VSH Users’ Manual:
An Image Processing Environment

by

Dayton Clark
Robert Hummel

New York University
Dept. of Computer Science
Courant Institute

of Mathematical Sciences
251 Mercer Street
New York, New York 10012

Work on this paper has been supported in part by Office of Naval Research Grant N00014-
82-K-0381, by a grant from US-Israel Binational Science Foundation, and by grants from the
Digital Equipment Corporation, the Sloan Foundation, and the General Electric Corporation.

Contents

0181 11 L a4 (1 T

L0 8 3 o (- Z

VICOM, vsh, and VAX USagEccciiiiiiniiiiiiniiiiiiiciniiiiunioninisiainens
3.1 ACCOUDMS ...occiviiiiiniiiniiiiiiiieiiiiiie e rire e e aaaas
3.2 POWET-UP ...occiuiiniiiiiiiintintiitieitiiiisetecscstseessssesnsosonstsssasnesses
3.3 LogIN ..o et a e e as
3.4 Invoking vsh from the Shellccooociiiiiiiiiiiiiiiiii,
3.5 Invoking vsh from User Programscccoceviiiineniiiininninnn.

VICOM COommMANAScvuiiiininiiniiinseneeerieeecieensaressnsenssesasassasaenns
4.1 ConStANtScooiiiiiiiiiiiitiiiiiiit it et enteetteenterteeacntaaaeanneans
4.2 Pixel SIZecoooiniiiiiiiiii et er e aeas
4.3 Acquiring Imagesccccoiiiiiiiiiiiiiiiiiiii
4.4 TheValue 1.0oooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii it e niesaaeas
4.5 Using the CUISOTccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiiiiiiaensens
4.6 ErfCommandscccoiiiiiiiiiiiioiioneanisssisissionesssssaseesensans

Macro Filesc.occiiiiiiiiiiiiiiiiiiiiiiiiioiiiiiiiiiiiciiiiiiieiiiisiensisnsnnns
5.1 Invoking Macro Filescccccccviiiiiiiiiiiiiiiiiiiiiciniiniii,
5.2 PAraQmetersccoiiiiiiiiieiniiieiiiiierinisasestentiasanteittnsistoncassens
5.3 Defaulting Parameter Valuescccoiiiiiiiiiiniiiiiiiiiin,
5.4 Nesting of Macro Callscooviviiiiiiiiiiniiiiininnen,
5.4.1 Pause Commandscocoovveiiiiiiiiiiiiiiiiiiiieiiiiiiiniiin,
5.4.2 Scope of Parameterscccociiiiiiiiiiiiiiiiiiiiiiiiiiiin
5.5 Macro File Terminationc.cocoiiiiiiiiiiiiiiiiiiiiiiiiiin,
5.6 COMMENEScoviniiniiiiiiiiiniiiiiiiiaiiiisiissiisiitesisessssatarnessees
5.7 Docommandccoiiiiiiiiiiiiiiiiiiiiiiiieiiiie e eeiaaaas
5.8 SetCommandcovvveiiiiiiiiiiiiiiiiiisiiiiiiiiiiiiiitiiiiesatiieas
5.8.1 Tracing Macro Filesccocviiiiiiiiiiiniiiiniiniinn,
5.8.2 Single Step Processingc.ccciiiiiiiiiiiniininiiiiin,
5.8.3 Asynchronous Operationooeviiiiiiiiiiiiiiiiniiiinaan,
5.8.4 SearchPathscocoviviiiiiiiiiiiiiiiiiiiiiniiiiiiiii,
59 Errorsand Interruptscoccovviiiiiiiiiiiiiiiiiii

Shell COMMANASoovvniiiiinieriirereiseieiesresnstesessecesssssesnssscnnsesas

Image I/Ocoovieiiiiiiiiiiiicii e s e e e
7.1 Vsh Commands For Image Transfersccccociviiiiiiiiniennnn,

(VY e

10
10
10
10
12
12
13

14
14
14
16
16
17
17
17
18
18
18
18
18
19
19
20

21

22
22

7.11
7.1.2
7.1.3

Load and Storecciiiviiiiiioiiiniiiiieiniircronniesansssssneessnnns
Rim and Wim e een e eonearheat e ereetereasarentaransaae
RdAm and WAmccoiiiiiiiiiiiiiiiiiiiiiiecionsnnenanenssosasnsnncens

7.2 Image I/O Involving Program Variablesc.ccuuenne.n.

7.2.1
7.2.2
7.23
7.2.4
7.2.5

Opening an IMagec.coceiiiiiiiiiiiiiiieiiiiiirieienaanne,
AHribULeSoiiiiiiiiii e e e eaas
Reading, Writing, and Seekingcoccivviiieiiiiinnnann,
Closing an Image Fillec.coiiiiiiiiiiiiiiiiniiiiiiniinnn,
Examplesc.coiiiiiiiiiiiniiiiiiiiiiiciiiiennen e

8 LoOK-UP-TableScccviiiiiiiiiiiiiiiiiiiinieireatenieseoieossensenessssnssessnns
8.1 Loading Tablesccccoiiiiiiiiiiiiiiiiiiiiiiiiiiireiraaeeiecieocnnans
8.2 Loading Precompiled Look-up-tablescoooviiiininin,
8.3 VICOM Data Structures for Look-up-tables

Appendix A
Appendix B
Appendix C

Appendix D

..

..

..

..

23
23
24
24
25
25
28
32
32

34
34
36
36

38

41

46

48

1 Introduction

Vsh is a UNIX software facility which facilitates computer vision research in
conjunction with a VICOM Image Processor. This facility enables one to issue commands to
a VICOM processor interactively, from macro files, and from user programs running on a
host computer. Further, vsh handles transfer of image data between the VICOM and the
host, and between programs and host storage devices. Vsh greatly extends the functionality
of the VICOM Image Processor. For a Firmware Operating System (FOS) VICOM, vsh
gives one all the functionality of a disk operating system VICOM, using the host processor
for direct computing of pixel data. For a Disk Operating System (DOS) VICOM, vsh allows
one to use all the UNIX software development facilities, and in fact all of the UNIX
environment, reserving use of the VICOM’s central processor for excecuting VICOM
commands and other higher level commands developed by users to extend the set of VICOM
commands. In either case, the control structures are developed and debugged using vsh
facilities operating on the host computer.

Vsh is comprised of three packages. A device driver services the VICOM parallel port
for image data transfer. The vsh program and routines allows one to issue VICOM
commands to the VICOM from the host computer. Finally, a package of image I/O
procedures are provided which allow one to access pixel data and lock-up-tables on disk files
and the VICOM image memories. Currently, the only device driver supported is for a 4.2
BSD UNIX VAX computer. Procedures are provided which can be accessed in C, Fortran
77, and Pascal. Vsh is written in C.

The vsh environment is much like any other shell. VICOM commands are excecuted by
entering the full command. A special set of installed (i.e., built-in) commands are provided,
and macros are invoked by submitting the macro name optionally followed by parameter
values. An especially nice (and UNIX-like) feature of vsh is that normal shell commands,
such as Is and vi, can be excecuted within vsh by submitting the usual command.

Vsh is (currently) an interpreted language. Control structures such as conditional
branches and loops with tests are essentially non-existent in the interpreted version of vsh.
Symbol substitution is extremely siriple. In this way, commands are sent to the VICOM as
fast as it is capable of processing them. For further efficiency, vsh can send commands
asynchronously, which the VICOM buffers and processes in turn. Of course, advanced
control structures are available by embedding calls to vsh within user programs.

The same features could have been provided (and more) by enhancing csh or one of the
standard shells with seperate programs for each VICOM and image transfer command.
Although this approach would provide more control features, the advantage of vsh is that it
prioritizes command interpretation to handle VICOM commands most quickly.

The vsh code is structured to permit easy extension as new VICOM and installed vsh
commands are needed and developed. Preliminary releases of vsh do not contain all of the
features described in this manual; in particular, release 1.0 is deficient in some of the Image
IO facilities (see Appendix D for a list of known deficiencies). The vsh program was
conceived by Dayton Clark and Robert Hummel at New York University, and substantially
coded by Dayton Clark. Later releases have been refined by the efforts of Robert Hummel
and Gary Rosenblum. Suggestions and improvements by vsh users are encouraged.

2 Cverview vsh Users’ Manual

2 Overview

The VICOM is an image processing mini-computer which can act as a slave to a host
computer, in our case a VAX 11/750. The VICOM acquires, digitizes, stores and
manipulates images. It acts according to instructions that it receives from the user. The
VICOM can obtain instructions from the VICOM CONSOLE, or across a serial line to the
VAX. In the normal mode of operation, software operating on the VAX will issue
commands to the VICOM across the serial line. The vsh program provides a convenient
environment for the development of such software.

The VICOM also communicates with the host VAX across a parallel port with direct
access to both the VICOM and the VAX memory. This interface is used for image data
transfer. Vsh manages image transfers between the VICOM and VAX data files.

Figure 2.1 shows the VAX/VICOM configuration. The VICOM user terminals are
terminals for the VAX designated for use with the VICOM and vsh. Except for this
designation they are normal VAX terminals.

Vsh provides an environment on the VAX which allows the user to issue instructions to
the VICOM and manipulate images. After a user invokes vsh he or she can issue vsh
instructions interactively or by means of macro files. The user can also execute VAX
programs. There are four classes of vsh commands:

1) VICOM commands are instructions which, after symbol substitution, are passed
directly to the VICOM, and are interpreted by the VICOM (see the VICOM Users’
Manual');

2) Installed vsh commands are commands interpreted by vsh. These may or may not
involve the issuance of commands to the VICOM;

3 Macro commands are used to invoke a macro file containing vsh commands, thereby
redirecting the vsh command input stream for the duration of the macro file; and

4 Shell commands are requests for execution of a VAX program and are passed to the
host shell.

Vsh can be invoked in two ways. From within the standard shell (e.g. csh), vsh is
simply a program executed in the normal manner. A user can also invoke vsh from within
programs written in the languages C, FORTRAN 77, or Pascal. To write image processing
software, a user must decide whether the highest level of the software will be written in
commands issued to vsh (i.e. a vsh macro), or in a programming language. The choice will
generally depend on the complexity of the control structures required. Ultimately, the choice
is not so significant since the two structures for user programs (vsh macros calling VAX
programs or VAX programs invoking vsh commands) recursively pass from one to the other
with ease.

Vsh provides a limited range of the set of functional capabilities of standard shells (such
as csh). The main advantage of using vsh is that it gives high priority to procedures which
run VICOM commands and vsh macro files.

Vicom Systems, Inc., San Jose, California, 1982.

vsh Users’ Manual

Camera

Overview 3
Monitor Console . Vicom User’s Terminals
Bitpad
Serial
Vicom Instructions
VICOM VAX 11/750
70 DMA AFED
Controller Image Data Card
\
Other VAX Users
& peripherals

Figure 2.1. VICOM/host configuration.

4 VICOM, vsh, and VAX Usage vsh Users’ Manual

3 VICOM, vsh, and VAX Usage
This section describes the basic procedures for using the VICOM with vsh.

3.1 Accounts

In order to use the VICOM and vsh, you will need an account on CSD1, one of the
computer science department’s VAX 11/750’s. Accounts will be provided to NYU faculty,
staff, and students with valid reasons for using the VICOM. CSD1 uses the UNIX operating
system (currently Berkeley UNIX version 4.2). Manuals describing Berkeley UNIX are
available in the Courant Institute Library, in the terminal room on the third floor of Warren
Weaver Hall, and in the computer vision laboratory on the 12th floor of 715 Broadway.
Books on UNIX are available in the University Bookstore and many other bookstores.

You will need to know at least a few of the shell commands, an editor, and probably a
programming language — either C, FORTRAN 77, or Pascal. The shell commands are
documented in volume 1 of the UNIX manual. The simplest editor to learn is ed, but it’s
more desirable to use vi or emacs. Tutorials for ed and vi are in the UNIX manuals. Many
sources are available for learning C, FORTRAN 77, and Pascal.

You will also need to know the VICOM commands, as described in the VICOM Users’
Manual. A copy of the manual will be found in the Courant Institute Library and in the
computer vision laboratory.

3.2 Power-up

In order to use the VICOM, a user must turn on the equipment and log in at a terminal
designated for VICOM users at the computer vision laberatory. Note that if a user simply
wishes to edit files or execute programs that do not use vsh or the VICOM, any terminal
connected to the Academic Computing Facility switch will do.

