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Abstract

Beginning with digitized volumetric data, we wish to rapidly and efficiently extract
and represent surfaces defined as isosurfaces in the interpolated data. The Marching
Cubes algorithm is a standard approach to this problem. We instead perform a decom-
position of each 8-cell associated with a voxel into five tetrahedra, as in the Payne-Toga
algorithm. Following the ideas of Kalvin [KCIIN91], Thirion et al. [TG93], and using
essentially the same algorithm as Doi and Koide [KD91], we guarantee the resulting
surface representation to be closed and oriented, defined by a valid triangulation of the
surface of the body, which in turn is presented as a collection of tetrahedra, some of
which are only partly filled. The surface is extracted as a collection of closed triangles,
where each triangle is an oriented closed curve contained within a single tetrahedron.
The entire surface is “wrapped” by the collection of triangles, using especially effi-
cient data structures. The representation is similar to the homology theory that uses
simplices embedded in a manifold to define a closed curve within each tetrahedron.

From the triangles that comprise the wrapping of the surface, we give methods

to evaluate surface curvatures and principal directions at each vertex, whenever these



quantities are defined. We further present a fast method for rendering and approx-
imating the surface. The triangles form a graph structure, which is very efficiently
encoded, whose nodes are the triangles and whose edges are the common edges joining
adjacent triangles. We can thus identify each surface using a connected component
labelling algorithm applied to the graph.

This provides a highly parallelizable approach to boundary surface representation,
providing an efficiently and compact surface representation. The wrapper algorithm
has been used to extract surfaces of the cranium from CT-scans and cortical surfaces
from MR-scans at full resolution.
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position, homology theory, surface curvature.

1 Introduction

The Wrapper Algorithm is an efficient, simple, parallelizable method for creating a bound-
ary representation (a “B-rep”) of isosurfaces in volumetric data defined on a 3-D grid. The
B-rep will consist entirely of planar triangular faces, linked in a graph structure to form a
coherent, valid surface. Indeed, the B-rep will necessarily bound a polyhedral solid or mul-
tiple polyhedra. The principal advantage of the Wrapper Algorithm over Marching Cubes
[LC87] are that (1) the algorithm is parallelizable, and (2) the algorithm provides a prov-
ably valid global representation of the voxel space, in all cases. The surface representation
provided by the Wrapper Algorithin is relatively uniform, being composed of triangular
faces, and we show that vertices in the representation have degree no higher than nine
(i.e., no more than nine triangles ever meet at a single vertex). The Wrapper Algorithm
uses a tetrahedral decomposition of the voxel space, and thus operates at a fine scale of
detail, which provides the provable correctness of the representation, but also provides a
voluminous data structure. In order to reduce the quantity of data in the representation,
we have also developed simplification algorithms that operate on the B-rep provided by
the Wrapper Algorithm. We display results obtained from the simplification process, but
the details of the algorithms are described elsewhere.

The details of the Wrapper Algorithm coincide, to a large extent, with the algorithm
of Doi and Koide, of IBM Japan, Ltd., described in [DK91]. Doi and Koide use the same
tetrahedral decomposition, produce oriented cycles to repre.sent triangular faces of the iso-

surface, and even use the same determinant test to establish the orientation of the cycles.
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Since their work predates ours, a large part of our contribution is to explain the Doi/Koide
algorithm, and to draw attention to its advantages. Our work also adds the following
features. We provide a homology-theoretical basis for the Wrapper Algorithm, describing
the representation in terms of boundary operators on singular chains of simplices. We
also produce a B-rep in the form of a graph structure, and discuss the use of parallel
connected component algorithms for graph analysis. We show that the orientation of
cycles in the surface representation may be computed by a table look-up procedure, which
has relatively few cases due to a particular organization of the construction. We define
and use particularly efficient data structures for the implementation of the algorithm. We
provide a bound on the degree of vertices in the representation produced by the algorithm.
Our approximate rendering algorithm is new. Finally, our simplification methods (not
described in detail here) are different and more aggressive than the methods described by
Doi and Koide.

Apart from the Doi/Koide work, there is a large body of literature on methods of
constructing B-reps of isosurfaces in an efficient and accurate fashion. The Wrapper Al-
gorithm (and the equivalent Doi/Koide algorithm) provide a natural extension, and (we
believe) improvement on other methods. While problems with the Marching Cubes al-
gorithm have largely been addressed and fixed [NH91], the Wrapper Algorithm, with its
appeal to homology theory for provable correctness, provides a much simpler and intuitive
approach to surface representation. The Wrapper Algorithm also provides an orientation
of the surface without additional cost. Although the Wrapper Algorithm operates at a
fine scale and provides a more detailed representation, which can be disadvantageous, it
provides a more uniform platform for representation simplification, and can be viewed as
a decomposition of the Marching Cubes method (and other methods) to a finer scale so as
to make all the special cases and difficult surface topologies within a single voxel break up
into small collections of simple cases.

Starting with a 3-D image, i.e., a regular grid of volume elements representing the
sampling of an intensity function I(x,y,z), we examine the problem of constructing a
polygonal approximation to the surfaces characterized by I = I, a constant value. By
convention, we choose Iy = 0 in the subsequent discussion. This problem is also known as
implicit surface tiling, for I(x,y.z) = 0 is an implicit equation for a surface in three-space,
or as isosurface construction, since an approximation to an iso-level surface is generated.

Cline and Lorenson [LC87] developed the “Marching Cubes” algorithm, which parti-




tions the space into cubical elements composed of eight neighboring voxel values. Inside
each of these cells, a decision is made as to whether the surface intersects the cell, in which
case polygons approximating this intersection are constructed. The original algorithm ex-
ploited a symmetry between situations involving positive and negative voxel values. It
turns out that some of the polygonal representations so obtained are not valid, i.e., there
are “holes” in the surface. The basic reason for this is that some configurations of posi-
tive and negative voxel values are ambiguous. For example, on a square face of a cube,
when the diagonally opposite vertices are positive and the other two negative, two different

polygonalizations are possible (see Fig. 1).
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Figure 1: Ambiguous configuration. The hash-marked regions represent two conflicting

polygonalizations of the underlying shape

Koi, Doi, and Kajioka [KDK86] propose the decomposition of the 8-cells into five
tetrahedra. They enumerate all possible cases, depending on the sign of the different
tetrahedra vertices, and create either zero, one, or two triangles inside each tetrahedron
with a table look-up procedure. They applied this technique to the visualization of complex
molecules.

The same decomposition was made famous by Payne and Toga [PT90], applied to
the representation of brain structures. An advantage of the tetrahedra-based method
over a cubical-cell based method is that with standard interpolation schemes, there are
no ambiguous cases for the polygonalization of the surface. Hall and Warren [HW90]
use an adaptive subdivision of the volume into tetrahedral cells, in order to approximate
implicit surfaces defined with a continuous function f(r,y,z) = 0. They concentrate on
the problem created by triangles with a high aspect ratio, and propose a solution consisting

in relocating some of the surface vertices.



