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Abstract

Beginning with digitized volumetric data, we wish
to rapidly and efficiently extract and represent
surfaces defined as isosurfaces in the interpo-
lated data. The Marching Cubes algorithm is
a standard approach to this problem. We in-
stead perform a decomposition of each 8-cell as-
sociated with a voxel into five tetrahedra, as in the
Payne- Toga algorithm [Payne and Toga, 1990].
Following the ideas of Kalvin [Kalvin et al., 1991],
Thirion et al. [Thirion and Gourdon, 1993], and
using essentially the same algorithm as Doi and
Koide IDol and Koide, 1991], we guarantee the re-
sulting surface representation to be closed and ori-
ented, and we evaluate surface curvatures and prin-
cipal directions at each vertex, whenever these
quantities are defined. We define a valid trian-
gulation by representing the body as a collection
of tetrahedra, some of which are only partly filled,
and extracting the surface as a collection of closed
triangles, where each triangle is an oriented closed
curve contained within a single tetrahedron. The
entire surface is "wrapped" by the collection of tri-
angles. The representation is similar to the ho-
mology theory that uses simplices embedded in a
manifold to define a surface.
From the triangles that comprise the wrapping of
the surface, we can easily perform an analysis of the
entire structure. We use a data structure that per-
mits efficient access to neighboring triangles and
vertices, by labeling each triangle with a unique
identifier. We thus create a graph structure, which
is very e~ciently encoded, whose nodes are the sur-
Face elements (the triangles), and the edges are the
:ommon edges joining adjacent triangles. We can
thus identify each surface using a connected com-
ponent labelling algorithm applied to the graph.
rhis provides a highly parallelizable approach to
boundary surface representation, providing an ef-
~cient and compact surface representation. The
Wrapper algorithm has been used to extract sur-
faces of the cranium from CT-scans and cortical
mrfaces from MR-scans at full resolution.

Key-words : Tetrahedral Decomposition, Homol-
ogy Theory, Graph Structure, Surface Curvature.

Introduction

The Wrapper Algorithm is an emcient, simple, paral-
lelizable method for creating a boundary representation
(a "B-rap") of isosurfaces in volumetric data defined 
a 3-D grid. The B-rap will consist entirely of planar tri-
angular faces, linked in a graph structure to form a co-
herent, valid surface. Indeed, the B-rep will necessarily
bound a polyhedral solid or multiple polyhedra. The
principal advantages of the Wrapper Algorithm over
Marching Cubes [Lorensen and Cline, 1987] is that (1)
the algorithm is parallelizable, and (2) the algorithm
provides a provably valid global representation of the
isosurface, in all cases. The surface representation pro-
vided by the Wrapper Algorithm is relatively uniform,
being composed of triangular faces, and vertices in the
representation have degree no higher than ten (i.e., no
more than teu triangles ever meet at a single vertex).
The Wrapper Algorithm uses a tetrahedral decompo-
sition of the voxel space, and thus operates at a fine
scale of detail, which provides the provable correctness
of the representation, but also provides a voluminous
data structure. In order to reduce the quantity of data
in the representation, we have also developed simplifica-
tion algorithms that operate on the B-rep provided by
the Wrapper Algorithm. We display results obtained
from the simplification process.

The details of the Wrapper Algorithm coincide, to
a large extent, with the algorithm of Doi and Koide,
of IBM Japan, Ltd, described in [Doi and Koide, 1991].
Doi and Koide use the same tetrahedral decomposition,
produce oriented cycles to represent triangular faces of
the isosurface, and even use the same determinant test
to establish the orientation of the cycles. Since their
work predates ours, a large part of our contribution is to
explain the Doi/Koide algorithm, and to draw attention
to its advantages.

Apart from the Doi/Koide work, there is a large body
of literature on methods of constructing B-reps of iso-
surfaces in an efficient and accurate fashion. The Wrap-
per Algorithm provide a natural extension and (we be-
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lieve) improvement on other methods. While problems
with the Marching Cubes algorithm have largely been
addressed and fixed [Nielson and Hamann, 1991], the
Wrapper Algorithm, with its appeal to homology the-
ory for provable correctness, provides a much simpler
and intuitive approach to surface representation. The
Wrapper Algorithm also provides an orientation of the
surface without additional cost. Although the Wrapper
Algorithm operates at a finer scale and provides a more
detailed representation, which can be disadvantageous,
it provides a more uniform platform for representation
simplification, and can be viewed as a decomposition of
Marching Cubes (and other methods) to a finer scale
so as to make all the special cases and difficult surface
topologies within a single voxel break up into small col-
lections of simple cases.