To power up the system, first turn on the power strip behind the terminals and turn on
the terminals. Second, turn on the circuit breaker on the back panel of the VICOM (lower-
left) and press the on button in the front of the VICOM. Turn on the video monitor with the
white switch on the front.

If a camera is needed it must also be turned on. The vidicon camera (the beige and
brown camera near the terminals) has a switch at the top. The ccd camera (the red and black
camera on the optical table) has a switch on its power supply (a small box connected to the
camera). The ccd camera works best if it is allowed to warm up for 30 minutes or so. Only
one camera can be connected to the VICOM at a time; you should check to see that the one
you wish to use is connected.

3.3 Login

Near the VICOM in the computer vision laboratory, there will be one or more VICOM
users’ terminals, and perhaps a VICOM console. They are marked. To use the VICOM and
vsh you must login on one of the VICOM users’ terminals. Vsh will not execute from other
terminals (unless you are a specially designated user).

Before using vsh, the VICOM must be ready to accept commands from the VAX. When the
VICOM is turned on or reset it expects commands from its console. The prompt

>
will be displayed on the VICOM console. To have the VICOM accept commands from the

vsh Users’ Manual VICOM, vsh, and VAX Usage s

host you must press
<esc>-0O

on the VICOM’s console (that’s the escape key and then the capital C). If the VICOM
console is not present this step is not necessary. When the VICOM is ready to accept
commands from the VAX it will display the prompt

+>

on the VICOM console. The VICOM can be returned to its initial state of expecting
commands from the console by again entering

<esc>-0

on the VICOM console. Under various circumstances (eg. the VICOM gets hung or crashes)
it may become necessary to perform this step again. In any case the prompt ‘+>’ on the
VICOM console indicates that the VICOM is ready to accept commands from the VAX.

3.4 Invoking vsh from the Shell

Once the VICOM is ready, vsh can be invoked either by user programs or from the
UNIX shell. The use of vsh from a user program is described in Section 3.5. To execute vsh
from the host shell, enter any of the commands

% vsh
% vshpl ... p9
% vsh -f filename p1 ... p9

from a VICOM users’ terminal. Once vsh is invoked, the prompt
>

will appear on the VICOM users’ terminal. Commands may now be issued to vsh. The
second and third forms above invoke vsh with the parameters pl ... p9 at the top level.
Parameters are described in Section 5.2. The -f option in the third form directs vsh to accept
commands from the file filename at the top level.

When vsh is invoked from the shell, it is immediately executes the vsh commands in the
file ".vshrc", which should be located in your working directory or home directory. It is
useful to place vsh set commands in your .vshrc file (see Section 5.8).

Users of vsh will find it useful to place the set notify ccnmand in their .login file. If
the notify variable is not set in the parent csh shell, then you will not learn when background
jobs have completed until you leave vsh.

Vsh will not run if the VICOM is already in use; instead it will give you a message
indicating what the problem is. In some situations the parallel connection between the host
and the VICOM can not be established; if this is so a message will be printed. In this case
the VICOM will still accept commands from the host but images can not be transferred.

Figure 3.1 gives a summary of the complete power-up and login procedure.

3.5 Invoking vsh from User Programs

Vsh commands can be executed from within users’ programs written in C, FORTRAN
77, or Pascal. Before a program using vsh is run the VICOM must be prepared as above,
that is, <esc>-O must be entered on the VICOM’s console. In addition the vsh/VICOM
connection must be opened within the program by executing the following statement:

irc = vopen()
Vopen and all the routines (except vclose and verrdesc) in this section are integer valued

6 VICOM; vsh, and VAX Usage vsh Users’ Manual

Power strip (and terminals) on.

VICOM main power on.

VICOM front panel on.

Video monitor on.

Camera on and connected, if necessary.

<esc>-0 on the VICOM console until ‘+ >’ is displayed.
Login to the VICOM users’ terminal.

Execute vsh or user’s program.

PR BELNE

Figure 3.1. Power-up and login procedure.

functions which return a code number indicating errors or failures during execution. The
error code is zero if the routine executes without error. Other error codes are listed in
Appendix C.

Note that in the examples given in this section the language is not specified. Except for
minor syntactical differences (eg. semi-colons or character case) the routines are invoked in
the same manner in C, FORTRAN 77, and Pascal. Unless the differences are substantial or
significant a generic example will be used throughout this document, leaving it to the user to
transliterate the statement into the appropriate form for the language used.

/* usevsh.c */
#include <stdio.h>
#include <vsh.h>

main()

int irc;
char command [VCLEN];
if (irc = vopen())

printf("%s0, verrdesc(irc));
else

while (gets(command) != NULL)

if (irc = vsh(command)) printf("%s0, verrdesc(irc));
vclose();

Figure 3.2. Example use of vsh in C.

vsh Users’ Manual VICOM, vsh, and VAX Usage 7

To invoke a vsh command, czil the function vsh as follows:
irc = vsh(command)

where command is a character string containing a single vsh command. Vsh is an integer
valued function which returns a code number indicating the error(s) encountered during the
processing of command. A series of vsh commands can be executed by repeatedly invoking
vsh, or by passing a macro command to vsh. The .vshrc file is nct accessed when vsh is
invoked in this manner.

If the programmer knows that the command to be executed at a certain point of a
program will always be a VICOM command then the vicom routine can be used. The format
is

irc = vicom(command)
This will execute considerably faster than the vsh routine. It returns an error code as above.

Vclose terminates access to vsh and the VICOM. It is a subroutine invoked as follows:

vclose() in C and Pascal
call vclose in FORTRAN 77

Verrdesc is given an integer error code returned by a vsh routine and returns a character
string containing a description of the error. The purpose is to provide a message that can be
shown to the user to indicate the source of an error.

Declarations for these and other routines (and image I/O routines) are contained in the
include files

The following declarations are part of vshf77.h, and
* could be included by the line
* include ’vshf77.h’

integer VCLEN

parameter (VCLEN = 75)

integer vopen, vsh

character*(VCLEN) verrdesc
character*(VCLEN) command

irc = vopen()
if (irc .ne. 0) print+, verrdesc(irc)
100 read (5, ‘(a)’, end=900) command
irc = vsh(command)
if (irc .ne. 0) print», verrdesc(irc)
goto 100
900 continue
call vclose
end

Figure 3.3. Example use of vsh in FORTRAN 77.

8 ‘ VICOY, vsh, and VAX Usage vsh Users’ Manual

program usevsh (input, output);
#include <vshpas.h>;
var irc: integer;

command: vstringpointer;

procedure getcommand (command: vstringpointer);
var i integer;

begin
i:=1;
while not eoln do begin
read (command" [i]);

i=i+1;
end;
readin;
command" [i] := chr(0); {Necessary terminator.}
end;

procedure puterror(errormess: vstringpointer);
var i integer;

begin
i:=1;
while errormess”[i] <> chr(0) do begin
write(errormess”[i]);
i:=1i+1;
end;
writeln;
end;

begin
irc := vopen;
if irc <> 0 then puterror(verrdesc(irc))
else begin
new (command);
while not eof do begin
getcommand(command);
irc := vsh (command);
if irc <> 0 then puterror(verrdesc(irc));
end;
vclose;
end;
end.

Figure 3.4. Example use of vsh in Pascal.

vsh Users’ Manual VICOM, vsh, and VAX Usage 9

vsh.h for C
vshf77.h for £77
vshpas.h for Pascal

Figures 3.2, 3.3 and 3.4 are examples of programs in C, FORTRAN 77, and Pascal that
use vsh, respectively. The programs are equivalent — each opens the vsh/ VICOM connection
and then accepts commands and passes them to vsh until the end of input is encountered. A
description of any vsh error is displayed. The constant VCLEN is the limit on size of
commands accepted by the VICOM. In the Pascal program the data types ‘vstring’ and
‘vstringpointer’ are defined in the include file. The type ‘vstring’ is an array of characters for
holding commands or VICOM error messages and ‘vstringpointer’ is a pointer to a variable
of type ‘vstring’.

The various vsh and VICOM routines described in this document are available in the vsh
library. To access the library include the ‘-Iv’ option in the compile or load statement for the
program. The following examples illustrate this:

% cc vis.c -lv
% {77 usevsh.f -lv
% pc usevsh.p -lv

An alternative method for using vsh from a user’s program is to write vsh instructions to
the standard output, and pipe the program’s output into vsh. In this configuration, the .vshrc
file is executed, but the program’s standard output file must contain nothing but vsh
commands.

10 VICOM Commands vsh Users’ Manual

4 VICOM Commands

VICOM commands will be accepted by vsh. These commands are described in the
VICOM Users’ Manual. The command keyword (first word) must be in lower case. VICOM
commands are listed alphabetically in Appendix A, and grouped according to functional
groups in Appendix B.

Some features and bugs in VICOM commands that are not adequately presented in the
manual will be discussed in the following sections.

4.1 Constanis

Many commands accept constants as parameters. Typically constants are specified in
decimal form. For example

0.5
—.231
-0.12

Decimal constants are always in the range —1.0 to 1—2715, Alternatively, constants can be
expressed by four hexadecimal digits, followed by the letter capital ‘H’. Examples are

8000H (equivalent to —1.0)
C3F2H
4000H (equivalent to 0.5)

7FFFH (equivalent to 1—2~5)

4.2 Pixel Size

A fully populated image has 16 bits per pixel, 12 for the image and 4 for graphics. For
the raost part, the arithmetic commands use only the 12 image bits but some operate on the
entire 16 bit words. The adk (add constant) operates on 16 bit quantities. The manual
implies that the shift commands, Ish an ash, work on the full 16 bits; this is not true. It is
apparently impossible to achieve 16 bit arithmetic to any significant degree.

4.3 Acquiring Images

The VICOM can digitize a video signal to obtain a 512 by 512 by 8 bit image.
Generally, a macro will be used for this purpose (see figure 5.2). However, for
completeness, we describe some of the technical issues in this section.

The camera must be turned on and connected to the VICOM. The vidicon camera has a
lens cover which should be placed on the camera when it is not in active use. A scene can be
burned permanently into the vidicon tube if it is left looking at the same scene for too long.
This is true even if the camera is not turned on.

To view a scene from the camera in real-time the following commands should be issued:
*> int

+> dis A
=> cam A

A signifies one of the VICOM’s images (A = 1, 2, ...). The int loads the VICOM’s display
tables so that the image appears correct during the cam command. The dis command causes
the indicated image to be displayed and the cam command causes the video signal from the
camera to be continuously digitized and placed in the indicated image. The scene is now
being displayed in real-time, the user can adjust the camera or scene as desired. These first

vsh Users’ Manual VICOM Commands i1

three steps in acquiring an image are solely for the user’s convenience and do not effect the
acquired image. While the cam command is in effect the user should avoid extensive use of
other VICOM commands, particularly cursor and bitpad commands. Simultaneous use of the
cursor and the cam command can cause the VICOM to behave erratically and sometimes
crash.

It is not necessary to invoke cam before capturing an image if the scene is already
prepared. To actually capture an image issue the command

«> dig A

where A is an image. This places the image data in the high order 8 bits of the indicated
image.

Interpreting the 8 bits of captured data as an unsigned integer, we have 0 indicating the
lowest intensity and 255 as the maximum. The VICOM processors interpret the pixel data
differently. They interpret the high-order twelve bits of the pixel as a two’s complement
fraction, that is, as a signed number in the range —1.0 = x < 1.0. If we interpret the
captured data this way, an intensity value of 0 corresponds to an interpreted value of 0, a
midrange intensity of 127 corresponds to the maximum two’s complement fraction of almost
1.0, the next intensity corresponds to —1.0, and the highest intensity value of 255
corresponds to almost zero (—1/128). Obviously, we want to convert from the input
representation to the computational representation. This is done with the command

*>twoA> A

which converts the input intensities to the range 0 to 255/256 in the two’s complement form.
No precision is lost in this conversion since the VICOM actually has 12 bits for the data in
each pixel. At this point the display tables should be reset to their original state. To do this
issue the command

*> res

Figure 4.1 shows the steps to capture an image.

Image acquisition works only with full size (512 by 512) images. The system will not
object to different memory configurations but the acquired image will always be 512 by 512
pixels. (Actually, only the upper 480 rows will contain significant data. The bottom 42 rows
will be undefined.) Note also that it is possible to get more precision in the acquired image
by averaging several images together.

»> int

»>dis A

*»> cam A At this point set the scene.
> dig A

*>twoA> A

*> res

Figure 4.1. Step to digitalize image.

