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A Statistical Viewpoint on the Theory of Evidence
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Abstract—We describe a viewpoint on the Dempster/Shafer ‘‘theory
of evidence,”’ and provide an interpretation which regards the com-
bination formulas as statistics of the opinions of ‘‘experts.’’ This is
done by introducing spaces with binary operations that are simpler to
interpret or simpler to implement than the standard combination for-
mula, and showing that these spaces can be mapped homomorphically
onto the Dempster/Shafer theory of evidence space. The experts in the
space of ‘‘opinions of experts’’ combine information in a Bayesian
fashion. We present alternative spaces for the combination of evidence
suggested by this viewpoint.

Index Terms—Bayes rule, Bayesian combination, evidence, eviden-
tial reasoning, expert systems, theory of evidence.

I. INTRODUCTION

ANY problems in artificial intelligence call for as-

sessments of degrees of belief in propositions based
on evidence gathered from disparate sources. It is often
claimed that probabilistic analysis of propositions is at
variance with intuitive notions of belief [7], [17], [19].
Various methods have been introduced to reconcile the
discrepancies, but no single technique has settled the is-
sue on both theoretical and pragmatic grounds.

A. Theory of Evidence

One method for attempting to modify the probabilistic
analysis of propositions is the Dempster/Shafer ‘‘theory
of evidence.’’ This theory is derived from notions of up-
per and lower probabilities, as developed by Dempster in
[5]. The idea that intervals instead of probability values
can be used to model degrees of belief had been suggested
and investigated by earlier researchers [9], [13], [17],
[31], but Dempster’s work defines the upper and lower
points of the intervals in terms of statistics on set-valued
functions defined over a measure space. The result is a
collection of intervals defined for subsets of a fixed la-
beling set, and a combination formula for combining col-
lections of intervals.

Alternative theories based on notions of upper and lower
probabilities were also pursued [13], [33], and can be for-
mally related to the updating formulas used in the Demp-
ster/Shafer theory [19], but are really a separate formu-
lation.
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Dempster explained in greater detail how the statistical
notion from his earlier work could be used to assess be-
liefs on propositions in [6]. In [4], Dempster gave ex-
amples of the use of upper and lower probabilities in terms
of finite populations with discrete univariant observable
characteristics, in correspondence with algebraic struc-
ture to be discussed later in this paper. The topic was taken
up by Shafer [26], [27], and led to publication of a mon-
ograph on the ‘‘theory of evidence’” [28]. All of these
works after [4] emphasize the values assigned to subsets
of propositions (the ‘‘beliefs’’) and the combination for-
mulas, and deemphasize the connection to the statistical
foundations based on the set-valued functions on a mea-
sure space.

The Dempster/Shafer theory of evidence has sparked
considerable debate among statisticians and ‘‘knowledge
engineers.”’ The theory has been criticized and debated
in terms of its behavior and applicability, e.g., [6], [21],
[24], [33] (commentaries following). Some of the ques-
tions have been answered by Shafer [29], [30], but dis-
cussion of the theoretical underpinnings continues, e.g.,
[71, [18], [19]. A related, but distinct theory of lower
probabilities is frequently discussed as another alternative
for uncertain reasoning [13], [33]. An excellent study by
Kyburg [19] relates the Dempster/Shafer theory to a lower
probability framework where beliefs are viewed as ex-
trema of opinions of experts. These viewpoints have sim-
ilarities to the one developed here, but differ in the inter-
pretation of belief values.