Several methods have been proposed to cope with ambiguous configurations, without
creating holes. Wallin [Wal91] suggests using an interpolated voxel value at the center of
the face, in order to choose one polygonalization or the other, as in the case of Figure 1.
The polygons that are so defined can have up to 12 edges within each cell, and are thus
not trivially triangulated. As pointed out in the recent survey by Ning and Bloomenthal
[NB93], some triangulations might create invalid edges in the cube, and it is advisable to
add the centroid of polygons that have more than five edges to the set of vertices.

Kalvin [Kal91] developed another method for disambiguation by selecting a preferred
polarity. By using 6-connectivity within the positive-valued volume and 26-connectivity in
the exterior, he observes that positive vertices cannot then be connected along diagonals.
Thus in Figure 1, Kalvin will always choose the second polygonalization. He proves that the
surfaces that are produced are valid, and he builds a “winged edge” data structure [Bau74]
to represent and manipulate the surfaces, building them up sequentially, by applying a
succession of surface construction operators. The method developed by Kalvin is related
to the “Weaving Wall” algorithm of Harlyn Baker [Bak89], which is used to analyze image
sequences.

Thirion [TG93] defines cycles in each voxel, similarly to Wallin, and shows that the
cycles can be oriented. Further. he introduces oriented segments inside the cycles and a new
method, “Marching Lines.” to track characteristic lines on isosurfaces. The observation by
Monga et al. [MBF92], that it is possible to compute surface curvatures from the discrete
differentiation of voxel values, plays a central role in the work of Thirion. Marching Lines

has been applied to the problem of registering 3-D medical images [AGTG93].

2 Description of the Wrapper Algorithm

2.1 Tetrahedral decomposition

We regard voxels as being values defined at points of a rectangular lattice, and eight
adjacent voxels are taken to form the eight vertices of an 8-cell, or cube. We use the

tetrahedral decomposition made famnous by Payne and Toga [PT90] (see Figure 2).

For any given cube, two such tetrahedral decompositions are possible, one which is
mirror symmetric with respect to the y-z plane to the other (see Figure 12). In order to

be consistent between neighboring 8-cells, i.e., in order that faces and edges of tetrahedra



Figure 2: Decomposition of the cube into five tetrahedra. Four are right isoscele and thus

isomorphic (only two are shown here on the left), the fifth one is regular and equilateral
(right).

in one cell match faces and edges of tetrahedra in the neighboring cells, we must alternate
between the two decompositions from cell to cell, in a 3-D checkerboard fashion.

We next describe the use of binary operations to perform the decomposition easily.
Each of the vertices of the 8-cell is numbered from 0 to 7, as in Figure 3. Moving along
an edge oriented along the 2, y, or = axis is performed by inverting one of the three bits
of the representation. The three possible 1-bit inversions will be denoted by ® 001, ® 010,
and ® 100 respectively (see Figure 4).

Each 8-cell has a coordinate location (r,y,z) for its local origin. We use z, y, and 2
to measure the row, column, and height in the array of cells. In order to identify each

tetrahedron within a cell, we perform the following steps:

1. If z +y+ z is even, we call the cell an even cell, and we say that the parity of the cell
is even. If the sum is odd, the cell’s parity is odd. To determine tetrahedron number
1 within the cell, we select apex 4, as vertex 000 in an even cell, and as vertex
001 in an odd cell. We then obtain three other vertices from A; by applying the
motion operators @ 001, @ 010, and ® 100, resulting in vy, vy2, and v;3 respectively.
Tetrahedron number 1 is spanned by (A, v}y, v12,v13), which we view as an ordered

tuple of vertices (see Figure 5).

)

Tetrahedron number 2 uses the second apex A,, obtained from A; by the 2-bit

inversion @ 011. Three vertices v,;, vq2, Vg3 are obtained from A; by the one-bit
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Figure 3: Binary transitions to traverse the 8-cell. Each vertex is labeled by a bit pattern
corresponding to its coordinates in an (z,y, z) coordinate system, relative to a standard origin

in the cell (upper left rear in the figure).

transitions ® 001, ® 010, and ® 100.

3. Next, A3 is obtained by applying ® 101 to A;. The span of (As, vs1, v32, v33) defines
tetrahedron number 3, where the v, v37, v33 once again come from Aj after applying
® 001, ® 010, ® 100.

4. By applying ®110 to A4,, we define A,, and the corresponding tetrahedron 4 is defined

analogously to tetrahedra 1, 2, and 3.

5. The fifth tetrahedron is defined by shifting the four apices (A;, A2, A3, A4) by ® 001,
resulting in (4; ® 001, A, ® 001, A3 ® 001, A; ® 001), which spans tetrahedron

number 5.

2.2 Intersection of surfaces with tetrahedra

The next step consists in determining whether a portion of the isosurface will intersect a
given tetrahedron (v;,v;,v3,v4). The intensity values (I, I3, I3, I4) corresponding to the
four vertices are retrieved from the 3-D data. (In the case of CT data from X-ray scans,
the vertex values are called Hounsfield numbers.) Supposing I < Iy at a vertex, we will
assume that the vertex lies outside the body bounded by the isosurface. If I > I, then

the vertex lies inside the body. If the vertices of a tetrahedron are of mixed sign relative
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Figure 4: Some motion operators.

to Io, then the isosurface will intersect the tetrahedron. For convenience, we assume that
Iy = 0. Our first task is to determine the points of intersection of I = 0 along the edges of
the tetrahedron. The location of these points depends on the interpolation function that
is used.

For each edge that exhibits an intensity sign change, we will create a vertex of the
polygonal approximation to the isosurface I = 0. The exact position of the vertex is
determined by the zero-crossing of a function interpolating intensity values along the edge.
Our experience shows that using linear interpolation along each edge yields a poor result,

with an excessive spikiness of the surface, as illustrated in Figure 6.

We instead choose a bilinear function that interpolates the four intensity values at the
corner of each face in the original volumetric grid. This allows us to evaluate values on the
faces of the 8-cells; we will never need to explicitly evaluate values internal to the 8-cells.
The bilinear interpolation reduces to linear interpolation along the edges of an 8-cell, but
results in a quadratic interpolation along diagonal edges on an 8-cell face. Specifically, if
(a, b, c,d) denote the four intensity values on the face of an 8-cell, then the intensity value

along the (a,d) diagonal edge is given by:

Iuy=(a+d=-b—cu*+(-2a+b+c)u+a.

Here, u varies from 0 to 1 linearly along the diagonal. Provided ad < 0, I will have exactly
one zero in the range 0 < u < 1, which can easily be determined from the quadratic
formula (the other zero will fall outside this range).

Having established the interpolation function along tetrahedral boundaries, we can thus
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Figure 5: To determine tetrahedron number 1 within the cell, we select apex A; as vertex
000 in an even cell and as vertex 001 in an odd cell. We then obtain three other vertices

from A; by applying the motion operators ® 001, ® 010 and ® 100.

compute the locations of the intersections of the isosurface with those edges. The exact
shape of the isosurface within the tetrahedron will depend on the volumetric interpolation
function. We will, however, not be concerned with this interpolation function and will
instead approximate the surface using either a planar triangle or a pair of triangles, both
lying inside the tetrahedron.