12 VICOM Commands vsh Users’ Manual

4.4 The Value 1.0

The two’s complement interpretation of pixel values used by the VICOM has no value
exactly equal to 1.0. The nearest value is 1—27%! or 2047/2048. This is true in pixel values,
convolution masks, and arithmetic or logical constants. For instance, the muk (multiply by
constant) with constant of 1.0 actually causes a slight decay of the image. For occasional
usage this is not too serious; however, in iterative procedures this can be a disaster. A
possible solution is to change the procedure to use —1.0 instead of 1.0 since the number —1.0
exists in the two’s complement interpretation.

4.5 Using the Curscr

The bitpad can be used to control the VICOM’s cursor. Two steps must be performed
before the bitpad can be used; they are:

> dev (1)
*> WIp

The first enables input from the bitpad, the second write protects the graphics nibble of the
image planes. These steps need only be performed once after the VICOM is turncd on or
reset. Now the command

*> cur A

will display the cursor in image A. Press the stream button on the bitpad and the cursor will
follow the bitpad’s mouse. Press the switched stream button and the cursor will follow the
mouse when the mouse’s button is pressed. Press the peint button and the cursor will jump
to the current position of the mouse when the mouse’s button is pressed. The cursor
normally is in the red graphics plane (this can be changed, see the cur command in the
VICOM manual) and can be moved about without changing the image data. If however,
there is graphics data in the red plane, then the cursor will alter the data as it passes near a
pixel.

When commands that use the cursor such as tra (for trace) or per (for print cursor) are
executed, vsh stops accepting input from the user’s terminal, and expects input from the
bitpad. Place the bitpad in stream mode and the cursor will follow the mouse. Press the
mouse’s button and move the mouse and the appropriate action will be done (i.e. tracing or
printing). To exit the command, put the bitpad in peint mode and press the button on the
mouse (it may take several presses), vsh should respond with its prompt.

Certain commands that norinally expect a row and column location require a location
specified by the bitpad and cursor when the device is active (#>dev (1)). These commands
include are, box, ell, fil, pri, and scr.

The bitpad demands a lot attention from the VICOM’s central processor. For this
reason it is wise to ‘‘quiet the bitpad’” when it’s not in use. To do this first press the point or
reset button on the bitpad and or move the mouse off the bitpad working area. If you are
done using the bitpad for the session the following commands remove the cursor and disable
the bitpad:

+> cur A (1,1,0)
+> dev (0)

where A is the image containing the cursor.

vsh Users’ Manual VICOM Commands 13

4.6 Erf Commands

The inverse error function erf A > B (a,d), with a=1, incorrectly gives the error
function (i.e., the same result as 2=0). To get a true inverse error function, use the vsh
macro

«> inverf A B

14 Moacro Files vsh Users’ Manual

5 Macro Files

One way to write software for the VICOM is to create macro files. A macro file
contains a sequence of commands similar to scripts or commands files. Parameters can be
passed to macro files, and will be substituted in the commands. Very simple control features
are provided, but are kept extremely simple for efficiency reasons. A macro can contain any
sequence of commands which can be interpreted by vsh.

5.1 Invoking Macro Files
Macro files can be invoked in two ways:

*> filename p1 ... p9
*> cha filename pl ... p9

The two forms are essentially identical. Here filename is the path to a file named
filename.vc. The symbols pl ... p9 stand for zero or more argument strings which will be
substituted for corresponding parameter symbols in the macro file (Section 5.2). Macro files
are sometimes called ‘“‘chain files’’ for historical reasons. This explains the derivation of the
cha command. In the first form filename must not conflict with any VICOM or installed vsh
command; in the second form this restriction does not apply. If filename already contains an
extension (i.e. there is a ‘.’ in the name) the extension ‘.vc’ is not applied. Vsh searches the
list of directories in your macropath variable, defined by the set macropath command
(Section 5.8.4). By default, your macropath is first your working directory ("."), and next a
global directory defined by vsh containing macros for general use. The pathname of this
general macro directory, called the vsh macro directory, is listed as part of the response to the
print vsh directories command

*> pvd

You may list the contents of the vsh macro directory, and read the files in that directory, in
order to learn of available macros.

Examples of macros are shown in Figures 5.1 and 5.2. These macro files, sobel.vc and
snap.vc can be invoked as in the following examples:

«> chascbel 1234
*»>sobel2311

#> snap 1

»> cha snap.vc 4

5.2 Parameters

Parameters can be passed to a macro file, or to vsh, or to an invocation of vsh (see
section 3.4). Parameters are given on the command line. Thus the command

»> cha filename p1 p2 ... p9

invokes the macro filename with the parameters pl p2 ... p9 which will be used for
substitution in the macro.

Parameters are words (sequences of Ascii characters) separated by spaces, commas, or
other punctuation (except ‘_’, *’, “.”, *”, and ‘#’ which are treated as letters). A parameter
field may be preceded by spaces, which are ignored. Multiple consecutive seperators
following the parameter count as one seperator, except that a comma necessarily terminates
the field. Thus, multiple commas, or a comma followed by zero or more spaces followed by
any non-blank seperator, delimit an empty parameter. Empty parameters are undefined in

the macro, but can have default values (Section 5.3). Parameters can contain embedded

vsh Users’ Manual Macre Files 15

sobel ABCD
detects edges using the Sobel operator.

®

»

L

» A source image.

» B,C work images.

» D destination image.
x®

»

L 3

Note: A must be distinct from B & C

mas %1> %2 (13)
mag %2> %2
mas %1> %3 (15)
mag %3> %3
add %2,%3> %4
Ish %4> %4 (—3)

Figure 5.1. Sample chain file, sobel.ve.

» snap A

= Takes a snapshot

»

. A Image to receive the picture.
int

dis %1

cam %1

. Say cheeeese, then press "D.
dig %1

two %1> %1

res

Figure 5.2. Chain file to take a snapshot, snap.ve.

spaces, commas or other delimiters provided the entire parameter is enclosed in double
quotes (which are not part of the parameter). There can be up to 9 parameters on a
command line.

The parameter values for pl, p2, ..., p9 are substituted for the symbols %I, %2, ...,
%9 respectively, in the macro. Thus every occurrence of the character sequence %1 is
replaced entirely by the complete word specified by p! in the cha command. In general, %n
is replaced by the ™ parameter, where n = 1, 2, ..., 9. Within the macro the symbol %0
(percent zero) is replaced by the name of the macro file (actually the first word of the
command line excluding cha).

16 Macro Files vsh Users’ Manual

The parameter symbols (eg. %) may appear in any location of a macro file. Symbol
substitution occurs even within double quotes. The parameters can represent image numbers,
constants, file names, keywords, portions of file names, image file names, programs,
parameters to programs, parameters to other macros, etc. Figures 5.1 and 5.2 show macro
files containing symbols.

5.3 Defaulting Parameter Values

Default values for missing (empty) parameters can be specified within a macro via the
default statement. The form is

»> default pl p2 ... p9

The delimiters between parameter values are exactly as described for a macro invocation.
The parameters are specified in the same order as in the invoking macro statement. A default
value is used to define a parameter value only if the corresponding symbol is currently
undefined when the default statement is processed.

Default values need not be specified for all parameters. Instead, parameters may be
omitted from the default statement by leaving the corresponding position empty, in the same
manner that empty arguments are specified in a macro file invocation. In particular, the
parameter value corresponding to %n is deemed to be empty if there are fewer than n
parameters in the parameter list, or if the n™ parameter is the empty string delimited by
commas. For example the third parameter (%3) is missing from the following vsh
statements:

»> macrofile parm1 parm2
*«> cha macrofile 1, 2, ,3 ,4
*+> default,,,, %1, add

Note that in the third example, the first comma terminates the field containing "default"”.

5.4 Nesting of Macro Calls

Macro file calls can be nested. There is a restriction on the depth of nesting tied to the
number of open files or descriptors that a process may have at one time.

Conceptually, it is convenient to say that vsh is always processing a macro file. When
vsh is invoked by the shell, the current ‘macro file’ is usually the standard input (which in
turn is usually the user’s terminal). Vsh processes this input essentially the same as from any
macro file. When the user invokes a macro file, a new level of vsh is created with the macro
file as its source of input. This input is processed until an end of input is encountered, at
which time control is returned to the higher level which continues processing from its input
source. It is possible from within a macro file to invoke a level of vsh that gets its input from
the user’s terminal (or more correctly the top level standard input); this is done via the pause
commands described below. We will use the term “‘vsh level” to refer to this nesting of vsh
invocations.

When the source input to a vsh level is a terminal vsh prompts for the input. The
number of asterisks in the prompt indicates the vsh level. The top level prompt for vsh is
‘«>’, At deeper levels there are more asterisks, for example ‘#++>’ at the third level. The
purpose is to remind the user of the depth of nesting. Also, when the input to vsh is a
terminal, errors are reported to source terminals as human readable messages. When the
input is a file, no prompts are issued and errors cause the vsh level to terminate.

vsh Users’ Manual Macro Files 17

5.4.1 Pause Coinmands. The pause command has three equivalent forms:

. message.
— message.
pau message.

where message stands for any character string. A pause command first displays message and
then invokes a new vsh level with the standard input as the source. The primary function of
the pause command is to allow interactive control during the processing of a macro file.
Processing returns to the invoking level when the invoked level of vsh is terminated with a
"D, end, or quit command (see Section 5.5).

In a user’s program the statement
i = vsh("-")
invokes vsh with the standard input (usually the user’s terminal) as the source. The user is

then free to perform vsh commands. When the user terminates the vsh level, control is
returned to the user’s program.

Figure 5.2 contains a sample macro file, snap.ve, that will digitize an image into a given
image buffer. Snap.ve first sets up the VICOM so that the camera image is displayed in the
desired image. Then the pause command

is executed, and the prompt ‘““Say cheese, then press "D” is displayed on the VICOM user’s
terminal, followed by a prompt like

x>

At this point the scene should be prepared. The user can use any vsh command, including
invoking macro files. When the scene is prepared the user terminates the pause vsh level
with a "D, end, or quit command. Snap.vc then continues with the dig command.

5.4.2 Scope of Parameters. The parameters passed to a vsh level are available only to that
level. If a new level is invoked the parameters current at the time of invocation are pushed
onto a stack and are replaced by new parameters. When control returns to the original level
its parameters are restored from the stack.

Parameter substitution is the first action performed on the command line. It is
performed on the line as a whole without respect to word boundaries or command line
syntax. Substitution may be performed in the keyword of a command. Arguments may be
concatenated and the result is that the corresponding parameter symbols are concatenated.
Parameter values may be passed to deeper levels by including the symbols which are
substituted by the parameters among the parameter list invoking the next level, as in

*«> cha macro %3 %2

5.5 Macro File Termination

A nesting level is terminated, and control is passed to the level immediately above,
upon execution of an end, quit, or EOF command. A source level is also terminated by the
end of the source file, i.e., a "D on the terminal. Of course, termination of the top level vsh
terminates vsh entirely. When vsh is invoked from a user’s program, for example

i = vsh(command)

control returns to the program when the command is complete. If the command invokes a
macro file (or is a pause command) vsh returns when the macro file terminates. However,
vsh remains open until vclose is called.

18 Macro Files vsh Users’ Manual

5.6 Comments

Any command with a ‘»’ or ‘#’ in the first column is a comment and is not parsed or
executed. If the command line begins with ‘+#’ the line is a comment which will always be
displayed on the user’s terminal. This is true even if set notrace is active (see Section 5.8.1).
This allows the user to provide a commentary during the execution of a macro file.

5.7 Do command

The do command is a simple control command which enables repeated execution of a
command. The format is

*> do n command

where n is the number of times that the command command is to be repeated. Command can
be any vsh command (including do or cha). The do will be prematurely terminated if an
error occurs during the execution of command.

5.8 Set Command

The set command allows vsh processing options to be set or reset. Specifying set
without parameters causes vsh to list the current state of the processing options.