Recently, there has been increased interest in the use of
the Dempster/Shafer theory of evidence in expert systems
[11], [14]. Most of the recent attempts to map the theory
to real applications and practical methods, such as de-
scribed in [2], [8], [10], [15], [32], are based on the
‘‘constructive probability’’ techniques described by Shafer
[29], and disregard the statistical theoretical foundations
from which the theory was derived. The constructive the-
ory is based on a notion of fitting particular problems to
scales of canonical examples. In the case of belief func-
tions, the cornerstone of the Dempster/Shafer theory,
Shafer offers a set of examples of ‘‘coded messages’’
being sent by a random process, and a set of measures on
belief functions to assist in fitting parameters of the
‘‘coded message’’ example to instances of subjective no-
tions of belief. While the ‘‘coded message’” interpretation
is an essentially statistical viewpoint and isomorphic to
the algebraic spaces discussed here and implicit in
Dempster’s work, the proposed fitting scheme attempts to
apply alternate interpretations to the combination formula
based on subjective similarities.
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In this paper, we present a viewpoint on the Dempster/
Shafer theory of evidence that regards the theory as sta-
tistics of opinions of ‘‘experts.”” We relate the evidence-
combination formulas to statistics of experts who perform
Bayesian updating in pairs. In particular, we show that
the Dempster rule of combination, rather than extending
Bayesian formulas for combining probabilities, contains
nothing more than Bayes’ formula applied to Boolean as-
sertions, but tracks multiple opinions as opposed to a sin-
gle probabilistic assessment. Finally, we suggest a related
formulation that leads to simpler formulas and fewer var-
iables. In this formulation, as in the Dempster combina-
tion formula, the essential idea is that we track the statis-
tics of the opinions of a class of opinions. However, in
our new formulation, the opinions are allowed to be prob-
abilistic, as opposed to the Boolean opinions that are im-
plicit in the Dempster formula.

The authors’ interest in the Dempster/Shafer theory of
evidence derives from a study of a large class of iterative
knowledge aggregation methods [20]. These methods,
which include relaxation labeling [16], stochastic relaxa-
tion [12], neural models [1], and other ‘connectionist net-
works,’” always attempt to find a true labeling by updat-
ing a state as evidence is accumulated. In the theory of
evidence, as in many other models, the true labeling is
one of a finite number of possibilities, but the state is a
collection of numbers describing an element in a contin-
uous domain. In the Shafer formulation, the state of the
system is described by a distribution over the set of all
subsets of the possible labels. That is, each subset A of
labels has assigned to it a number representing a kind of
probability that the subset of possible labels is precisely
A. Implicit in this model is the notion that an incremental
piece of evidence carries a certain amount of weight or
confidence, and distinguishes a subset of possibilities.
Evidence may point to a single inference among the set
of labels or may point to a subset of the alternatives (see,
e.g., [23]). As evidence is gained, belief values are up-
dated according to a combination formula. The combi-
nation formula is commutative and associative, so a
succession of incremental changes can be combined into
a single state that can be regarded as a nonprimitive up-
dating element.

Most of the other iterative models for combining evi-
dence represent the degree of support for a label by a sin-
gle number, although there may be additional numbers in
a state vector corresponding to ‘‘hidden units.’’ For the
state of belief in the formulation discussed above, there
are numbers for every subset of labels. Thus, if there are
n labels, a state has (roughly) 2" values. That is, there are
many additional degrees of freedom. Further, not all it-
erative models have associative combination formulas.
Commutativity is even more problematic since there is
often a distinction between the current state of belief and
the form of representation of incremental evidence. The
Dempster/Shafer formulation is somewhat special in that
evidence is represented by a second state of belief to be
combined, on an equal basis, with a current state of be-
lief.
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B. Theory of Belief Functions

In this section, we amplify on the distinction between
the viewpoint established in the remainder of this paper
and the theory of belief functions, as used in the Demp-
ster/Shafer theory of evidence.

The canonical examples from which belief functions are
to be constructed are based on ‘‘coded messages’’ ¢y,
- - -, ¢, which form the values of a random process with
prior probabilities p;, * - - , p, [24]. Each message c; has
an associated subset A; of labels, and carries the message
that the true label is among A;. The masses representing
the current state are simply the probabilities (with respect
to this random process) of receiving a message associated
with a subset A. The belief in a subset A is the probability
that a message points to a subset of 4.

