aspect directions in which 
the scatterer can be viewed.  Further, each scat-
terer contains information as to the rays that con-
tributed to the response, which ultimately permits 
trace-back from pixels in the SAR image to facets 
in the target model. 

Once the intermediate data structure of scatter-
ers is formed, an online prediction can be com-
puted.  The online predictor accepts as input the 
“pose” of the target model, and parameters such 
as articulation and configuration variations.  By 
manipulating the location of the scatterers in 3-D 
space, a synthetic SAR image can be formed rap-
idly.  Although the prediction fails to take into 
account large-scale interactions between compo-
nents of the target model, extensive validation has 

shown that the predictions are useful for object 
identification. 

Figure 5 shows an example of a predicted and 
observed target pair.  Note that the prediction is 
based purely on a CAD model, whereas the ob-
served data is an actual target sitting in a field, 
imaged by a true SAR imaging system.  Both im-
ages are samples from probability distributions, 
and so one cannot expect identical pixel values.  
However, the qualitative information is reflected 
in the predicted image, and features such as peak 
locations, edges, and shapes tend to match up 
well. 

The PEMS module uses predictions to compare 
with extracted features.  The comparison is per-
formed by the matching module, which is dis-
cussed briefly in the next section.  Where there are 
mismatches, the Search module can then use cues 
to posit changes to the hypothesis parameters in 
order to refine the prediction.  For each hypothe-
sis, several iterations are applied in order to assess 
the target hypothesis in light of potential EOC’s. 

When all hypotheses presented by the Indexer 
have been considered, the Search module makes a 
target type call.  One of the possible calls is that 
the ROI contains something other than a mission 
target.  That is, the upshot of the PEMS stage can 
be a label of “Other.” 

Matching 

There are many methods for comparing a pre-
dicted set of features with an observed collection 

Figure 3.  A predicted (left) and observed 
(right)  SAR image of a target. 



of features. Even using a Bayesian model for 
evaluating a probability of a match given the ob-
served feature, there are many choices that are 
possible. The MSTAR system uses a “Diffusive 
scattering model” for explaining how observed 
features are expected to occur given predicted fea-
tures. Suppose that the prediction X consists of a 
set of “features:” { }nXXX ,,1 L= . In the 

MSTAR model, each predicted feature iX  repre-
sents a spatially varying Poisson distribution, so 
that zero, one, two, or more features will be gen-
erated, with each feature chosen according to a 
spatial distribution )( iig xx − . The spatial distri-
bution is a density function with unit mass, so that 

∫ = 1)( xx dg . The expected number of features 

generated by prediction iX  is iλ , and so the 
probability that k  features will be generated by 

iX  is given by !ke k
i

i λλ ⋅− .  Thus iX  consists 

of the information ( )iii g x,,λ . Generally iλ  is 
quite small, so that usually either zero or one fea-
ture will be generated, but it is entirely possible 
for multiple observed features to be associated 
with a single prediction.  We also posit a back-
ground distribution of )(0 xg  with an expected 

number of spurious features equal to 0λ .  Taken 
together, the entire set of feature generators turns 
out to be a single Poisson process, with an ex-
pected number of features equal to 
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Accordingly, the density distribution function, for 
an observed set of features { }mY yy ,,1 L= , is 
given by: 
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For a given set of extracted features Y, this den-
sity function provides an unnormalized score for 
the match of Y with the prediction X. Normaliza-
tion is required to provide some stability to the 

scores, and can be provided by taking the ratio of 
the unnormalized score with a hypothesis that the 
observed data is “clutter.” 

Results 

Thorough evaluations of the MSTAR system 
have been provided by an Evaluation Team, 
which scores the system against sequestered data, 
carefully recording results as a function of the 
conditions of the test imagery.  Sufficient numbers 
of tests in similar conditions (a “bin”) must be 
evaluated in order to provide statistically mean-
ingful numbers.  As a result, hundreds of thou-
sands of instances of targets have been run 
through the system.  At the same time, hundreds 
of square kilometers of clutter data have been 
processed. 

Sadly, it is impossible to give a single number, 
or even just a few numbers, to state system per-
formance.  Even “ROC” curves are inadequate. It 
is a truism that performance evaluation measures 
as much (if not more) about the test conditions as 
the quality of the system.  Accordingly, we make 
some qualitative remarks here, and refer the inter-
ested reader to the MSTAR Book (to appear in 
2000) for more details. 

Certain subproblems have been “solved,” as 
evidenced by the MSTAR system.  If the targets 
are nominally configured, not subjected to 
“EOC’s,” and are thus “in the clear,” they can be 
detected and identified in one-foot resolution 
SAR, using a single view, with near certainty.  
This statement remains true up to 30 or so targets 
in the mission set, and there is good reason to ex-
pect that it remains true for much larger mission 
sets.  If the system is restricted to single -target 
missions, such as a mission of finding all in-
stances of Scud missile launchers, near certain 
detection and identification is again generally pos-
sible. 

Certain EOC’s are easier than other EOC’s.  
Articulation of the turret and barrel of the M109 
causes serious variability to the signature, but the 
MSTAR system has demonstrated a good ability 
to reason about M109 articulation.  Other targets 



that articulate often can be handle through invari-
ance. 

Configuration changes, such as the attachment 
of fuel barrels to a tank, can also be handled suc-
cessfully.  Target variants have also caused few 
problems.  The system has been shown to work, 
with few or no changes, on a variety of sensor 
sources. 

Obscuration by walls, and targets in close prox-
imity to one another, remain challenges, and are 
research topics in the current year 2000.  Ap-
proaches to treat these conditions have been iden-
tified. 

False alarms rate vary according to the com-
plexity of the background, and system settings 
that depend upon the desired detection rates.  
When set so that most targets (90%) of targets 
including those with considerable EOC’s are de-
tected, FAR can be as high as one per square 
kilometer.  When the system is set so that 50% of 
the easy targets are detected, false alarms can be 
eliminated. 

Under all these conditions, correct identifica-
tion rates in the range of 80% to 90% are typical, 
for those EOC’s that “work.”  Whenever the sys-
tem explicitly reasons about an EOC, system per-
formance tends to be good.  Problems are gener-
ally confined to cases where the system attempts 
to achieve robustness by ignoring variability.  
This conclusion largely validates the notion that 
model-based technology holds the key to transi-
tion of useful ATR to operational status. 
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