5.8.1 Tracing Macro Files. It is sometimes cesirable to have the commands of a macro file
displayed as they are performed. This can be done by issuing the following command

*> set trace

This causes all commands to be displayed on the VICOM users’ terminal while they are
processed. The displayed commands are preceded on the display by

filename>
where filename is the name of the macro file in which the command is contained.
The trace can be turned off by
*> set notrace

5.8.2 Single Step Processing. In the single step mode vsh displays each line of a macro file
before executing it and waits for input from the user’s terminal. If a carriage return is
entered, vsh executes the command and goes to the next command, which is displayed and so
on. A "D or "EOF" will terminate the macro and turn off step mode. An input line
containing the single word skip will cause that command to be skipped without being
excecuted. Any other input line is treated as a vsh command which is then executed. Vsh
will redisplay the command from the macro file, and await input. The single step mode has
no effect at levels which receive input from a terminal. Single step mode can be entered and
exited via the step command as follows:

*«> set step
*+> set nostep

vsh Users’ Manual Macro Files 19

5.8.3 Asynchronous Operation. In normal operation vsh issues commands to the VICOM
and then waits for the VICOM’s response. The command

*> set async

puts vsh in the asynchronous mode. Commands are issued and responses received in an
asynchronous manner within macro files. This speeds up the processing of macro files, but
as a result the direct correlation between the commands and their responses (in particular
errors) is lost. Asynchronous mode generally has no effect when commands are being
processed from terminal input. Asynchronous mode affects the use of vsh from users’
programs. In asynchronous mode a call to vsh or vicom will normally return immediately
indicating no error, however an error condition resulting from the current command may be
reported upon return from a later call to one of the routines. For this reason the
asynchronous mode should be avoided until a program is thoroughly debugged. In addition
certain interactive commands, for example per and roa, always operate in synchronous
mode, even when they occur within macro files. The synchronous mode of operation can be
restored by the command

*> set sync

Once restored to synchronous mode, the next command will not be read and parsed
until all previous commands successfully terminate. If operating in asynchronous mode, the
command

*> sync

will cause vsh to temporarily synchronize, without changing the processing mode. The
command following #> sync will not be processed until all earlier commands successfully
terminate. If the mode is asynchronous, when processing resumes it will be asynchronous;
+> sync has no effect when the processing mode is synchronous.

5.8.4 Search Paths. As described in Section 5.1, vsh searches through a list of directories to
find a vsh macro. This list of macro directories is stored in a special vsh variable macropath.
Similarly, when you read an image from the VAX to the VICOM by the load command or
the rim command (Sections 7.1.1 and 7.1.2), vsh searches a list of directories stored in the
imagepath variable. The default list for macropath is ‘. vsh_macro_dir’’, where ‘. always
stands for the current working directory, and vsh_macro_dir is a vsh defined directory
somewhere in the system. The default list for imagepath is ‘. vsh_image_dir’, where
vsh_image_dir is a vsh defined directory. The pathnames for vsh_macro_dir and
vsh_image_dir can be displayed using the command

> pvd

The macropath and imagepath variables can be changed using the set command:

»> set macropath dirl dir2 ... dirn
»> set imagepath dirl dir2 ... dirn

The complete list of directories must be given; dirl will usually be *“.”, which stands for the
current working directory (which is not a fixed directory). The last directory listed will
usually be the vsh defined directory (either the vsh macro directory or the vsh image
directory) whose full pathname can be discovered from the pvd command. Other directories
will generally be your home directory, and directories of collaborators.

If no directories are named in the «> set macropath or «> set imagepath command,
then the default path is applied.

20 Macro Files vsh Users’ Manual

5.9 Errors and Interrupts

When an error occurs in a vsh or VICOM command that the user has entered on the
terminal, vsh responds with an error message that should indicate the problem.

When an error occurs during the execution of a macro file with input from a source
other than a terminal, the macro file is terminated and the error is passed to the vsh level that
invoked the macro. This level will also terminate if its input is not from a terminal and so on
until the error reaches a vsh level that has a terminal for input. At this point the appropriate
error message is displayed. In short, an error during the processing of a macro file causes
vsh to return control to the nearest level receiving commands from a terminal.

If the user sends an interrupt signal to the vsh process (usually done by typing "C), an
error is forced in the current vsh command. Thus an interrupt causes vsh to return to the
nearest level above receiving commands from a terminal. When vsh is waiting for an
instruction from a terminal an interrupt will cause the current level to terminate with an
error, thus causing control to return to the next level with a terminal as input.

The stop signal (usually sent by typing “Z) causes an asynchronous pause. The effect is
that vsh will invoke a new level of vsh with the standard input as the source at the next
convenient point (usually the completion of the current instruction). The user can then enter
vsh commands. When the new vsh level is terminated control returns to the previous level at
the point it was interrupted. This provides a way of temporarily stopping execution of a
macro file, interactively inserting vsh commands, and resuming execution at the place where
the macro was suspended.

vsh Users’ Manual Shell Commands 21

6 Shell Commands
Executable programs can be invoked from vsh. The formats are

> prog pl p2 ... p9
«> ex prog pl p2 ... p9

where prog is the name of the program and pI p2 ... p9 are parameters to be passed to the
program. The keyword ex is optional; however, if it is not used, prog cannot conflict with
any VICOM or installed vsh command or any of the available macro files in the set of
macropath directories. The ex form is also preferable because it is slightly faster. If the ex
keyword is missing vsh must search the directories for available macro files before
determining that prog is an executable program. The ex keyword immediately signifies an
executable program and thus eliminates the search.

The program is executed in a csh subshell, and thus will not affect variables in current
shell (which is the parent shell to vsh, provided it exists), except for certain special cases. In
particular, cd (or chdir) works in vsh with the same conventions as in csh.

22 Image 1/O vsh Users’ Manual

7 Image /O

Image data can be stored in VICOM image memories, files on VAX storage media,
and arrays or buffers in the user’s program. This section describes how the user can transfer
image data between the various media.

A VAX file is usually a file on the disk, either in the user’s current working directory,
or the vsh image directory. However, a VAX file might also be a tape file, or located on
some other device. Vsh allows one to transfer data between the VICOM image memories
and VAX files by using vsh commands. These commands are described in Section 7.1.

Procedures exist to facilitate the transfer of image data between program arrays or
buffers and external media such as VAX files or VICOM image memories. These
procedures are available in C, FORTRAN 77, and Pascal and are described in Section 7.2.

To communicate with VICOM image memory and VICOM look-up-tables, the
procedures use names for VICOM buffers which make them look like UNIX special files.
The names are listed in figure 7.1. Sections 7.1 and 8 describe the use of these special file
names. The number of frame buffers available depends on the configuration of the VICOM.
See the VICOM Users’ Manual for details of the VICOM frame buffers and look-up-tables.

Image transfers involve moving a lot of data across the VAX unibus, and should be
considered an expensive operation. Further, a 512 by 512 by 8 bit image occupies a quarter
megabyte. Since disk storage space is always at a premium, users should never store entire
images on disk for long periods of time (hours).

7.1 Vsh Commands For Image Transfers

This section describes the vsh commands and macros for transferring images between
the VICOM and VAX files.

File Name Description

/dev/vicoml 512 x 512 x 16 image memory 1
/dev/vicom2 512 x 512 x 16 image memory 2
/dev/vicom3 512 x 512 x 16 image memory 3

/dev/vicom16 512 x 512 x 16 image memory 16 (if available)
/dev/vicompp 4096 x 16 point processor look-up table
/dev/vicomr 1024 x 8 red display look-up table
/dev/vicomg 1024 x 8 green display look-up table
/dev/vicomb 1024 x 8 blue display look-up table

Figure 7.1. VICOM Related Special F:les.

vsh Users’ Manual Image /O 23

7.1.1 Load and Store. The most common format for image storage is one pixel per 8 bit
byte. The easiest way to transfer images in this formats between the VICOM image memory
and VAX files is with the load and store commands. The stere command is used to store a
VICOM image memory on a VAX file, and load is used to move a VAX image file onto the
VICOM. The forms are:

*> load A filename
*> store A filename

Here A is the image file number, and filename is the VAX file name, with a default extension
of ‘.img’. That is, if no extension is present in the character string filename, then the
extension ‘.img’ is appended to the file name before processing. Thus almost all VAX image
files will have the extension ‘.img’. It is also assumed that the VICOM is configured for 512
by 512 images (i.e. the default configuration of the mem command). The file used by store
will be in the current working directory, if a complete pathname is not specified. On the
other hand, if a full path is not specified, load causes vsh to search the list of directories in
the imagepath variable, defined by the set imagepath command (Section 8.5.4). By default,
imagepath is your working directory (".") and the vsh image directory. The location of the
vsh image directory can be determined from the vsh command ““+> pvd”.

For example,

*> Joad 1 oilcan
*> store 3 ../mom

loads the 512 by 512 image 1 from the file oilcan.img, and stores image 3 on the file
../mom.img.

Both load and store are in fact macro commands, and are equivalent to the commands

*> 1im A filename 2 8192
*> wim A filename 2 8192

respectively, as described in the next section.

7.1.2 Rim and Wim. The rim command is used to read an image from a VAX file to the
VICOM. Conversely, the wim command is used to write an image from the VICOM to the
VAX. Note that the commands are named from the perspective of the VICOM (which is
confusing, since the commands are submitted to vsh, which is operating on the VAX). The
formats are

*>r1im A filename mode blocksize
*>wim A filename mode blocksize

where A is the image number (1, 2, ...) on the VICOM. It is generally assumed that the
VICOM is in the 512 by 512 image mode (i.e., a default mem command has been issued).
The parameter filename is the name of a VAX file, with a default extension of ‘.img’. That
is, if no extension is present in filename, then the extension ‘.img’ is appended. The mode
parameter determines whether or not the VAX file is packed. Mode = 1 means that the data
is transferred 16 bits per pixel, whereas mode = 2 means 8 bits per pixel. The mode
parameter may be omitted if the blocksize parameter is also omitted, in which case mode = 2
is assumed. Blocksize is the number of pixels per block for the transfer. This must be a
power of 2 less than or equal to 8192. Generally, the larger the blocksize, the faster the
transfer. Blocksize = 8192 is assumed if the parameter is omitted.

For the rim command, if filename is not a complete path name, then vsh searches for
the VAX file using the imagepath list of directories.

The wim command always writes (or overwrites an existing file) in the current working
directory, if a complete pathname is not specified.

24 Image I/O vsh Users’ Manual

Examples of wim and rim are:

«> wim 2 oilcan
+> rim 1 envoy 1 4096

The first stores image 2 in a file ‘oilcan.img’, using one byte per pixel. The rim command
loads image 1 from a file called ‘envoy.img’, using 2 bytes per pixel, and transfer in blocks of
4096 pixels.

The rim and wim commands behave a bit peculiarly if the VICOM is not in the
standard 512 by 512 image mode (i.e., if a mem command has been issued with nonstandard
image size). If the images do not have 512 columns (i.e., ‘*>mem(r, ¢)’ where c is not 512)
the result of a transfer will be predictable but undoubtedly not what is desired. If, however,
the images have 512 columns but not 512 rows, the appropriate image number will be
transferred correctly, and a image file will contain something other than a quarter million
pixels. Thus partial VICOM image memories can be accessed by mem’ing to 256 by 512, 128
by 512, etc.

7.1.3 Rdm and Wdm. The vsh commands rdm and wdm are used to transfer partial images
on the VICOM, using one block for the transfer. The rdm command transfers a single block
of data in a VAX file to the start of a designated VICOM image memory. The wdm
command transfers from the start of a VICOM image memory one block of data to a VAX
file. Although it is not possible to access an interior portion of a VICOM image memory in a
fixed memory configuration, as with rim and wim, it is possible to mem down to a smaller
image with nonstandard number of rows and 512 columns, and then use rdm or wdm to
access the relevant subimage.

The form of the commands is:

+*> rdm A filename mode blocksize
*> wdm A filename mode blocksize

The parameters are the same as in rim and wim. The only difference is that rdm and wdm
transfer exactly one block, whereas rim and wim transfer a sufficient number of blocks so
that the entire image is transferred.

7.2 Image I/O Involving Program Variables

User programs can access image data in VAX files and in VICOM image memories.
The same subroutines are used to access both VAX files and VICOM memories. Image data
can be read or written, using subroutines available in C, FORTRAN 77, or Pascal. The
routines are in the vsh library. When loading or compiling a program using these routines
use the ‘-lv’ option to access the library. By image files, we mean data that usually
represents image intensity or feature values, organized by rows and columns. However,
image files can also be used to store histogram vectors and table data for look-up-tables. The
procedures described below can be used to access these generalized image files.

Image I/O using these routines is a four step process. First, the image file must be
opened. VAX files are named with an absolute or relative pathname; VICOM memories are
named by the device names (see Figure 7.1). Next, the user must declare any nonstandard
attributes of the image file. Attributes determine how the data in the image file corresponds
to image values. Default attributes are applied if none are declared. Third, data is read or
written using the appropriate procedure. Different procedures are provided for different
types of array variables (floating point, integer, etc.). Finally, the image file should be
closed.

vsh Users’ Manual Image VO 2§

One of the attributes of an image is its pixel data type: images can be fixed point,
unsigned integer, signed integer, floating, or complex. Reads and writes also have types,
and refer to the variable type of the array containing the pixel data. If the types match, then
no conversion is needed in assigning data. If the types differ, then an implicit conversion
takes place during the read or write.