Consider a tetrahedron (v;, v, v3,v4) which is defined by the ordered tuple of vertices
spanning the volume. The order is as determined by one of the five steps from Section 2.1.
The corresponding intensity values are given by a four-tuple (I, I3, I3, I4). As noted before,
if all four values have the same sign, then the surface does not intersect the tetrahedron.
If the signs are mixed, however, we then have three major cases. Among Iy, I, I3, I, there
are either one, two, or three positive values. These cases are illustrated in Figure 7. For
the Cases I and III, three of the values have the same sign. For Case II, two vertices are
positive and two are negative. In this case, the surface will intersect all four faces, and
we have a quadrilateral. By choosing arbitrarily a diagonal of the quadrilateral, we obtain
two triangles within the tetrahedron. Combining all cases, we have a patch of the surface
represented as either one or two triangles.

More importantly, the triangles can be oriented. An orientation for a triangle is given
by a cycle, or an ordering of the edges, such that viewed from the outside, the triangle is
traversed in a counterclockwise direction. We next explain how to determine the proper

ordering in an efficient manner.
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Figure 6: Using a linear interpolation along the diagonal edge results in a severe difference
in position for the polygonal surface when the diagonal edge is swapped (left and right).
Consequently, the polygonal surface represents a “spiky” aspect. Instead, we use a bilinear

interpolant (middle) to reduce this difference.

2.2.1 Cases I and III

For Cases I and III, exactly one value among (I, I, I3, I;) has sign opposite to the others.
Using this value, we compute intersections along the edges connecting its vertex to the
other three vertices, preserving order among (v;, vz, v3,v4). So, for example, if I3 has the
different sign, we compute intersection along (v3,v1), then (v, v;), and then (vs,v4). These
three intersections determine an ordering which is either the correct direction, or opposite
to the correct direction. One way to determine if the orientation is correct is to check it
with the following simple procedure.

First, we reorder the vertices (v, v,, v3,v4) to obtain (a, 3,7, 6) such that the vertices
with negative values precede the vertices with positive values, without otherwise disturbing
relative order. Viewing the vertices as coordinates in three-space, we can then compute

the determinant
det(ﬂ —a,y — ﬂ?6 - 7)

If this determinant is negative, then the ordering of the triangle vertices is correct; other-
wise, the ordering must be reversed. (Doi and Koide use this same determinant procedure.)

To see that this procedure works, consider Case I, where exactly one vertex (name §)
will have a positive value. The order of the cycle defining the triangle is, by definition, the
intersection points along (6, a), then (4, 3), and finally (6, ), which provides a cycle whose
orientation, relative to 6, is the same as the orientation of (a,,v). The orientation of

this cycle, pointing outwards, is given by the vector cross-product (8 — a) x (¥ — ), which
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Figure 7: Defining one or two oriented triangles. Depending upon the number of vertices
outside the surface (marked with the minus sign) we define three or four vertices of the surface
approximation in the ordering specified in the text. the condition for having to reverse the
ordering is det(8 — a,y— 3,6 —v) > 0. Note that this value is six times the volume, positive

or negative, of the tetrahedron.

points away from the interior point é according to whether the dot product with é§ — v is
positive or negative. The dot product is precisely the determinant det(8 — a,y — 3,6 — v),
and since the correct ordering gives an orientation pointing to the exterior, a negative
determinant indicates a correct ordering, whereas a positive determinant indicates that
the ordering must be reversed. Equivalently, the frame at node é given by the triple of
vectors (a— 6, 8— 6,y —6) should form a right-hand coordinate frame if a, 3, v are oriented
clockwise with respect to the exterior node 6. This means that the ordering is correct if
and only if det(a — 6,8 — 6,7 — 6) is positive, which can be seen to be equivalent (through

determinant manipulations) to requiring that det(8 — a,q — 3,6 — v) is negative.

2.2.2 Case Il

In this case, exactly two vertices are negative, and two are positive. We reorder the vertices
(v1,v2,v3,v4) as above, to give vertices (a. 3,7, ), where the values associated with a and
f are negative, and the values associated with 4 and é are positive. We compute the
vertices of the quadrilateral as follows. We first find the zero along (a,v). Next, we find
the zero along (a, 6), then (3, 6), and finally (4, +). This sequence of four points establishes

a cycle, which is either the correct ordering, or the incorrect ordering, which can be easily
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checked.

It turns out that in this case, the verification procedure is exactly the same as in
the previous case. That is, viewing the vertices as vectors in 3, we compute det(8 —
a,y — 3,6 — 7). The ordering of the interpolation points defined above is correct if the
determinant is negative; if the determinant is positive, then the order should be reversed.

If the resulting ordering of the interpolation points is given by (w;,ws,ws, wy), then
there are two possible triangulation: One is given by the following pair of ordered triangles
{(wy,wa,wsq), (w2,ws,wy)}, and the other is given by the pair {(w,ws,ws), (w3, ws, w1)}.
The triangulations may be chosen arbitrarily. By always choosing the first one in an even
8-cell, and the second one in an odd 8-cell, we constrain the maximum degree at vertices
to be nine.

The justification of the verification procedure is once again done by examining carefully
Figure 7, and using the fact that the vertices a and  have negative values. Since a, 3,7,
and ¢ are the coordinate locations of 8-cell vertices, and can be represented relative to the

local origin, all matrix entries in the determinant calculation are either 0, 1, or —1.

2.2.3 A look-up procedure to replace the determinant test

The sign of the determinant value det(8 — a,vy — 3,6 — ) that specifies whether the orien-
tation of a given cycle is correct can be obtained by a table look-up procedure, as opposed
to a computation. This new procedure greatly speeds up the orientation determination.

Let us first suppose that for a given tetrahedron (v;,v;,v3,v4) in an even 8-cell, no
re-ordering is required to obtain («a,/3,7.4). It then turns out, based on the construction
of the ordered tuple representing the tetrahedron, that det(8 — a,v — 3,6 — v) will be
positive, regardless of whether (v,,v,,v3,v4) is a tetrahedron number 1, 2, 3, 4, or 5, as
long as we are inside an even 8-cell (For an odd cell, the result is always negative.) Next, we
suppose that some re-ordering is required in determining (a, 3,7, 6). Recall that vertices
with negative values are listed first, without changing other relative orderings. Suppose,
for example, that v; and v; must be exchanged to obtain (a, 3,7,8). The result of this
permutation is that the sign of the determinant is reversed. If instead v;3 must be brought
to the front, then two transpositions are required, and the sign of the determinant stays
the same.

In general, the sign of the determinant det(8 — a,y — #,6 — 7) is determined by the

number of transpositions required to permute the negative vertices among (v, vz, v3,v4) to
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the beginning of the list. The number of transpositions required can be pre-tabulated, as
follows. Representing a negative vertex in (v, v2,vs3,v4) by a 0, and a positive vertex by a
1, we obtain a 4-bit code for the tetrahedron, yielding a number between 0 and 15. The
resulting determinant will be positive or negative according to whether an even or odd
number of transpositions are required, as tabulated in Table 1. Note that it is no longer
required to physically re-order the vertices—only the bit code is needed. Accordingly, if
the table yields a positive entry for the determinant, the oriented cycle representing the
surface patch should be reversed; a negative entry indicates that the orientation is correct.