The coded-message formulation corresponds exactly
with our space of Boolean opinions of experts (Section
III-A). Moreover, the combination of coded messages and
the combination of elements in the space of Boolean opin-
ions coincide. Specifically, given a random process of
messages ¢;, * * * , ¢, with priors py, * * * , p,, and an-
other process of messages ci, * * * , ¢, with priors p{,
***, Pm, then in combination, a pair of codes is chosen
independently (c;, ¢j), thus with prior probability p;p;,
and the associated message is that the truth lies in 4; N
Aj. There c; carries the message 4;, and ¢/ carries mes-
sages A;. It is our point, in introducing the spaces of ex-
perts, that the requisite independence includes not only
the choice of messages, but also an assumption that the
message is formed by the intersection of the subsets des-
ignated by the constituent messages. As opposed to being
tautological, this intersection involves a conditional in-
dependence assumption, a point that we emphasize by
treating the formulation as algebraic structures, and by
considering the space of probabilistic opinions of experts.

In a sense, our space of Boolean opinions of experts
can be thought of as an alternative set of canonical ex-
amples with which to construct states of belief to analo-
gous real situations. Necessarily, these examples will be
isomorphic to any other set of canonical examples, and
only the language used to describe the same algebraic
space varies. However, there is additional richness in the
various classes of canonical examples since many distinct
examples might correspond to an identical state of belief.
By ‘‘backing up’’ to the richness of the space of proba-
bilistic opinions of experts, we are better able to interpret
the foundations of the Dempster rule of combination, and
to suggest the alternative formulation that is presented in
the second part of this paper (see Fig. 2).

When the theory of belief functions is actually applied
to evidential reasoning situations with uncertain evi-
dence, the belief function is typically regarded as a var-
iant on a probability measure over the set of labels [25].
An important difference is that the belief function is not
an additive measure. Nonetheless, the belief on a partic-
ular label is identified, in some subjective way, with a
probability for that label, except that degrees of uncer-
tainty are allowed to withhold ‘‘mass’’ to nonsingleton
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subsets. In the commentaries to Shafer’s presentation of
the theory of belief functions and example applications
before the Royal Statistical Society [24], several discus-
sants commented on the need for a closer connection be-
tween the canonical examples and the interpretation of be-
lief values. Prof. Barnard, for example, states that ‘‘the
connections between the logical structure of the . . . ex-
ample and the story of the uncertain codes is not at all
clear.”’” Prof. Williams desires ‘‘a deeper justification of
the method and a further treatment of ‘unrelated bodies of
evidence,’ ”’ while Prof. Krantz states simply that ‘‘com-
parison of evidence to a probabilistically coded message
seems strained.”’ Prof. Fine summarizes the problem by
stating that ‘‘the coded message interpretation is ignored
when actually constructing belief functions, calling into
question the relevance of the canonical scales.’’

We believe that the viewpoint expounded here, and the
analytic treatment of algebraic spaces embodying the
combination formula for belief functions substantially an-
swers these calls for elucidation of the meaning of belief
functions. At the very minimum, our spaces provide can-
onical examples where belief values can be regarded as
percentages of sets of experts stating that possible labels
are restricted to within a specified subset. We believe,
however, that the viewpoint reduces the need for subjec-
tive balancing between a given probabilistic situation and
a ‘‘coded message’’ interpretation, and instead provides
a way in which belief values can be estimated by, for ex-
ample, sampling techniques. The crucial point (and pre-
sumably essential to the notion of uncertainty) is that un-
certainty is measured over a different sample space from
the labeling situation; in our parlance, the separate sample
space is a set of experts. Further, the viewpoint that evi-
dence can be represented by collections of opinions or the
statistics on a collection of opinions leads, fairly natu-
rally, to alternate representations from the space of belief
states used in the Dempster/Shafer formulation. Given the
fundamental simplicity of the parameterized statistics
space that we introduce in Section V, we believe that the
viewpoint yields structures for evidential reasoning that
might well be applicable when neither Bayesian probabi-
listic reasoning nor theories of belief functions are suita-
ble.