7.2.1 Opening an Image. To open an image for reading or writing from C, FORTRAN 77,
or Pascal, use the function procedure:

imd = iopen(file, rwmode)

Here file is a character string or constant giving the VAX file or VICOM memory to be
opened, and rwmode is O for read, 1 for write, and 2 for read and write access. For VAX
files, file is simply the path name of the file; for VICOM memories, file is of the form
‘/dev/vicomx’, where x = 1, 2, ..., pp, I, g, or b. The returned value is an integer value
which will be used to designate the image file in the remaining image /O procedures. The
image descriptor imd and the mode rwmode variables are of type int, Integer, and int in C,
FORTRAN 77, and Pascal respectively.

The VICOM point processor and VICOM display tables can be accessed only in write
mode (rwmode = 1). Certain protected VAX disk image files can only be opened in read
mode (rwmode = 0). It is not necessary to invoke the vopen routine before opening an image
file.

7.2.2 Attributes. The attributes that an image file can have are listed in Figure 7.2. Not all
attribute values are legal for all image media. VICOM memories have a restricted range of
attribute values. Certain attribute values restrict the range of other attributes.

The type attribute determines how the bit string values in each pixel are translated into
pixel values. The access attribute is either sequential or direct; sequential access implies that
the image will be accessed left to right, top to bottom, successive pixels, starting in the first
row, first column. Direct access image files can be read in any order. In the image file, each
pixel can have 1, 2, 3, ... or up to 64 bits of significance. The number of bits used to store
this information is usually the same as the number of bits of significance, but can be more.
These two parameters are specified by the attributes nb and nstore respectively. The hilo
attribute specifies whether the nb bits come from the high or low part of the nstore storage
bits. If the image type is ‘fixed point’ then hilo defaults to the high order portion of the
storage, otherwise hilo defaults to the low order portion. If the image file has access
attribute ‘direct’, then it is possible to read or write a subsampled subimage of the image file.
This virtual image will have nrows rows and ncols columns (after subsampling), starting in
the frow row and fcol column, choosing every xsamp pixel along each row and every ysamp
pixel along each column. Here, nrows, ncols, xsamp, ysamp, frow, and fcol are positive
integer valued attributes. When writing a subimage, the remaining pixels will remain either
unchanged or undefined. If ysamp # 1 or frow # 1 or if ncols*xsamp is not the full width of
the image file, then the width of the actual image must be specified in the width attribute.
When reading or writing a subimage, the pixels of the subimage are numbered left to right,
top to bottom, within the subimage, starting with pixel number 1 at location (frow, fcol) and
ending with pixel number nrows=*ncols at the lower right corner of the subimage.

Attribute values are generally defaulted. The default values depend on whether the
image file is a VAX disk, VICOM image memory, VICOM point processor memory table,
or VICOM display table. Attribute values can be changed at any time the image file is open.
Attribute values that are not specifically declared will retain default values, based on the
image type and the current declared and defaulted attribute values. The procedure for
changing attribute values is:

26 Image VG vsh Users’ Manual

Attribute Reference Allowed Values
Name VAX VICOM VICOM VICOM
(FORTRAN) (C & Pascal) file frame PP display

type 1 type 1=fixed point 1 1 1

2=unsigned int 2 2 2

3=signed int 3 3 3

4=floating

S=complex
access 2 access 1=direct 1,2 2 2

2=sequential

- (Tape only

sequential)
significant bits 3 nb 1,2,...,64 8,12,16 16 8
storage bits 4 nstore nb,...,64 8,12,16 16 8
high or low 5 hilo 1=high 1,2 1,2 1,2
order bits 2=low
number of rows 6 nrows 1,2,... 1,..,512 4 1
number of columns 7 ncols 1,2,... 512 512 512
x-sampling 8 xsamp 1,2,...,width 1 1 1
y-sampling 9 ysamp 1,2,... 1 1 1
first row 10 frow 1,2,...,width 1 1 1
first column 11 feol 1,2,... 1 1
image width 12 width 1,2,... 512 512 512

Figure 7.2. Image Attributes.

i = iattr(imd, iattrs)

where i is an integer returned error code (see Appendix C), and imd the image descriptor
designating the image file, and iattrs is a pointer to the structure of attribute values. In C,
iattrs is a structure which is declared by the lines:

#include <iattr.h>
struct iattributes »iattrs;

Likewise in Pascal, iattrs is a pointer to a record structure defined by the lines:
#include <iattrpas.h>
var iattrs: iattrpointer;
In FORTRAN 77, iattrs is an integer array containing 20 values:
Integer iattrs(20)

In C, attribute values are addressed by their names, such as iattrs->type and
iattrs->access and in Pascal, iattrs™.type and iattrs”.access. In FORTRAN 77, the elements

vsh Users’ Manual Image /O 27

are accessed by number: iattrs(1) for the type, and iattrs(2) for the access attribute and so on.
Names and numbers, as well as allowed values and meanings for those values are given in
Figure 7.2.

Attribute values are declared by calling iattr with the appropriate positive integer values
in attribute elements to be declared, and zero values in attribute elements to which default
values are to be applied. A call to iattr with zero values in any attribute elements will cause
default values to be applied to those attributes, regardless of the previous attribute values.
Before iattr is called, default values are applied to all attributes. Thereafter, attribute values
many be changed any number of times. The default attribute values are described in Figure
7.3.

Attribute VAX VICOM VICOM VICOM
file frame PP display
1. type 1 1 1 1
2. access 1 1 2 2
(tape=2)

3.nb
type=1 12 12 16 8
type=2 8 12 16 8
type=3 8 12 16 8
type=4 32 _ not allowed _
type=5 64 _— not allowed

4, nstore nb nb nb nb

5. hilo 1if type = 1, otherwise 2

6. nrows 512 512 4 1

7. ncols 512 512 512 512

8. xsamp 1 1 1 1

9. ysamp 1 1 1 1

10. frow 1 1 1 1

11. feol 1 1 1 1

12. width ncols*xsamp

Figure 7.3. Default Attribute Values.

28 Image 1/O vsh Users’ Manual

Attribute values for an image are not stored with the image. It is the responsibility of
the user’s program to know the attributes of a previously created image. It is possible to
declare different attributes to an image than those with which it was created. Sometimes, this
is a useful feature.

The current attribute values associated with an opened image file can be obtained by the
iquery subroutine. The call to iquery has the form

i = iquery(imd, iattrs)
where i is an integer returned error code, imd is the image cescriptor designating the image
file, and iattrs is a pointer to a structure of attribute values. If the returned error code is 0,

then upon return the values in the attribute structure will be the current attribute values for
the image file.

7.2.3 Reading, Writing, and Seeking. The procedures for reading and writing data in image
files have the form:

num = ireadx(imd, buf, n)
num = iwritx(imd, buf, n)

where x = i (integer)
s (short integer)
f (floating)
z (complex)
b (boolean)
c (character).

Thus the procedures are ireadi, ireads, ireadf, ireadz, ireadb, and ireadc for reading and
iwriti, iwrits, iwritf, iwritz, iwritb, and iwritc for writing. For x = i, s, {, z, b, c, the array
buf is of type Integer (32 bit integer), short integer (16 bit integer)?, floating (i.e., real),
complex, boolean (i.e., logical), or character respectively. When reading, data is transferred
from the image file to the array variable buf, one pixel per array element, subject to
conversion according to the image file type (as declare in the image file attributes) and the
read type, as indicated by x = i, s, f, z, b, or c. The manner of the conversion is described
in Figure 7.4. For writing, data is transferred from the array variable to the image file, one
element per pixel, subject to the conversion as described in Figure 7.5. Figure 7.4 gives the
interpretation of the value loaded into an element of buf, given the nb bits of significance
from the image file. The figure also gives restrictions on nb in order for a read to be legal.
In Figure 7.5, the bits of the elements of buf are used, and are translated and loaded into nb
bits of the nstore bits used to represent the pixel. Generally, the remaining bits are zero
filled. However, when writing an integer, short integer, or character value into an image of
type signed integer, the low order bits are loaded with the 2’s complement value, and the nb™
bit is sign extended to the left to fill nstore bits. There are some restrictions on nb noted.
Further, in order for the results to be meaningful, the values of the buf array should lie
within certain ranges. These ranges are noted.

In ireadx and iwritx, the transfer of the n pixels of data begins with the current pixel,
and transfers successive pixels. Pixels are numbered left to right, top to bottom, in the
virtual (subsampled) image file described by the attributes. The current pixel is 1 when the
image is opened, and is generally one greater than the last pixel number read or written.
The current pixel number can be changed, however, if the file has ‘direct’ access attribute, by

In FORTRAN 77, this is the nonstandard type Integer»2. This type, Which is not in the ANSI 77
standard, is nonetheless supported in many compilers, including the UNIX {77 compiler.

vsh Users’ Manual Image /O 29

using the procedure iseek. The form is:
i = iseek(imd, offset, origin)

where imd is the integer image descriptor designating the image file, offset is the integer pixel
number to become the current pixel number, measured relative to the location specified by
origin. If the integer value origin = 0, then offset is the pixel number relative from the start
of the image. If origin = 1, then offset measures ahead from the current pixel location, and
if origin = 2, then offset measures back from the last pixel in the image. The integer i is an
error code, described in Appendix C.

30 Image /O vsh Users’ Manual
type =
1 2 3 4 5
ireadx fixed unsigned signed floating
. . . . complex
point integer integer point
Type of b
(~-InC) Input x will be in the range:
(~-In F77)

-1=x<1 0=x<2n-1 —2m-loy<onb-1 —x<x<x x€C
ireadi b=x-2nb"1 b=x b=x b=|x] | b=]||x]]
(int b) —onb—l<p<onb-1 0<b<2nb —mb-l<cp<onb-1 —-23<p <23l _231gp <23t

(Integer b) nb=32 nb=31 nb=32 nb=32 nb=64
ireads b=x-2nb~1 b=x b=x b=|x] | b=|ix|]
(short b) —2mb-lgp<onb-1 O=sb<2® —2m-l<p<onb-1 —2B=p <285 | —2B8<p <215
(Integer=2 b) nb=<16 nb=<1§ nb=<16 nb=32 nb=64
ireadf b=x b=float(x) b=float(x) b=x b=|x|
(float b) -1=b<1 O=b=2m—1 —2M-lgp<omb-1-1 Any b Any b
(Real b) nb=2 nb=1 nb=2 nb=32 nb=64
ireadz b=x+0i b=float(x)+0i b=float(x)+0i b=x+0i b=x
—1=<Re(b)<1 O=Re(b)=2m—1 | (—2m~1<Re(b)=2%-1-1
(complex z) { Im(b)=0 { Im(b)=0 Im(b)=0 Im(6)=0 Any b
nb=2 nb=2 nb=2 nb=32 nb=64
ireadb b=true if x#0
(boolean b) b=false if x=0
(Logical b) nb=1
ireadc b = (char ») (256:x); b = (char ») x; (inC)
b = char(256:x) b = char(x) (in f77) Not allowed | Not allowed
(char *b) ireadc reads characters ireadc reads characters ot afowe ot allowe
(character b) nb=8 nb=8
X = value of image file datum, Legend
repre‘si?nted l:l}; nb blts% t]I'lnt?rprc:tcd Conversion Formula
according to the type of the image. Output b will be in this range
b= value of the corresponding element Restrictions on nb

of the output array buf. Interpreted
as specified by x in ireadx.