Starting with a 3-D image, that is a regular grid
of volume elements representing the sampling of an
intensity function I(z, y, z), we examine the problem
of constructing a polygonal approximation to the sur-
faces characterized by I = I0, a constant value. This
problem is also known as implicit surface tiling, for
I(z, y, z) = I0 is an implicit equation for a surface 
three-space, or as isoserface construction, since an ap-
proximation to an iso-level surface is generated. Cline
and Lorensen (ibid) developed "Marching Cubes" which
partitions the space into cubical elements composed of
eight neighboring voxel values. Inside each of these
cells, a decision is made as to whether the surface inter-
sects the cell, in which case a polygon approximating
this intersection is constructed. The original algorithm
exploited a symmetry between situations involving pos-
itive and negative voxel values. It turns out that some
of the polygonal representations so obtained are not
valid, i.e., there are "holes" in the surface. The basic
reason for this is that some configurations of positive
and negative voxel values are ambiguous. For example,
on a square face of a cube, when two vertices diagonally
opposite are positive and the other two negative, two
different polygonalizations are possible.

Several methods have been proposed to cope with
ambiguous configurations, without creating holes.
Wallin [WaUin, 1991] suggests using an interpolated
voxel value at the center of the face, in order to choose
one polygonalization or the other. The polygons he de-
fines in each cell can have up to 12 edges. They may
not be trivially triangulated.

Kelvin (ibid) developed another method for disam-
biguation by selecting a preferred polarity. Then, by
using 6-connectivity in the volume, and 26-connectivity
for the exterior, the key observation is that posi-
tive vertices cannot be connected along diagonals, the
decomposition to the right is the one always per-
formed). Kelvin proves that the surfaces produced
are valid. He uses the "Winged Edge" data struc-
ture [Baumgart, 1974] to represent and manipulate the
surfaces, and builds them up sequentially, by applying
a succession of surface construction operators.

Figure 1: Decomposition of the cube into five tetrahedra.
Four are right isoscele and thus isomorphic (only two are
shown here OnBveathe left), the fifth one is eqo~lilateral (right).

A! vii vii A!

Figure 2: Tetrahedron # 1 is spanned by
(A1, VII,//12, ~13)

Thirion (ibid) defines cycles in each voxel, similarly
to Wallin, and shows that the cycles can be oriented.
Further, he introduces oriented segments inside the cy-
cles and a method, "Marching Lines" to draw char-
acteristic lines on isosurfaces. The observation by
Monga [Monga et el., 1992], that it is possible to com-
pute surface curvatures from the discrete differentiation
of voxei values, plays a central role in the Thirion work.
Marching lines has been applied to the problem of reg-
istering 3-D medical images [Ayache et al., 1993].

Description of the wrapper algorithm

Tetrahedral Decomposition

We regard voxels as being values defined at points of a
rectangular lattice, and eight adjacent voxels are taken
to form the 8 vertices of an 8-ceU, or cube. We use the
same tetrahedral decomposition as Doi and Koide (see
Fig. 1).

For any given cube, two such tetrahedral decomposi-
tions are possible, one which is mirror symmetric with
respect to the y-z plane to the other. In order to be con-
sistent between neighboring 8-cells, i.e., in order that
faces and edges of tetrahedra in one cell match faces
and edges of tetrahedra in the neighboring cells, we
must alternate between the two decompositions from
cell to cell. One type of cell we call an even cell, and
the other type is a odd cell. Even and odd cells are com-
posed in a checkerboard fashion. Within each 8-cell, the
five tetrahedra are numbered from one to five in a con-
sistent way. Any given tetrahedron can be described by
either the cell number and tetrahedron number, or by
its four vertices (vt, v2, vs, v4).

Intersection of Surfaces with Tetrahedra

The next step consists in determining whether a por-
tion of the isosurface will intersect a given tetrahedron
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,1,v2, vs, v4). The intensity values (11,12,13,14) cor-
.sponding to the four vertices (Hounsfield numbers in
le case of X-ray Computed Tomography) are retrieved
om the 3D image.
Supposing I < 10 at a vertex, we will assume that the

~rtex lies outside the body bounded by the isosurface.
I _~ I0, then the vertex lies inside the body. If the

.~rtices of a tetrahedron are of mixed sign with respect
,10, then the isosurface will intersect the tetrahedron.
ur first task is to determine the points of intersection
ong the edges of the tetrahedron. The location of
,ese points depends on the interpolation function that
used.
For each edge that exhibits an intensity sign change,
will create a vertex of the polygonal approximation