The signs are opposite for an odd cell.

2.3 Special Cases

We next consider certain special cases, when I = 0 at some or all of the positive vertices.
(Recall that I > 0 corresponds to a positive vertex.) Note that when intensity values
are integer values as in medical imaging, the property I # I, can always be guaranteed
trivially by taking a non-integer value for I. However, when I = Iy = 0 is possible, a
single vertex I = 0 within a tetrahedron is handled exactly as any positive vertex. Indeed,
we treat a vertex with I = 0 exactly as any other positive vertex except for two special
cases: (i) If there is one vertex with I = 0, and the other three are strictly negative, then
we do not create a triangle, even though we are in a Case I situation; (ii) Also, if there are
two vertices with I = 0, and the other two vertices are strictly negative, then we do not
create polygons, even though we have a Case II situation. In these two cases, the polygons
are degenerate. On the other hand, if three values among (I;, I, I3, I) are zero and the
other is negative, then we create one triangle, as shown in Figure 8, exactly as a Case III
situation would predict. Also, contrary to [KDK86|, when I} = I, = I3 = I, = 0, we do
not create any polygons, instead viewing this situation as four positive vertices lying inside
the body.

2.4 A bound on the degree of a vertex

The degree of a vertex is the number of triangles that share that vertex. High degrees
are associated with long and thin triangles, i.e., triangles with high aspect ratios. We
must assume that I(z,y,z) # 0 at all vertices. Then all intersections must occur along

the interior of edge segments. At most six tetrahedra can share a single edge, and if two
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Figure 8: Special cases occurring when the largest voxel value is zero. We insert a polygon
(namely, a triangle) when exactly one value is strictly negative, but if exactly two are negative,

(and the other two are zero), or if exactly three are negative (and the other one is zero), no

polygons are inserted.

triangles are contained in each tetrahedron and all meet at a single vertex, then conceivably
12 triangles could meet at a single location. In reality, the maximum number that can
meet is nine.

To prove that the bound is actually nine, one must examine the geometry of the situa-
tion under the supposition that ten or more triangles meet at a point v on an edge. Since
there must be at least five tetrahedra coincident at v, one quickly determines that the edge
containing the vertex v must lie diagonally on a face between two 8-cells, and that six
tetrahedra share the edge. Among the six tetrahedra, at least four must be of type II, and
of these four, at least two must be adjacent (i.e., share a face). Each type II tetrahedron
will contain a surface patch represented as a quadrilateral consisting of an ordered set of
interpolation points (w;,ws, w3, wy), with one of the points being the common vertex v,
and each quadrilateral is split into two triangles. such that all eight triangles must meet
at v. However, diagonals are defined by choosing the pair {(w;, w2, w4), (w2, w3, w4)} in
an even 8-cell, and the alternative pair in an odd 8-cell. As a result, it turns out that no
two diagonals in adjacent tetrahedra can meet at the same vertex. (The proof of this fact
depends on the orientation of tetrahedra and the convention for the selection of the diag-
onals in odd and even cells.) Since at least two of the four tetrahedra must be adjacent,

we have a contradiction.

2.5 Surface Data Structure

We have completed the description of the Wrapper Algorithm. However, the form of the
data structures that are used to implement the algorithm can have a substantial influence

on the execution speed.
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Figure 9: Highest degree of the triangulation. When six tetrahedra, each containing two
surface triangles share a common surface vertex v, it is impossible that more that nine
triangles meet a v. (Note that the + sign at apex Aj3 is not necessary for the discussion, but
illustrates a case when an 8-cell contains ten triangles. It is easily seen that four such cases

are possible.)

2.5.1 The surface graph

The surface representation consists of a collection of “surface patches,” and each patch
can be represented as a single triangle or a pair of triangles. Further, each patch has
either three or four neighbors. We can represent the collection of patches (the nodes of
the abstract graph structure representing the surface) as a set of tetrahedra indices, which
we denote by t = (z,y,z,k). The (z,y,z) coordinates indicate the location of the 8-cell
containing the tetrahedron, and 1 < » < 5 indicates the tetrahedron number, as defined
in Section 2.1. The neighbors of the patches can be encoded by a simple code ¢ with

five possibilities. Either there are four neighbors, in which case every neighbor of the
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tetrahedron contains a contiguous patch, or there are three neighbors, and one of the four
faces of the tetrahedron is omitted from the list of neighbors. We use ¢ = 0 in the first
case, and ¢ = 1,2,3, or 4 to indicate which face is omitted in the latter case. The c-th
face of a tetrahedron number k is the face opposite vertex vy ., as defined in Section 2.1.
Accordingly, the abstract graph structure of the patches can be encoded very compactly,
as a set of tetrahedra and their codes {(t;,¢i)}.

Each triangle is represented by a sequence of three vertices. However, each vertex
will be shared by more than one triangle (a maximum of ten triangles when the vertex is
interior to an edge). Each triangle should use a pointer structure to encode the locations
of the vertices, so as to avoid multiply encoding the positions of the vertices. One method
is to store three pointers with each triangle, pointing into a heap of vertices. In this
representation, we have a set of vertices {v;}, where each v; is a location in three-space,
and each tetrahedron ¢; is supplemented with either three indices (ji 1, Ji 2, Ji,3), indicating

a triangle in t;, or in case ¢; = 0, a list of four indices (ji .1, Ji,2, Ji3, Ji,4)-

2.5.2 Distributed vertex allocation

For parallel computing and improved cache performance, it is desirable to store the vertex
information local to the tetrahedra. In this section, we show how to replace the heap of
vertices with an allocation of vertices to individual tetrahedra that are used in the surface
representation.

For this purpose, and for other purposes as well (as in Table 1), it is useful to replace
the neighbor code ¢; with a bit-code b, representing the signs of the voxel data at the
vertices of tetrahedron ¢;. This bit-code requires four bits: b; = (b; 1, b; 2, bi 3, bi 4), and each
bit b;,, equals 1 if the value at the m-th vertex of tetrahedron t; has greater value than Iy,
and equals zero otherwise. Although the bitcode b; requires four bits while ¢; only requires
three bits, the extra information will be useful, and a simple table can be used to recover
¢; from b;.

Armed with the tetrahedron index t; and the bitcode b;, it is easy to determine the
edges of the tetrahedron that will contain vertices of the surface triangulation. Indeed,
the tetrahedron index is irrelevant, except that the oriented list can be produced by in-
corporating the test of Section 2.2.3, which may be precomputed for each case, and which
depends, as it turns out, only on the parity of the 8-cell containing t; (i.e., on whether

z; + y; + z; is even or odd) and on the bit code b;.
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The result is that for every tetrahedron ¢; in the surface representation, we can produce
an ordered list of three or four tetrahedral edges, each of which will contain exactly one
vertex of the surface triangulation. We now describe how the information about those
vertices may be stored so that (1) each surface vertex is represented in only one location,
and (2) the information about a vertex along a tetrahedral edge is allocated to a tetrahedron
that contains that edge.