Figure 7.4. ireadx Conversions.

vsh Users’ Manual Image /O 31
type of output x =
iwritx 1 2 3 4 5
fixed igned signed i
Type of b { unsigne sign ﬂoa.tmg complex
(~-InC) point Integer integer point
(--In F77)
iwriti x= znf—l x=b x=b x=float(b) x=float(b)+0i
(Int b) —nb—lcp<onb-1 0sb<2M | —2m-l<p<onb-1 —23<p<ril —23<cp il
(Integer b) nb=<32 nb=31 nb=32 nb=32 nb=64
iwrits = 2nbb_] x=b x=b x=float(b) x=float(b)+0i
(short b) —2mb-1<p<onb-1 Osbhb<2nb | —omb-l<pomb-1] —215<ph<DlS —2B=p<2lS
(Integer+2 b) nb=16 nb=15 nb=<16 nb=32 nb=64
iwritf x=b x=b x=b+0i
(float b) -1.=b<1. Not allowed | Not allowed Any b Anyb
(Real b) nb=32 nb=32 nb=64
iwritz x=b
Not allowed Not allowed | Not allowed Not allowed Any b
(complex z)
nb=64
-1 .
—~—=n.1if b true
2nb-1
arith {1 if b true {1. if b true {1+0; if b true
iwri x= xX=1q: x= . x= .
. 0 if b false 0. if b false 0+0i if b false
0 -~0.0if b false £ % s
(boolean b) b = true or false b = true or false b = true or false b = true or faise
(Logical b) nb=1 nb=1 nb=32 nb=64
iwritc x = (int)b/256; x = b; (in C)
(char *b) x = ichar(b)/256 x = ichar(b) (in F77) Not allowed Not allowed
(Character b) nb=8 nb=8
b= value of the element of the ipput Legend
grray. buf. Interpreted as specified Conversion Formula
y X In Iwritx. Input b should be in this range
X = value of the corresponding output Restrictions on nb

image file datum, represented by
nb bits. Interpreted according to
the type of the image.

Figure 7.5. Data values written by iwritx.

32 Image I/O vsh Users’ Manual

7.2.4 Closing an Image File. Image files that have been opencd by icpen are closed by
normal termination of the program, or explicitly by calling:

i = iclose(imd)

where imd is the integer image descriptor and i is an integer returned error code (see
Appendix C). It is sometimes necessary to close image files because not too many files can
be open at one time. To rewind a sequential access image file, it suffices to close it and then
to reopen it. Image files that are closed by iclose or by normal termination of the program
will be saved by the file system.

7.2.5 Examples. Suppose we open an image file for reading, with attribute rype = fixed.
Then reading using ireadf will produce values in the array buf of reals in the range —1. <

buf(i) < 1. An integer read ireadi will produce integer buf values in the range — 2("°~1) <

buf(i) < 2(®®~1 —1, A short integer read ireads will produce the same values providing nb
= 15. However, if the image is declared to have ‘unsigned integer’ type, then ireadi (and

ireads, providing nb < 15) will return values in the range 0 < buf(i) < 2°°—1.

Suppose we open a disk image file for writing, and declare it to be of type ‘fixed’, with
nb = 4 (four bits of significance per pixel). To save storage space, we allow the attribute
nstore to default to nstore = 4. We may then write using iwritf, loading buf values in the
range —1. =< buf(i) < 1., noting that since there are only 4 bits of precision, there are
actually only 16 quantization levels. We can use integer buf values in the range —8, ..., 7, by
making use of iwriti, or short integer buf values in the same range by making use of iwrits.
If we insist on thinking of the values as lying in the range 0, 1, ..., 15, then we should
declare the image to have type attribute ‘unsigned integer’, and then load buf values in the
range O, ..., 15 using iwriti.

The above example gives a disk file with 4 bits per pixel, and cannot be loaded onto the
VICOM with the load or rim vsh commands. Suppose we wish to write a disk file which can
later be loaded. Then the image file should have nb = 8, nstore = 8, ncols = nrows = 512,
xsamp = ysamp = fcol = frow = 1, and be of type fixed, unsigned integer, or signed integer
(default attributes suffice!) If the type is ‘fixed’, (which is the default), then data can be
written using iwritf and floating buf values in the range [—1, 1), or by using iwriti and
integer buf values in the range —128, —127, ..., 127. To consider the data in the range 0, 1,
..., 255, then the type attribute should be declared ‘unsigned integer’, and iwriti or iwrits
used with nonnegative buf values. Regardless of whether the image was written sequentially
or direct access, after the image file is closed, it can be written to a VICOM memory by the
load vsh command (see Section 7.1).

The rim command can be used (with mode = 1) to load 16 bit data onto the VICOM.
To write a disk file which can later be rim’ed to the VICOM with mode = 1, or to write 16
bits directly to the VICOM, open the image file with attributes nb = 16, nstore = 16, nrows,
ncols, xsamp, ysamp, frol, and frow defaulted, and type either ‘fixed’, ‘unsigned integer’, or
‘signed integer’. Graphics data will be loaded onto the VICOM in the low order 4 bits of the
16 bits transferred. With unsigned integer type, iwriti should be used with buf values in the
range 0, 1, ..., 2*~1. To load the upper 12 bits, leaving the graphics nibble unchanged, the
data VICOM memory should be write protected. In this case, it is often more convenient to
write the image with nb = 12, nstore = 16, and type = ‘fixed’ (with hilo = ‘hi’). In this case
iwriti takes buf values in the range —2048, ..., 2047, and loads them into the high order 12
bits. Keeping the same attributes, but setting type = ‘unsigned integer’, then writi takes buf
values in the range 0, ..., 4095.

A disk image which has been created by the wim vsh command, using mode = 1
transfer, contains only 12 bits of image data (non-graphics) in each 16 bit pixel. This disk
file can be read by opening the image file, and declaring attributes of nb = 12, nstore = 16,

vsh Users’ Manual Image I/O 33

and the remaining attributes defaulted. Then ireadf yields floating buf values in the range
[-1, 1), and ireadi will yield integer buf values in the range —2043, ..., 2047. If integer
values in the range 0, 1, ..., 4095 are desired, then the image can be declared to have type =
‘unsigned integer’ (instead of ‘fixed’) and hilo = ‘hi’, and then read using ireadi or ireads.
Note that a ireadf in the latter case would yield floating buf values in the range 0., 1., ...,
4095.

Of course, a disk image file created by a wim transfer using mode = 2, or equivalently,
a store command, can be read using default attributes and ireadf to yield values in the range
[—1, 1), or ireadi or ireads to yield values in the range —128, ..., 127. To obtain values in
the range O, ..., 255, declare type = ‘unsigned integer’, nb = 8, and use ireadi or ireads. In
the latter case, ireadc can also be used to obtain the data in character form, which in C can
also be used in arithmetic expressions.

Although the VICOM memories should be accessed sequentially, the data on the disk
may be read or written in direct access mode (i.e., iseek may be used). Moreover, an image
file that has 16 bits per pixel, or any other size, may be declared with nb = 8, and type
‘fixed’ (say), and then read using ireadc or ireadi to obtain raw bit data about each byte in
each pixel. In this case, sequential read traverses the image low order bytes to high order
bytes, left to right, top to bottom.

34 Look-Up-Tables vsk Users’ Manual

8 Look-Up-Tables

The VICOM contains four look-up-tables. The point processor is a 12 bit in — 16 bit
out look-up-table, and is the primary table for performing point operations. There are three
color display look-up-tables — one each for the red, green, and blue display channels. These
tables can be used for point operations, bui are generally used purely for pseudo color
display. The display look-up-tables are 10 bit in. — 3 bit out.

Many VICOM commands can be used tc load predefined look-up-tables into the point
processor. For example, exp, log, lin, thr, and sli are commands that load look-up-tables,
and then perform the look-up operation. These commands can also load the same tables into
the display look-up-tables. See the section of Appendix B on point operations for a complete
list.

The VICOM command pol can be used to perform a look-up operation if the correct
data is already loaded into the point processor look-up-table.

For look-up-tables that cannot be constructed from any of the predefined VICOM point
operations, mechanisms are provided which allow the user to load user-defined look-up-
tables. There are two general methods for accomplishing this. First, one can write a
program which uses one of the subroutines defined in Section 8.1 below, such that when the
program is executed a table is created and loaded into the appropriate VICOM look-up-table.
The second possibility is to load a precompiled table. Precompiled tables are created by the
same subroutines but the table is stored in a disk file instead of being loaded directly to the
look-up-table. This precompiled table can then be loaded into the appropriate VICOM look-
up-table with vsh commands. The advantage to precompiled tables is that they can be
reloaded as often as desired without the expense of recalculating the table values. The first
option, calculating the table on-line, is useful if the table is to be used very rarely or when
the table changes dynamically.

The routines described below are intended to shield the user from the mechanics of
loading VICOM look-up-tables. However, the user must be aware that loading any of the
look-up-tables from user defined tables (as opposed to built-in VICOM commands)
overwrites the first 4096 pixels in the first of the 512 by 512 VICOM images (i.e. the first 8
rows of image 1). Of course, if the VICOM is mem’ed to non-standard configuration the

affected pixels may spread over several images.>

For completeness, the data representation of the VICOM look-up-tables is described in
Section 8.3.

8.1 Loading Tables

Three routines are provided for loading look-up-tables. The first, wrlut, requires an
externally defined floating-point function. The second, wrluii, uses an integer array. The
third, wrlutf, uses a floating point array. To include these routines in a program the user
must use the option ‘-1v’ on the compile or load statement for the program using them. It is
not necessary to invoke vopen before using these routines.

Wrlut has the following form:

wrlut(tablename, func); for C or Pascal
call wrlut(tablename, func) for FORTRAN 77

where tablename is a character string and func is an externally defined function. Tablename
tells wrlut where to put the table as shown in Figure 8.1. Note that for disk files, the
extension .tbl is applied if no extension is specified. Func must be a floating-point function

3The reason for this unfortunate situation is that the FOS VICOM can only exchange data with the host

vsh Users’ Manual Look-Up-Tables 35

with a single floating-point argument. The function must be defined on the interval
-l=sx<1,
and the range of the function is the interval
-1 = func(x) = 1.

Note that if loaded into one of the color display table, func(x) = 0 will result in no
intensity for that color, func(x) near to 1 or func(x) near —1 results in the midrange intensity
for that color, and func(x) = —1/128 results in full intensity.

It is sometimes useful to define look-up-tables in terms of the unsigned integers or bit
strings. The procedure wrluti allows the user to create and store an n-bit in, m-bit out look-
up-table. The form is

wrluti(tablename, itab, n, m); for Pascal
call wrluti(tablename, itab, n, m) for FORTRAN 77

Tablename is a string that is interpreted just as for wrlut. Itab is an integer array which
contains 2" values. The arguments n and m are integers, and are the number of input and
output bits of the look-up-table, respectively. The restrictions on n and m are 1 < n < 12
and 1 = m =< 16. When the look-up-table is applied, the high order n bits of the image data
is converted into an index, i, into the array itab, where itab[0] is the first element of the
array. The low order m bits of the value itab[i] becomes the high order m bits of the output.

Thus there must be 2" entrys in the array itab and each entry should satisfy

0 < itab[i] < 2™ where
0=i<?2"-1

The conversion of an image datum into an index is straightforward. For the point
processor, the high order n bits are converted into an unsigned integer in the range 0 to
2"—1, and becomes the index. For display look-up-tables, the high order 10 bits of the pixel
value is padded with two low order 1 bits, and then the high order n bits of the resulting 12
bit value is made into the index.

If m < 16, then all unused low order output bits will be manifest as 0. If the table is
loaded into a display look-up-table, and m > 8, then only the high order 8 bits of the low
order m bits nf itab[i] are used in the output.

tablename = /dev/vicompppoint processor look-up-table
/dev/vicomrred display look-up-table
/dev/vicomggreen display look-up-table
/dev/viccmbblue display look-up-table

filenamefile filename.tbl if no extension is specified.

Figure 8.1. Look-up-table names.

computer via the image storage areas.

36 Lock-Up-Tables vsh Users’ Manual

The third procedure provided is wrlutf, whose form is

wrlutf(tablename, ftab, n) for C or Pascal
call wrlutf(tablename, ftab, n) for FORTRAN 77

Tablename is as before, but ftab is now an array containing 2" floating point values. As
above, 1 = n =< 12. The high order n bits of the image data will be converted into an index
i. The array element ftab[i], where ftab[0] is the first array element, becomes the output
value, after being converted to fixed point representation. The array elements should satisfy

-1 < fiabfi] < 1

Wrlutf is just like wrlut, except that the function is supplied in the form of an array instead of
as an external procedure. Note that the first half of the values in ftab are the output values
for non-negative input x, and the last half are for negative values of x.

8.2 Loading Precompiled Look-up-tables

If wrlut, wrlutf or wrluti has been used to create a table on a disk file, then that table
can be loaded into the VICOM'’s point processor with the following vsh command

*> 1dpp tablename
where tablename is the string used when the table was created. A more general vsh command
«> ldlut tablename lut

loads the display look-up-tables or the point processor look-up-table. Tablename is as before.
The lut parameter is a value from 0 to 4 indicating the look-up-table to be loaded, according
to:

lut Look-up-table
0 point processor
1 red display
2 green display
3 blue display
4 red, green, and blue displays

Note that the VICOM command pei must be used to perform the look-up operation
after the point processor table has been loaded.