, the isosurface I -" I0. The exact position of the
.rtex is determined by the zero-crossing of a function
terpolating intensity values along the edge. Our expe-
race shows that using linear interpolation along each
!ge results in a poor result, with excessive spikiness of
e surface. We instead choose a bilinear function that
terpolates the four intensity values at the corner of
ch face in the original volumetric grid. This allows
to evaluate values on the faces of the 8-cells; we will

~ver need to explicitly evaluate values internal to the
cells. The bilinear interpolation reduces to linear in-
rpolation along the edges of an 8-celt, but results in a
ladratic interpolation along diagonal edges on a 8-cell
ce. Specifically, if (a, b, e, d) denote the four intensity
lues on the face of an 8-cell then the intensity value
~ng the (a, d) diagonal edge is given by:

I(u) = (a -6 d - b - c)u2 -6 (-2a -6 b -6 e)u ÷ a.

.~re u varies from 0 to 1 linearly along the diagonal.
ovided ad < 0, I will have exactly one zero in the
nge 0 < u < 1, which can easily be determined from
e quadratic formula (the other zero falls outside this
nge). Having established the interpolation function
>ng tetrahedral boundaries, we can thus compute the
¯ .ations of the intersections of the isosurface with those
ges.
Consider a tetrahedron (U1,1,~2,~3,1,’4) which is de-
ed by the ordered tuple of vertices spanning the vob
ae. The order is as determined by one of the five steps
,m section . The corresponding intensity values are
/en by a four-tuph (/1, Is,/3, 14). If all four values
ve the same sign, then the surface does not intersect
.- tetrahedron. If the signs are mixed, however, we
.-n have three major cases. Among It,/2,/3,14, there
.~ either one, two or three positive values. These cases
illustrated in Figure 3. For the cases I and lII, three

the values have the same sign, and the surface inter-
:ts the tetrahedron on three faces, corresponding to

faces containing the vertex with the opposite sign.
r Case II, two vertices are positive and two are neg-
.re. In this case, the surface will intersect all four
:es, and we have a quadrilateral. By choosing arbi-
Lrily a diagonal of the quadrilateral, we obtain two

1 1 o

Figure 3: Defining one or two oriented triangles.

VO /12

Figure 4: The neighbors of an oriented triangle t are num-
bered such that t and no share the edge (vo, vl).

triangles within the tetrahedron. Combining all cases,
we have the surface decomposed into either one or two
triangles if it intersects the tetrahedron. An orientation
for a triangle is given by a cycle, or an ordering of the
edges, such that viewed from the outside, the triangle
is traversed in a counter-clockwise direction.

Determining the orientation

Providing the orientation of each triangular patch is
determined correctly, then the resulting surface repre-
sentation consists of a collection of oriented cycles. For
any given edge, there are exactly two cycles that tra-
verse the edge. The orientation of the cycles will be
such that the edge is traversed in opposite directions
by the two cycles.

We have developed two methods to determine the
correct orientation of the cycle generated by a tetrahe-
dron. One method, also used by Doi and Koide, uses a
determinant of the positions of the vertices of the tetra-
hedron, ordered according to the signs of the values at
the vertices, to either reverse or leave alone a cycle. The
other method precompiles all possibilities, and uses a
bit code pattern determined by the sign of the vertices,
together with two cases depending on whether the 8-
cell is even or odd. Once the three vertices forming
an oriented triangle (see Fig. 4) have been processed,
the triangle is stored as three pointers to the vertices,
such that the (:v, y, z) coordinates of a given vertex 
are physically represented only once.

Experimental Results

We applied the Wrapper, followed by a simplifica-
tion algorithm not detailed here, to the representa-
tion of the cranium in a CT scan (courtesy of Court
Cutting, NYU), for a pathological -namely, Crouzon
syndrome- case. the result is illustrated in Fig. 5. We
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Figure 5: Surface of the cranium for a Crouzon syndrome
(100K vertices and 205K triangles), extracted from a 256
by 256 by 150 CT scan. Before simplification, the origi-
nal number of triangles was 1.800K. The maximum error
bo.nd is 1.0 millimeter.
extracted the cortical surface of a normal individual
from a MR scan (courtesy of Henry Rusinek, NYU).
The result is in Fig. 6.We acknowledge Gregoire Me,
landain [Malandain et ai., 1993], for pre~processing the
MR-scan.
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