In fact, we describe two such allocation schemes. The first, the static allocation scheme,
stores either zero, one, or two surface vertices in any given triangle. The scheme is illus-
trated by Figure 10. First, edges are allocated to either the even 8-cells or the odd 8-cells,
as indicated by edges with dots in Figure 10. Note that in a checkerboard concatenation
of even and odd 8-cells, all edges of all tetrahedra are allocated. Next, the six edges in
the even 8-cells are distributed among the five tetrahedra of the 8-cell, and the six edges
of the odd 8-cells are similarly distributed among the five corresponding tetrahedra. In
each case, one tetrahedron has responsibility for two edges. Also note that each edge is
allocated to an adjoining tetrahedron. Using this scheme, every edge of every tetrahedron
has a fixed storage location in an adjoining tetrahedron in order to store the location of
a vertex that might occur on that edge. Indeed, the value that is stored can be a simple
real value, giving a relative distance along the edge, in a predetermined direction. Then,
given a tetrahedron t; and the bitcode b;, we can use the parity of the cell and the bitcode
in order to obtain a list of the storage locations of the values representing the vertices of
the surface patch, in order. Each element in the list can be represented as a differential
tetrahedral number, which is a code (Ax, Ay, Az, k') giving the relative cell location, and
the actual tetrahedron number in the cell. In the case of the tetrahedron containing two
storage locations, an extra bit is required to point to one of the two values.

It is perhaps surprising that we can distribute the six edges in each cell among the five
tetrahedra in a dynamic allocation scheme in such a way that no tetrahedron ever contains
more than one vertex. In this scheme, we use six different edges in each 8-cell, as shown in
Figure 11. The key to this scheme is that the allocation of edges depends on the bitcode of
the tetrahedron number 4 in the odd cell. The retrieval algorithm works as follows. In the
figure, all solid dots indicate that the vertex information for that edge is unambiguously
located in the indicated tetrahedron, within the corresponding 8-cell. For the starred
nodes, vertex information for the edge may be stored in the indicated tetrahedron in the

even 8-cell, which is where an access is first checked. The tetrahedron information contains
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not only a vertex value (a real value giving a distance along the edge), but also a couple
of bits indicating which edge is actually stored there. If the starred edge discovers that its
information is not located in its primary storage tetrahedron, it then accesses its secondary
storage location. The secondary storage for edges are shown with open circles, and they
are always contained in the odd 8-cell. The open circles are associated, one-for-one, with
the starred edges. Note that these dynamic edges have their primary storage tetrahedra

in the even cell, and a secondary storage location in an adjoining tetrahedron in the odd
8-cell.
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Figure 10: Static storage scheme. Each edge is allocated either to the adjoining even cell or
odd cell, as indicated by the dots. Within each cell, the tetrahedra are numbered 1 to 5; the
apices of the first four tetrahedra are shown by the circled numbers, and the fifth tetrahedron
is the interior one, in both cells. The labels on the dots give the tetrahedron number in the

corresponding cell to which the edge is allocated.

It is possible to store the information in such a way that all surface vertex data is either
located in the primary or secondary storage location, and that there are never conflicts in
the secondary storage locations. There are only three dynamic edges in any given even
8-cell, and edges in the odd cells are all unambiguous. Let us denote the three edges in
the even 8-cell as e, e;. and e3 as shown in Figure 11. (Edge e, is the diagonal edge on

the negative z-face of the even cell, ¢; is the edge on the negative y-face, and e3 is on the
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negative z face.) Consider first ;. Vertex information along this edge is either stored in the
primary location (tetrahedron 4 in the even 8-cell), or the secondary location (tetrahedron
4 in the adjoining odd cell). The determination depends on the bitcode b of the tetrahedron
4 in the odd cell (i.e., the tetrahedron that is the secondary storage location). Similarly,
edge e, and edge e; are allocated to their primary or secondary storage location according
to the bitcode of the adjoining tetrahedron forming the secondary storage location. Table
2 shows whether the primary storage location (with entry value 1) or the secondary storage
location (table entry 2) should be used, for edges e;, ez, and e3, as a function of the 16

possible bitcodes for the secondary tetrahedron.
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Figure 11: Dynamic storage scheme. Solid dots indicate deterministic allocation, as in Figure
10. For the three starred edges, the primary storage location is the labeled tetrahedron in the
even cell, and the secondary storage location is given by the label on the open dot in the odd

cell. Table 2 indicates when primary and secondary storage locations are used.

3 Operations on the Wrapper output

In this section, we consider a number of operations that may be applied to the data
structures produced by the wrapper algorithm. These operations are particularly efficient

due to the representation of the surface as produced by the Wrapper algorithm.
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3.1 Connected Components

Connected components of the boundary surface are connected closed surfaces. For example,
a sphere or torus will have one surface component, whereas a 3-D annulus will have two
components. Similarly, two distinct solid spheres will result in two components. More
than counting components, a connected component analysis of the surface is important for
analyzing the topology or measuring volumes and surface areas.

The output of the wrapper algorithm is a graph data structure. The nodes are rep-
resented by tetrahedra indices (z,y,z,k), and each node contains a code that can be
converted, through the use of a simple table, to a list of differential indices to neighboring
tetrahedra that contain contiguous surface patches. The table depends only on whether
the 8-cell is even or odd, the tetrahedron type 1 < k& < 5, and the code ¢, 0 < ¢ < 4,
indicating which face, if any, is omitted among the list of neighbors (Recall that the code
¢ can be determined from a table look-up from the bitcode b for the signs of the vertices
of the tetrahedron.) Indeed, we may begin with a list (see Table 3 and Figure 12) of the

four neighboring tetrahedra for each type of tetrahedron.

Nearly all connected components algorithms will begin by choosing a single pointer at
each node. By ordering the tetrahedra lexicographically, we may choose the maximum
neighbor for each surface patch. These pointers may be pretabulated for each case, de-
pending on the parity of the 8-cell. the tetrahedron number, and the omitted neighbor
code. The table has 50 entries.

A standard connected components algorithm is based on the Union/Find disjoint set
operators (see [CLR89]). A more interesting alternative is to use the O(logn) iterative
parallel connected components algorithm of Shiloach/Vishkin, or a MIMD version of this

algorithm [Hum86].

3.2 Approximate Rendering

Suppose that we perturb the voxel values at the vertices of tetrahedra of types I, II, and
III by setting each positive vertex value to zero. This perturbation only affects tetrahedra
that contain surface patches. Due to the change of values near the surface, the polygonal
surface structure will be perturbed. However, no surface patch will move outside the
boundaries of its enclosing tetrahedron. The advantage of this modification of voxel values

is that all surface patches will now lie on tetrahedra faces, and only tetrahedra of type III
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Figure 12: The correspondence between codes of neighboring tetrahedra. An “even 8-cell”

(top left), where A; is vertex 000, is adjacent to six “odd 8-cells”, where A, is vertex 001.

The four neighbors of each of the tetrahedra will be found among these seven 8-cells.

are of interest, since tetrahedra of type I and II with zero values at the positive vertices
are special cases, as discussed in Section 2.3. Recall that each type III tetrahedron has a
single negative vertex (which is outside the volume), separated by a triangular patch from
the tetrahedral face containing the three positive vertices, which we call the outface. By
redefining these positive vertices to be zero, the triangular patch becomes the entire face
of the type III tetrahedron.