8.3 VICOM Data Structures for Look-up-tables

This section describes, the VICOM’s use of look-up-tables. It is not necessary to read
this section to use the VICOM’s look-up-tables.

The VICOM command luk is used to transfer data from the first 4096 16-bit values in
the image memory into the point processor look-up-table, or one of the display look-up-
tables. Let us interpret those 4096 values as 16-bit unsigned integers in the range 0 to 26—1,
and denote the table as T[0], T[1], ..., T[4095]. The files created by wrlut, wriutf and wrluti
contain 4096 16-bit values, and are identical to the 16-bit image data T[0], ..., T[4095], as in
a disk image file (see Section 7.1).

The data is loaded from the image memory into the point processor look-up-table by the
VICOM command

+> luk (0) or
> luk

The look-up-table operation can be applied by the VICOM command poi. During that

vsh Users’ Manual Look-Up-Tables 37

operation, the high order 12 bits of each input pixel value is interpreted as an unsigned
integer in the range 0 to 4095 to yield an index i. The output of the look-up operation is the
16 bit T[i], which is written in the output pixel. If the four graphics bits of the output pixel
are write-protected, then only the high order 12 bits of T[i] are used.

The data is loaded into one or more display look-up-tables by the commands

*> Juk (1) loads the look-up-table for the red display

*> Juk (2) loads the look-up-table for the green display

+> luk (3) loads the look-up-table for the blue display

*> luk (4) loads the look-up-tables for the all three displays

For display tables, 1024 values are used, namely, T[3], T[7], T[11], ..., T[4095]). The
display output value is determined from the high order 10 bits of the pixel intensity value.
These 10 bits are padded with two one bits, and the resulting 12-bit value is interpreted as an
unsigned integer in the range 0 to 4095 to yield an index i. The output display look-up-table
will be the high order 8 bits of the 16-bit value T[i].

Appendix A

Appendix A

vsh Users’ Manuai

This section lists the VICOM commands in alphabetical order. The syntax for each
command is followed by a brief description followed by a list of VICOM processors involved
in the command. The abbreviations for the processors are: PP for the point processor, M for
the micro processing unit, DC for the display controller, VC for the video controller, and AP
for the array processor. For descriptions of the processors see “VICOM User’s Guide”.

Command

ADD A,B > C (a)

ADK A > B (a, b)
ANDAB>C

ANK A > B (const)

ARE A (xc,yc,plane)
ASHA >B(n)

BARA

BIT (bit,dc)

BOX A (xc,yc,h,w,val,back)
CAM A (a,b)

CDM (count)
CHE A (x,y,n,v)

CHK A (x1,y1,x2,y2,const,n)
COL A,B,C

CON A (const)

COPA>B

CUR A (x,y,plane)

DEF (a)

DEYV (a,b)

DIG A (a)

DIK A > B (const)

DIL A > B,X,Y (x1,yl,x2,y2)
DIN A,Z (a)

DIS A

DIVA,B>C

DOT A (x1,yl,sh,sw,h,w,dot,back)
EDG A > B,Z (a)

ELL A (xc,yc,major,minor,ang,f,plane)
END

ERF A > B (g,dc)

EXP A > B (a,dc)

EXT A

FAL A,B,C (a)

FIL A (xc,yc,plane)

FLI A,B (n)

VICOM Commands
Description

a=1 scaled, 2 unscaled

a=const, b=1 scaled, 2 unscaled

logical AND of images

logical AND with const

area within closed contour

n=4# of bits to the right, sign extended
bar chart

bit slicing, bit=1-8(msb to Isb)

box of val with background level back
a=1 interlace, 2 non-interlace

b=1 internal control, 2 external
continues DMA

checks image data starting at (x, y)

vs. the n values in v

check image block vs. const n exceptions listed
display color

constant image

copy

position cursor at (x, y)

a=0 no display after process, 1=display
a=0 device disable, 1 enable

b=1 tablet, 2 joystick, 3 ball

a=1 bottom byte, 2 top byte digitization
division of const*0.1 by image

expand image block to full size

frame digit and temp intergration
a=number of frames must be power of 2
display A

0.1*A/B (clipped at = 1.)

dot chart

a=1 prewitt sqrt, 2 prewitt mag,

3 sobel sqrt, 4 sobel mag

ellipse =1 draw, 0 erase

only with VERSADOS

g=0 guassian error function, 1 inverse
a=1-4 exponential

print max and min pixel values

false color 6 perms of RGB

fill closed contour

flicker with period of n frames

Processor

PP

PP

PP

PP

M

PP

M

DC
MPP
VCDC

vVCDC
PP AP
M AP PP
VD DC PP

AP PP
MPP
AP PP

vsh Users’ Manual

Command

GRA A > B (plane,dc)

GRY A (a)

HEQ A > B (do)

HIP A > B,Z (n,const)

HIS A (low,high,plane)

IMP A (x,y)

INT (dc)

INV A > B (o)

LEN A (x1,yl,plane,outline,rs,cs)
LIN A > B (clipl,cliph,oclipl,ocliph,dc)
LMP (dc)

LOG A > B (a,dc)

LOO (t,n)

LOP A > B,Z (n,const)

LSHA > B ()

LUK (dc)

LUT (do)

MAG A > B (dc)

MAS A > B (a,v,b)

MED A > B (v,h)

MEM (rows,cols)

MER A,B,C > D (plane)

MOM A (a)

MOV (filen,dwell,n,reels,loopn)
MUK A > B (const)
MULAB>C

NEGA>B

NOTA>B

ONE A

ORK A > B (const)
ORRAB>C

OUT A > B (threshold)

OVR (colorl,color2,color3,colord)
PCR

PER A (xc,yc,plane,outline,rs,cs)
PLO A (pa,pc,dc,d)

POIA>B

POW A > B (a,dc)
PRI A (x1,yl,c)

PSE (a)

PUT A (x1,yl,h,w,amp)
QuI

Appendix A

VICOM Commands

Description

B(i,j)=TIAG,})]

T obtained from graphics plot

a=1 horiz, 2 vert, 3 diag

histogram equalization

high pass filter n=# of iterations, const=0-9
histogram plotted in graphics

maximum impulse at x,y

tables for integer mode

0.V/A (clipped at *+1.)

length of minimally connected line

linear point transformation

load DC from origin to cursor

log function, a=1-4 (inv to EXP)

loop through images 1-n, display each t frame times
low pass filter n=# of iterations, const=0-9
logical shift n bits right

load look-up from image memory from image 1
load look-up from microcomputer memory (DOS)
absolute value

a=0 user defined 3x3 linear mask in v
1North2 NE3E4SESS6SW7W8NW
9-11 Lapl 12-13 horz 14-15 vert 16-18 lopass
19-21 hipass 22 v.line 23 h.line 24 0.5 diag
plus shaped median filter v by h (1,3,5,7)
configures logical memory

merge pair under control of mask

a=1 mean, 2 mean variance skewness
movie presentation (DOS)

multiply by const

C=A"'B

B=-A

logical negation

constant image FFFFH

logical OR with const

logical OR of images

remove outliers in a neighborhood

overlay graphics colors (1-8)

prints pixel cursor location and amplitude
perimeter of closed contour

plot lookup table in graphics

using pa for axis & pc for curve dc=0 PP

39

Processor
PP DC

M

M PP DC
PP AP
PP

PP DC
PPDC
PP DC
PP AP
PP
MPPDC

M PP DC
PP DC

DC DISK MP

M DC
MDC

c=2 DC green c=3 DC blue d=1 full scale d=2 +ve quad

B(i,j) =table[A(i,j)] using PP table

a=1 cube root, 2 sqrt, 3 square, 4 cube
prints c by 8 pixel block on console
pseudocolor

writes block of constant value

terminates vicom command operations(DOS)

PP
PP DC
M

DC
M
M

Command

RAN A (a)

RDM A (a,number 16bit words)
REA A (filename,a)

REC A (xc,yc,h,w,ang,f,plane)
RED A > BX,Y (x1,y1,x2,y2)
REP

RES (cam,pse,roam,scr,zoo)
RIO A (a,number of rows)
ROA (xc,yc)

ROT A > B,X,Y (xc,yc,cdegs)

Appendix A vsh Users’ Manual

VICOM Commands
Description

random image a=seed must be odd
read image block a=1 16bit, 2 8bit

read from disk a=1 16bit, 0 8bit (DOS)
rectangle f=1 draw, 0 erase

reduction into block

repeat chain file sequence (DOS)

reset to default (O disable, 1 enable)
read image a=1 16bit, 2 8bit

image roam

rotation about (xc, yc)

RUB A > B (clipl,cliph,oclipl,ocliph,x,y,dc) rubber band x,y inflection pts.
SAM A > B (x1,y1,h,w,vsamp,hsamp,x2,y2)subsampling

SCA A > B (fract cliph,fract clipl,dc)

SCR A (dx,dy)

SDM (a)

SLI A > B (low,high,bckgrnd,dc)
SPLA,B > C(a)

SUB A,B > C (a)

SUK A > B (const,a)

SVD A > B,Y,Z (a)

SWAA>B

TEX A (x1,yl,ang.f,e,plane,’text’)
THR A > B (thresh,const,bckgrnd,dc)

TRA (plane)

TRH A > B,Z (vshift,hshift)
TRI A,B,C > D (a,b,c)
TRL A > B (vshift,hshift,c)
TRPA>B

TWO A>B

linearly scale image to

range [0, 1]

image scroll using offset (dx, dy)
suspend active DMA a=0 status, 1 stop DMA
slicing, bckgrnd=1 zero, 2 image

split screen a=11A,rB; 2 lA,IB; 3 rA,rB
a=1 scaled, 2 unscaled

subtract const, a=1 scaled, 2 unscaled
convolution a=file of 3x3 kernels (DOS)
reverses top and bottom bytes

write text f=0 small, 1 large font
threshold, above thresh set to const

rest set to bekgrnd

trace cursor

image translation

tricolor transform D=aA+bB+cC
translation c=unmapped amp.

transpose image

integer to two’s complement

UNS A > B,Z (a,low pass impulse response) unsharp mask a=proportion

VEC A (x1,y1,x2,y2,e,plane)
WAI

WAL A > B,Z (a,b,c,d,e,f)
WDM A (a,number 16bit words)
WIO A (a,number of rows)
WRI A (file,a)

WRP (a)

XFR (file)

XOK A > B (const)
XORAB>C
ZER A

ZGR A (plane)
Z0O0 (a)

line e=1 draw, 0 erase

delay execution for 0.5 secs (DOS)

wallis stats, mean, std dev, normalization
write image block a=1 16bit, 2 8bit

write image a=1 16bit, 2 8bit (DOS)

write to disk a=1 16bit, 2 8bit (DOS)

0 write protect/enable 1 not protected/disable
2 write protect/disable 3 not protected/enable
4096 words transferred to micro buffer (DOS)
xor with const

exclusive OR of images

all pixels zero

zero graphic memory plane=0 all

zoom by factor 1-6

Processor

M

10
DiskC
M
APM
M

M

10
DC
APM
PP DC
M

PP DC

10
PP DC

AP PP
PP

PPDC

PP AP
MPP
PP

PP AP

AP PP

SRR

vsh Users’ Manual

Appendix B

Appendix B

41

This section lists the VICOM commands grouped by operation categories. The
processor abbreviations are the same as for Appendix A.