In order to perform a rapid rendering of this approximate surface structure, we can
use the following algorithm. We first locate all type III tetrahedra in the original volume,
and using the tetrahedron index consisting of the (2,y, z) coordinates of the origin of the
8-cell as well as the tetrahedron number k (1 < & < 5), we determine the number of the
vertex opposite the outface (1 < v < 4). This vertex can either be computed from the
tetrahedron index and the bit code representing the vertex signs, or it can be stored in
type III tetrahedra concurrent with the Wrapper Algorithm. Then, using the tetrahedron

number k and the vertex v, it is easy to generate the coordinates of an oriented cycle giving
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the vertices of the outface. For rendering the face, a better result is obtained if the face
is assumed to have an orientation (i.e., surface normal) different than its actual direction.
The phantom orientation can be taken from the orientation of the triangular surface patch
in the type III tetrahedron before the perturbation, or by smooth interpolation of an
orientation at each vertex obtained by averaging the surface normals of the adjoining
surface elements, or by using a direction obtained from a local evaluation of the gradient

of the voxel data. Figure 13 shows a result using the last method.

Figure 13: Approximate rendering of the cortical surface of the brain for a normal individual
(104K type Il tetrahedra), extracted from a 256 by 256 by 130 MR scan (courtesy of H.
Rusinek, Department of Radiology, NYU School of Medicine). The surface normals are
colinear with the gradient of voxel data. Prior to rendering, the segmentation of the volume
uses techniques described in [MAB93].
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3.3 Surface curvatures

Monga et al. [MBF] provide a method for computing principal curvature directions and
curvature values of an isosurface directly from voxel data and spatial derivative of the
voxel data (see also [Gué93]). Specifically, at a point (Zo, Yo, 20), the normal vector N of
the surface S defined by I(z,y, z) = I(zo, Yo, 20) lies in the same direction as the gradient
of voxel data VI = (I, I,,I.): N =VI/||VI||.

N

Figure 14: Normal N of the isosurface at vertex v.

In order to evaluate the surface curvatures, we consider a curve C, with tangent vector
t, along a normal section of S (see Figure 16). The normal of C is also N = (n;,n,,n;).
The differentiation of VI -t = 0 yields

ttHt + VI-kN =0

where k denotes the normal curvature of C which is also by definition the surface curvature

in direction t, and H is the three by three Hessian:

I.r.t Ixy I.t:
H=| I, I, I,
I.'tz Iy: Izz
Thus £ = —t'Ht/||VI||. Accordingly, the principal curvatures are the negatives of the

eigenvalues of PTRT HRP divided by the magnitude of the gradient ||VI||, where P is the

projection of (z,y, z) onto (x,y) and is a three by two matrix:



and R is a rotation matrix composed from R = R, R,, with

) ng —-ny, 0 n, 0 /1—n?

n, 0|, Rx= 0 1 0 )

—— | n
“l—nz Oy 0 1 —y/1=n2 0 n,

and R, is the identity if n, = +1. All vertices of surface patches occur along edges of

R1=

8-cells, and derivatives of the image data may be computed and interpolated at these
locations by suitable methods. Solving the eigenproblem at the interpolated position of
each surface vertex, we may attach curvatures (and also principal curvature directions) to
each vertex stored in the surface representation. Interpolation of values into interior points

of surface patches can be based on weighted sums of values at triangle vertices.

3.4 Surface simplification

The Wrapper Algorithm, based on a tetrahedral decomposition, results in significantly
more triangles than the Marching Cubes method. If we count the number of vertices
created by both methods, and assuming that all vertices land on the interior of edge
segments, we find that the Wrapper Algorithm results in between two and three times
more vertices. Experimental results for this ratio are presented in Table 4 for a variety of
surface types.

In addition, the representation of the surface data has an impact on the volume of data.
Alternative representations include the Baumgart winged-edge data structure [Bau74], and
face or edge lists at each vertex. In most of our implementations, we choose to use a heap
of vertex coordinates, with edge lists for each triangle represented through pointers into
the collection of vertices. The representation that stores vertex information local to the
tetrahedra, as presented in Section 2.3, is especially compact.

In order to reduce the number of triangles, and to eliminate badly shaped triangles, we
have developed a simplification algorithmm that we outline below. Details will be given in
a subsequent report.

The simplification algorithm operates serially, successively visiting edges and testing
them for removal. This approach is contrary to the methods in [SZL92,Tur92], but related
to the method in [RR94]. A parallelization of the process is possible, but edges that
are concurrently considered for deletion must be sufficiently distant in the graph data

structure.



Figure 15 shows the configuration for an edge deletion test, where (v;,v;) denotes the
edge that is under test. If the edge is deleted, then v, and v; are modified to terminate at

v, which we call a simplified vertex.

New

Figure 15: Removing the edge shared by triangles ¢, and ¢,.

The criterion for deleting an edge can include an assortment of tests. If v3 and vs denote
vertices of the two triangles that contain the edge (v1,v2) as in Figure 15, then we demand
that the distance between v; and v, be less than the distance from vz to vs. Also, we might
require that the former distance be sufficiently small. The Euclidean distances ¢; and ¢,
between v; and v, and the new triangulated surfaces are computed. These distances are
obtained by projecting v; and v, onto the closest triangle or edge of the surface, and should
be small in order to pass the deletion test. The smallest angle in the new configuration
of triangles is also computed and compared to the smallest angle in the old configuration.
Again, we want that the new configuration improves on the old.

We maintain three positive real values d, e, and p at each simplified vertex v (see
Figure 16). The value e is an upper bound to the closest distance between v and the
set of triangles in the original polygonal surface, and d represents an upper bound to the
distance between a triangle ¢ that meets v and the vertices of the original surface patch
(see Fig. 16). If an immediate neighbor w of v has been simplified more recently, then the
value d at w takes precedence over d at v. Finally, we record in p the maximum value

of ¢, and ¢;, as defined above. The value of p is used in updating d and e during the
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simplification process, and simplification terminates, when all values of d or e exceed a
threshold.

Use of this simplification algorithm, which is incorporated into the visualizations of
Figures 18, 19, 20 and 21, typically provides 10 to 1 compression ratios in the surface rep-
resentation without noticeable degradation in surface fidelity. The thresholds may change
dynamically, and the simplification can terminate when we obtain a given compression

ratio, or when we reach at each vertex a maximum error bound.

dl |el|pl

e2 | p2

e=MAX(d1+p2, &2+pl)

d=MAX(ql +el, g2+e2)

p=MAX(ql .q2)

Figure 16: We associate to each simplified vertex v a maximum bound e for the distance
between v and the original surface. Then d is the maximum distance between the triangles
meeting at v and the original surface vertices. The value p reflects the latest simplification

error when collapsing v; and v, into v.

4 The Analogy with Homology Theory

The basic idea behind the wrapper algorithm is quite simple, but has a sophisticated
mathematical basis. The motivation is derived from singular theory in the mathematical
field of homology theory, which in turn is part of algebraic topology. For the wrapper
algorithm, it suffices to consider only ¢-simplices in singular theory for ¢ equal to 1, 2,

and 3.



Simply put, the idea of the wrapper algorithm is to represent the boundary of a region
by a collection of oriented cycles, where each cycle defines a triangle lying in space forming
a boundary element of the surface. Each triangle has three neighbors, where each neighbor
is itself an oriented cycle representing a triangle. The orientations are such that any given
edge in the representation is traversed twice, once in each cycle associated with the adjacent
faces, and the directions are opposite for the two cycles. The upshot of the representation
is that one has a graph structure representing an oriented solid, whose nodes are (oriented)
triangles, and whose edges are pairs of adjacent triangles sharing a common edge.

The representation is very much akin to the Baumgart winged-edge data structure,
but is specialized for triangular faces, and is augmented by the orientation information
on each boundary face. Further, the wrapper algorithm makes use of a standard tetrahe-
dral decomposition of the array of rectangular cells, and incorporates certain algorithmic
efficiencies in the determination of boundary cycle orientations.

For the purpose of defining the connection to singular homology theory, and following
Greenberg [Gre67], we define the simplex A, to be the subset of ®? obtained from convex
combinations of (0, ..., 0), (1,0,...,0), and (0,1,0,...,0), etc. Thus A, is the line from 0 to 1,
A, is the triangle (including the interior) spanned by (0,0), (1,0), and (0,1), and Az is a
tetrahedron spanning the origin and unit vectors in R°.

A singular ¢g-simplex in ®2, for ¢ equal to 0, 1, 2, or 3, is a continuous map from A,
into ®3. Roughly, a singular 0-simplex is a point, a singular 1-simplex is a line segment,
a singular 2-simplex is a face, and a singular 3-simplex is a volume. When the continuous
maps are affine linear, then the singular simplices are called affine, and the maps are
completely defined by the images of the vertices. For singular affine simplices, all the faces
and edges are flat.

The border of a singular ¢-simplex can be viewed as composed of singular (¢ — 1)-
simplices. That is, a singular 3-simplex is bordered by four singular 2-simplices, and
a singular 2-simplex is bordered by three singular 1-simplices, etc. To systematize this
observation, it suffices to show that the k-th border of the g-simplex (0 < k < ¢) can be
seen as an affine singular (¢ — 1) simplex. To specify such an affine singular (¢—1) simplex,
we simply define the image of the vertices of A,_4, (0,...,0), (1,0,...,0), etc., to be the the
points in ®? (0,...,0,0), (1,0,...,0,0), etc., where the k-th vector (with the (0,...0,0)-vector
coﬁnting as the zeroth) is left out. We call this affine singular (¢ — 1)-simplex A: , since it

represents the k-th face of A, (Figure 17).
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Figure 17: To specify such an affine singular (¢g—1) simplex, we simply define the image of the
vertices of A,_, (0,...,0), (1,0.,...,0), etc., to be the the points in %7 (0,...,0,0), (1,0....,0,0),
etc., where the k-th vector (with the (0,...0,0)-vector counting as the zeroth) is left out. We
thus define the k-th face of A, (here ¢ =2,3).

A singular g-chain is a formal weighted suin (or difference) of singular ¢-simplices. Thus
if 04, ...,0, are n singular 3-simplices, their sum o, + 02 + ...0,, is a singular 3-chain that
represents nothing more than a “sum” of simplices. The singular simplices are allowed
to have integer coefficients, either positive or negative. This is useful for defining the
boundary operator. We define the boundary of A; as 3°(—1)*A¥ . Thus the boundary
of the singular 3-simplex A3 (which we can view as the identity map on Aj) is given by
0A; = AY— A} + A2 — A3. Similarly, 0A; = A} — A} + A2. Using the boundary operator
defined for simplices, the boundary operator can be defined analogously for a singular
g-simplex, and further extended in a linear fashion to singular g-chains.

A fundamental fact in singular theory is that the boundary operator applied to the
boundary of any g-chain is zero, in the sense that all the coefficients of the resulting
singular ¢ — 2 simplices cancel. Normally, in homology theory, we are only concerned with
boundaries of g-chains, and two (q — 1)-chains are considered equivalent if their difference

is a cycle (i.e., the boundary operator applied to the difference results in the empty chain).
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For the wrapper algorithm, however, we use the boundary operator to compute the
boundary of a 3-chain composed of maps from the 3-simplex to tetrahedra in the volume.
Specifically, we begin with a function f(z,y,z) defined over a volume, which we model
using data at voxel vertices and interpolate using tri-linear interpolation within the cells.
We consider the shape X = {(z,y,z)|f(z,y,2) > 0}, using the assumption that f is
trilinear within each cell. Using the tetrahedral decomposition of %2, we consider a single

tetrahedron T in the collection. We have:
Proposition 1 The intersection T N X has at most one connected component.

The proof of this proposition depends critically on both the decomposition method and
the interpolation scheme, and is part of the motivation for chosing the tetrahedral decom-
position and the trilinear interpolation method. Once established, however, it assures us
that the topology within any given tetrahedron is quite simple, and can be modeled as a
singular 3-simplex. That is, for every tetrahedron T that meets the space X, either T is
entirely contained in X, or the X portion in T is a single volume element, occupying a

portion of T. But more is true:

Proposition 2 Further, the boundary portion of X within T is either empty or a single

“face,” (i.e., a single component) which either meets three faces of T or all four faces of

T.

For the sake of brevity, we omit proofs of these and subsequent propositions, but instead
comment on the significance.

Using these propositions, we proceed to represent X by a singular 3-chain ¢ = 3 g;.
The main idea is that the boundary 9o will be a 2-chain that represents 0X. The 3-
chain is constructed in such a way that all interior boundaries in 9o cancel, and thus all
singular simplices with nonzero coefficients in do have ranges that cover X. This is done
as follows.

Each tetrahedron T; is either disjoint from X, contained in X, or intersects X but is
not contained in X. In the first case, no singular 3-simplex is required. In the second
case, we include in the sum for ¢ an affine singular 3-simplex o; mapping Aj to T;. The
orientation of o; matters, and depends on the identity of the tetrahedron T;. In the third

case, where X meets T;, we use:



Proposition 3 There ezists a polyhedral region Y; in T; that is homotopically equivalent to
X NT; such that if E is the union of (1-D) edges of the tetrahedron T;, then ENY; = ENX.
Further, Y; is either the range of a single affine singular §-simplez o; or equals the range of
a singular 3-chain containing three affine singular 3-simplicial terms 0; = 0;; + 0i2 + 0i3

such that the range of Oo; is 0Y;.

Accordingly, the region X, using the tetrahedral decomposition, is represented by a
singular 3-chain ¥ 0;, where each o; is either a singular 3-simplex mapping onto the tetra-
hedron T;, or a singular 3-simplex mapping onto a subregion Y;, or the sum of three singular
3-simplices whose sum maps onto a subregion Y;. We may consider the range of o to be a
region X' that provides a polyhedral approximation of X. By construction, X’ and X are

homotopically equivalent, and thus have the same topology and homotopy. We then have:

Proposition 4 The affine singular 8-chain 0 may be constructed so that the range of the

singular 2-simplices in 0o cover OX'.