Command

ADD A,B > C (a)
ADK A > B (a, b)
ANDAB>C
ANK A > B (const)
ASH A > B (n)
DIK A > B (const)
DIVAB>C
LSHA >B @)
MUK A > B (const)
MULAB>C
NEGA>B
NOTA>B

ORK A > B (const)
ORRAB>C

SUB A,B > C (a)
SUK A > B (const,a)
XOK A > B (const)
XORAB>C

Command

COL AB,C

DIS A

FLIA,B (n)

LOO (t,n) _
MOV (filen,dwell,n,reels,loopn)
ROA (xc,yc)

SCR A (dx,dy)

SPL A,B> C(a)

Z00 (a)

Command

EXT A
HIS A (low,high,plane)
MOM A (a)

ALU Operations
Description

a=1 scaled, 2 unscaled

a=const, b=1 scaled, 2 unscaled
logical AND of images

logical AND with const

n=# of bits to the right, sign extended
division of const*0.1 by image
0.1*A/B (clipped at = 1.)

logical shift n bits right

multiply by const

C= A'B

B=-A

logical negation

logical OR with const

logical OR of images

a=] scaled, 2 unscaled

subtract const, a=1 scaled, 2 unscaled
xor with const

exclusive OR of images

Display Operations
Description

display color

display A

flicker with period of n frames

loop through images 1-n, display each t frame times
movie presentation (DOS)

image roam

image scroll using offset (dx, dy)

split screen a=11A,rB; 2 1A,1B; 3 rA,1B

zoom by factor 1-6

Analyze Operations
Description

print max and min pixel values
histogram plotted in graphics
a=1 mean, 2 mean variance skewness

Processor

PP

PP

PP

PP

PP

PP AP
AP PP
PP
AP
MP AP
PP

PP

PP
PP
PP
PP
PP
PP

Processor

DC
DC
DC
DC

DC DISK MP

8888

Processor

M
M
M

42

Command

CUR A (x,y,plane)
DEV (a,b)

LMP (dc)
PCR
TRA (plane)

Command

HIP A > B,Z (n,const)
LOP A > B,Z (n,const)
SVD A > B,Y,Z (a)

Command

BAR A

BOX A (xc,yc,h,w,val,back)

CON A (const)

DOT A (x1,y1,sh,sw,h,w,dot,back)
GRY A (a)

IMP A (x,y)

ONE A

RAN A (a)

ZER A

Command

DIL A > B, X,Y (x1,yl,x2,y2)
MER A,B,C > D (plane)
RED A > B,X,Y (x1,yl,x2,y2)
ROT A > B,X,Y (xc,yc,degs)

Appendix B

Cursor Operations
Description

position cursor at (x, y)

a=0 device disable, 1 enable

b=1 tablet, 2 joystick, 3 ball

load DC from origin to cursor

prints pixel cursor location and amplitude
trace cursor

Filter Operations
Description

high pass filter n=iterations const=0-9
low pass filter n=iterations const=0-9
convolution a=file of 3x3 kernels (DOS)

Generate Operations
Description

bar chart

box of val with background level back
constant image

dot chart

a=1 horiz, 2 vert, 3 diag

maximum impulse at x,y

constant image FFFFH

random image a=seed must be odd
all pixels zero

Geometric Operations
Description

expand image block to full size
merge pair under control of mask
reduction into block

rotation about (xc, yc)

SAM A > B (x1,y1,h,w,vsamp,hsamp,x2,y2)subsampling

TRH A > B,Z (vshift,hshift)
TRL A > B (vshift,hshift,c)
TRPA>B

image translation
translation c=unmapped amp.
transpose image

vsh Users” Manual

Processor

22X XX

Processor

PP AP
PP AP
AP PP

Processor

M
MPP
PP
MPP
M
PP
PP
M
PP

Processor

M AP PP
PP
APM
APM
M

PP AP
MPP
M

vsh Users’ Manual

Command

ARE A (xc,yc,plane)

ELL A (xc,yc,major,minor,ang,f,plane)

FIL A (xc,yc,plane)

LEN A (x1,yl,plane,outline,rs,cs)
OVR (colorl,color2,color3,colord)
PER A (xc,yc,plane,outline,rs,cs)

PLO A (pa,pc,dc,d)

REC A (xc,yc,h,w,ang,f,plane)
TEX A (x1,yl,ang,f,e,plane,’text’)
VEC A (x1,y1,x2,y2,e,plane)
ZGR A (plane)

Command

CDM (count)

RDM A (a,number 16bit words)
RIO A (a,number of rows)

SDM (a)

WDM A (a,number 16bit words)
WIO A (a,number of rows)
XFR (file)

Command

EDG A > B,Z (a)

MAS A > B (a,v,b)

MED A > B (v,h)
OUT A > B (threshold)

UNS A > B,Z (a,low pass impulse response)

WAL A > B,Z (a,b,c,d,e,f)

Appendix B

Graphics Operations
Description

area within closed contour

ellipse f=1 draw, 0 erase

fill closed contour

length of minimally connected line
overlay graphics colors (1-8)
perimeter of closed contour

plot lookup table in graphics

using pa for axis & pc for curve dc=0 PP

43

FER R
8
3
1)
S

222
8 8

c=2 DC green c=3 DC blue d=1 full scale d=2 +ve quad

rectangle f=1 draw, 0 erase
write text f=0 small, 1 large font
line e=1 draw, 0 erase

zero graphic memory plane=0 all

I/O Operations
Description

continues DMA
read image block a=1 16bit, 2 8bit
read image a=1 16bit, 2 8bit

suspend active DMA a=0 status, 1 stop DMA

write image block a=1 16bit, 2 8bit

write image a=1 16bit, 2 8bit (DOS)
4096 words transferred to micro buffer (DOS)

Neighborhood Operations

Description

a=1 prewitt sqrt, 2 prewitt mag,
3 sobel sqrt, 4 sobel mag

a=0 user defined 3x3 linear mask in v
1North2 NE3E4SESS6SW7 W8NW
9-11 Lapl 12-13 horz 14-15 vert 16-18 lopass
19-21 hipass 22 v.line 23 h.line 24 0.5 diag
plus shaped median filter v by h (1,3,5,7)
remove outliers in a neighborhood

unsharp mask a=proportion

wallis stats, mean, std dev, normalization

g2 X

Processor

10
10
IO
10
10
10
MIO

Processor

AP PP

AP

M

PP AP
AP PP

44

Command

BIT (bit,dc)

ERF A > B (g,dc)
EXP A > B (a,dc)
GRA A > B (plane,dc)

HEQ A > B (d¢)

INT (dc)

INV A > B (do)

LIN A > B (clipl,cliph,oclipl,ocliph,dc)
LOG A > B (a,dc)

MAG A > B (do)

POIA>B

POW A > B (a,dc)

RUB A > B (clipl,cliph,oclip!,ocliph,x,y,dc)
SCA A > B (fract cliph,fract clipl,dc)

SLI A > B (low,high,bckgrnd,dc)
THR A > B (thresh,const,bckgrnd,dc)

Command

CHE A (x,y,n,v)

CHK A (x1,y1,x2,y2,const,n)
COPA>B

DEF (a)

END

LUK (dc)

LUT (dc)

MEM (rows,cols)

PRI A (x1,yl,c)

PUT A (x1,yl,h,w,amp)
QUI

REA A (filename,a)

REP

RES (cam,pse,roam,scr,zoo)
SWAA>B

TWO A>B

WAI

WRI A (file,a)

WRP (a)

2 write protect/disable 3 write protect/enable

Appendix B vsh Users’ Manual
Point Operations
Description Processor
bit slicing, bit=1-8(msb to Isb) DC
g=0 guassian error function, 1 inverse PP DC
a=1-4 exponential PPDC
B(i,) = T[AG))] PP DC
T obtained from graphics plot
histogram equalization MPPDC
tables for integer mode DC
0.1/A (clipped at £1.) PPDC
linear point transformation PP DC
log function, a=1-4 (inv to EXP) PP DC
absolute value PPDC
B(i,j)=table[A(i,j)] in PP table PP
a=1 cube root, 2 sqrt, 3 square, 4 cube PP DC
rubber band x,y inflection pts. PP DC
linearly scale image to PPDC
range [0, 1]
slicing, bckgrnd=1 zero, 2 image PP DC
threshold, above thresh set to const PP DC
rest set to bckgrnd
Utility Operations
Description Processor
checks image data starting at (X, y) M
vs, the n values in v
check image block vs. const n exceptions listed M
copy PP
a=0 no display after process, 1=display DC
only with VERSADOS M
load look-up from image memory from image 1 MPPDC
load look-up from microcomputer memory (DOS) M PP DC
configures logical memory M
prints c by 8 pixel block on console M
writes out block M
terminates vicom command operations(DOS) M
read from disk a=1 16bit, 0 8bit (DOS) DiskC
repeat chain file sequence (DOS) M
reset to default (0 disable, 1 enable) M
reverses top and bottom bytes PP
integer to two’s complement PP
delay execution for 0.5 secs (DOS) M
write to disk a=1 16bit, 2 8bit (DOS) DiskC
0 write protect/enable 1 not protected/disable M

vsh Users’ Manual

Command

FAL A,B,C (a)
PSE (a)
TRI A,B,C > D (a,b,c)

Command
CAM A (a,b)

DIG A (a)
DIN A,Z (a)

Appendix B

Spectral Operations
Description

false color 6 perms of RGB
pseudocolor
tricolor transform D=aA+bB+cC

Video Operations
Description

a=1 interlace, 2 non-interlace

b=1 internal control, 2 external

a=1 bottom byte, 2 top byte digitization
frame digit and temp intergration
a=number of frames must be power of 2

45

Processor

DC
DC
AP

Processor

vCDC

vCDC
VD DC PP

46 Appendix C vsh Users’ Manual

Appendix C

By convention any vsh function that returns a return or error code returns zero in
normal circumstances, a non-zero returned value indicates some sort of exceptional condition
(not always serious). Some routines return codes that indicate more precisely the exceptional
condition, the returned codes are listed in this appendix. The first list contains errors from
within vsh, the codes and names are defined in the header file vsh.h. The second list
contains error returned from the VICOM, many of the errors are not meaningful for our
system. The vsh function verrdesc, given an error code, returns a pointer to the description
of the error. The following code fragment performs a vsh command and then prints the error
message if any.

#include <vsh.h>

int rc;
char *command;

rc = vsh (command);
if (rc = NO_ERROR)

printf (" sh error -- %s , verrdesc(rc));

Vsh Related Error Codes

Code Name Description

0 NO_ERROR No error.

1 ABORT Chain file aborted.

2 NO_CHILD No child process in vex, disaster.

3 END_OF_FILE EOF or end encountered.

4 CHAIN_OVERFLOW Too many chain files.

5 NO_COUNT No count on ‘do’ statement.

6 CANT_DO Can’t do this command.

7 CANT_OPEN Can’t open image file.

8 BAD_IO Disk VO error during image transfer.

9 DMA_DISABLED Attempted transfer while DMA disabled.
10 BAD_PARAMETER Bad parameter on vsh command.

11 NO_FLAG No such flag.

12 EX_ERROR Error in shell command.

13 GOT_INTR Received interrupt signal.

14 WHATISTHIS What was that?

15 DMA_LOCKED DMA locked by some other processes.
16 NO_RESPONSE No response from VICOM to command.

vsh Users’ Manual Appendix C 47

VICOM Error Codes
Code Description
64 Required device not available.
65 Command is ambiguous, use longer form.
66 Command is unknown, try another.
67 An operand is missing from the command.
68 An invalid image number is specified.
69 Command format is incorrect.
70 An invalid count is specified.
71 An invalid numeric constant is specified.
72 An invalid file name is given.
73 Unable to assign the specified file.
74 I/O error occurred while transferring image.
75 Disk error occurred while closing file.
76 Unable to allocate a file for image.
77 Error in loading lookup table.
78 Device is currently busy.
79 Incompatible images have been specified.
80 Graphics commands are disabled.
81 Cursor not active.
82 Command is not yet implemented.
83 Command not valid for this memory configuration.
84 Device write protected.
85 Error detected during check.
86 Warning - text string truncated.
87 Outside edge of contour not found.
88 Unexpected error from system call.
89 Device still active.
90 Dlegal MOVIE file specified.
91 Error while assigning volume.

92 Movie loop out of sync with display controller.

48 Appendix D vsh Users’ Manual

Appendix D
Bugs and Deficiencies

(6)) The Image /O package as described in Section 7 is only partly implemented. In vsh
releae 1.1, iwritx and ireadx are defined only for x = s and x = i, and only when
the storage attribute nstore is 8 or 16. Opening a VICOM frame or look-up table is
unimplemented; all /O must be done to disk files, which communicate with the
VICOM through load, store, and other vsh commands. Subsampling and
subwindows and not yet supported.

) Writing look-up tables, as described in Section 8.1, is implemented only when
tablename is a disk file. To load look-up tables on the VICOM, a user iaust first
write to disk, and then use 1dpp or 1dlut.

3) An asynchronous pause (<control-Z>) does not take effect when the vsh level
command file is the terminal until after a carriage return is given on the current

input line.
G)) There is no way to embed double quotes within a parameter.
(5 All vsh commands must fit on one line, and are limited to VCLEN characters.

(VCLEN is a defined constant, currently 256). This is particularly irksome for the
set macropath and set imagepath commands.

(6) There is no "set ignoreeof” feature — a "D at the top level will cause vsh to
terminate.

@) Error reporting from the VICOM to vsh seems to be messed up. Vsh seems to
interpret the codes incorrectly. Until this is fixed, you should ignore error messages
on the terminal, and instead consult the error message displayed on the VICOM
console.