That is, proposition 4 tells us that if the affine singular 3-simplices that are used
to construct o are chosen correctly, all of the internal faces cancel when computing the
boundary. The wrapper algorithm uses Proposition 4 to construct a representation of X',
computing the singular 2-simplices that remain in Odo.

Proposition 4 tells us even more. The fact that do is a 2-cycle that lies entirely in
0X' means that o establishes an orientation on X’. An orientation in homology theory
can be precisely defined in terms of elements of relative homology modules, but it suffices
to exhibit a g-chain ¢ such that, as in Proposition 4, 0o lies in 0X’. (An additional
requirement is that o must be a generator of a particular homology module, which is
guaranteed in our case, because the construction of ¢ involves singular 3-simplices all of
whose coefficients are 1 or —1.) Moreover, it is then true that Jo establishes an orientation
on 0X'.

In our case, the orientation on d.X’ can be understood simply. Since X’ is a polyhedron
in ®3, X' is a 2-manifold, and an orientation on X' is established if for every € X', there
is a cycle defined around r such that the direction of the loops “match up” for neighboring
z. For the interior of the faces represented in do, the orientation for the corresponding face
of X' is established in its entirety by the singular 2-simplex that covers the face. That is,

suppose that 7 is a singular 2-simplex in do, which covers a triangular face of X’. Then dr
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is a singular 1-chain, containing three singular 1-simplices, which are simply oriented lines
circling the border of the triangular face. The direction of the cycle gives the orientation
of the face. To define an orientation of the entire 2-manifold X', it is only necessary to
observe that the orientations of the faces “match up.” That is, if we have two neighboring
triangular faces on X', then the orientations of the two must be compatible, in the sense
that if the two cycles about the triangles are combined, a single cycle about the pair of
triangles results which maintains the same sense as the original cycles. This is assured,
however, because 890 = 0, which means that if an edge e is traversed in one direction
along a face, then it is traversed in the opposite direction (the coefficient of the singular
1-simplex is —1) on the adjacent face. Accordingly, if the edge is removed, then the points
along the edge belong to a quadrilateral (a conjoined pair of faces), and the orientation of

the points along the edge is defined by the cycles about the quadrilateral.

5 Experimental Results

We applied the Wrapper Algorithm to the representation of the cranium in CT scans at
full resolution. The Figures 18 and 19 represent a normal individual, from of the CMNH
Hamman-Todd collection. Figure 21 represents a pathological case, an individual with
Crouzon’s syndrome, from the collection of the Vienna Museum of Natural History.

We extracted the cortical surface of a normal individual from an MR scan (courtesy
of H. Rusinek, Department of Radiology. NYU School of Medicine). The result is in
Fig. 20. We thank Gregoire Malandain [MAB93] for applying his segmentation algorithms
to the MR-scan. Rendering in these images is done using an orthographic projection of the
polyhedral structure. We employ Gouraud shading, using surface normals in the direction
of the gradient of voxel data. The color display (Fig. 21) uses the curvature computation
of section 3.3. The maximum principal curvature is color-coded, such that high curvature
regions appear in red and low curvature regions appear in blue. Green and yellow areas
indicate medium curvature values. Derivatives of voxel data are estimated by convolving

image data with B-spline functions [Gué93].

We gratefully acknowledge Drs. Court Cutting and David Dean for helpful discussions
with the authors. We thank Bruce Latimer, Director, Laboratory of Physical Anthro-
pology, Cleveland Museum of Natural History, for access to the Hamman-Todd morgue

collection.
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Bit code || Index | Sign of det() in an even cell
0000 0 +
0001 1 +
0010 2 -
0011 3 +
0100 4 +
0101 5 -
0110 6 +
0111 7 +
1000 8 -
1001 9 +
1010 10 -
1011 11 -
1100 12 +
1101 13 +
1110 14 -
1111 15 +

Table 1: Tabulating the number of transpositions in order to map from the bit code repre-
senting the signs of the values at the tetrahedra vertices to the sign of the determinant that
determines whether the constructed cycle has the correct orientation (negative determinant)
or must be reversed (positive determinant). For an odd cell, the entries are opposite those of

an even cell.




Bit code || €; | €2 | €3
0000
0001 2
0010 2 1
0011 211
0100 112
0101 1 2
0110 211
0111
1000
1001 211
1010 1 2
1011 112
1100 211
1101 2 1
1110 112
1111

Table 2: Storage locations for edges €, ¢,, and e3, as a function of the bit code on the
tetrahedron containing the secondary storage location. A “1” entry indicates that the primary
storage location should be used for the edge, whereas a “2" denotes the secondary storage. A

blank indicates that the edge does not have a zero-crossing with the corresponding bit code.

36




Tetrahedron Neighbors (Az, Ay, Ay, k)

Even or Odd | Number 1 2 3 4
Even 1 (=1.0,0,1) | (0,—1,0,2) | (0,0,-1,3) | (0,0,0,5)
Even 2 (1,0,0,2) | (0,1,0,2) |(0,0,-1,4) | (0,0,0,5)
Even 3 (1,0,0,3) | (0,~1,0,4) | (0,0,1,1) |(0,0,0,5)
Even 4 (-1,0,0,4) | (0,1,0,3) | (0,0,1,2) |(0,0,0,5)
Even 5 (0,0,0,1) | (0,0,0,2) | (0,0,0,3) |(0,0,0,4)
Odd 1 (1,0,0,1) |(0,-1,0,2) | (0,0,-1,3) | (0,0,0,5)
0dd 2 (=1,0,0,2) | (0,1,0,2) |(0,0,-1,4) | (0,0,0,5)
0dd 3 (-1,0,0,3) | (0,-1,0,4) | (0,0,1,1) |(0,0,0,5)
0dd 4 (1,0,0,4) | (0,1,0,3) | (0,0,1,2) |(0,0,0,5)
0dd 5 (0,0,0,1) | (0,0,0,2) | (0,0,0,3) |(0,0,0,4)

Table 3: List of four neighboring tetrahedra for each type of tetrahedron.

Algorithm Ellipsoid Sphere I=rand() Cranium Brain

Wrapper 1720 | 3102 | 6200 | 9228 | 186703 | 37594 | 65752 | 65668

Marching Cubes 808 1328 | 2648 | 4432 | 93976 | 15784 | 27500 | 30004
Ratio 2.12 2.33 | 2.34 | 2.08 | 2.09 238 | 2.39 | 2.18

Table 4: Experimental result for the ratio between number of vertices created by the marching

cubes and the Wrapper. The ratio is relatively invariant to the sampling rate in the volume.
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Figure 18: Model of cranium CMNH # 1331, comprising 66K vertices and 129K triangles,
extracted from an original 512 by 512 by 150 CT scan. The total number of triangles before
simplification was 3.450K, which corresponds to a compression ratio of 27. The maximum

error bound is 0.5 millimeter.
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Figure 19: Visualization of the triangular mesh for the model of Fig. 18.
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Figure 20: Cortical surface of the brain for a normal individual (31K vertices and 62K tri-
angles), extracted from a 256 by 256 by 130 MR scan. Before simplification, the original
number of triangles was 370K. Some important anatomical structures stand out, such as the

Inter-Hemispheral Fissure, the Temporal Lobe, the Rolandic Fissure and the Middle Temporal

Sulcus.
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