Belief functions are generally viewed as extensions of
probability measures over the set of labels. When all
masses occur on singleton subsets, then the belief func-
tion is an additive measure, and a combination of such
elements yields a formula equivalent to Bayes’ formula
with conditional independence. Since more general belief
functions are allowed, the Dempster combination formula
is regarded, from this viewpoint, as an extension of Bayes’
formula.

From the point of view of statistics of opinions of ex-
perts, as developed here, the Dempster combination for-
mula is explained by Bayesian updating on Boolean opin-
ions in all cases. The special-case Bayes’ formula is
explained as follows. When masses are concentrated on
singletons, then each expert is naming a single label. Sup-
pose that the percentage of experts naming a particular
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label is the same as the actual probability for that label
given the information available to the experts. This is an
ergodicity assumption since chances are being compared
over two distinct sample spaces—the set of experts and the
space of labeling situations. Then the independent sam-
pling of a pair of experts from each of two such collec-
tions of experts mimics the independent probabilistic as-
sessment of conditioning on multiple hypotheses.

To what extent can the various viewpoints coexist? As
alternative scales of canonical examples, there is no con-
flict between opinions of experts and coded messages.
However, the viewpoint that regards the masses and be-
liefs as probabilities of Boolean random variables defined
on a sample space of experts, distinct from the sample
space of labeling situations, seems to give additional in-
tuitive insight, as stated by Prof. Kingman in the same
commentaries to [24]. Further, as we emphasize here, this
viewpoint is isomorphic to the structures for combining
evidence, modulo the terminology. But in order to rec-
oncile a view of beliefs as probabilities over sets of ex-
perts with a view of beliefs as extensions of probability
measures over labels, some kind of ergodicity assumption
is needed to relate distributions over the different spaces.
It may well be that such assumptions can be formulated
to give a deeper theoretical basis for the application of
canonical examples to probabilistic situations with uncer-
tainties. An advantage would be that judgments of the ap-
plicability of the formulation could be based on the valid-
ity of the assumption as opposed to the quality of empirical
results. However, we do not pursue such a plan here, pre-
ferring to view uncertainty as a measure of concurrence
of multiple opinions.

C. Objectives

This paper has three main points. First, we formulate
the space of belief states as an algebraic structure, point-
ing out in the process that the normalization term in the
Dempster rule of combination is essentially irrelevant.
Our reason for treating these much-debated and motivated
concepts in terms of mathematical structures such as se-
migroups and monoids is to follow Dempster’s early ad-
monition to avoid becoming *‘sidetracked into doctrinaire
questions concerning whether probabilities are frequen-
cies, or personal degrees of belief, or betting probabili-
ties, etc.”’ [4]. Having formulated the Dempster/Shafer
theory of evidence as a simple algebraic structure, we can
discuss interpretations in terms of their isomorphic rela-
tionship to the theory.

We then describe spaces that we call probabilistic and
Boolean opinions of experts. Our intent is to survey the
foundations of the Dempster/Shafer theory in a manner
more accessible than the original Dempster works, and in
a way that makes clear the relationship to Bayesian anal-
ysis. The key point here is that rather than extending
Bayes’ formula, the combination method is simply apply-
ing Bayes’ formula to sets of Boolean opinions, updating
on product sets of those opinions. The idea of a class of
opinions, rather than a single probabilistic current opin-
ion, occurs in the theory of lower probabilities [13], and
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is the theme of a unifying treatment of evidential reason-
ing in [22]. In the theory of evidence, the opinions are
Boolean valued, giving lists of possible labels, and the
state of the system is described by the statistics of these
opinions. In, for example, a medical diagnosis applica-
tion, the range of opinions might be held by different doc-
tors, and the opinions themselves consist of a list of pos-
sible pathologies. The important distinction between
measuring statistics over the set of doctors and over the
set of patients forms the basis for measuring degrees of
uncertainty.

Finally, we use the viewpoint established by these
spaces or canonical examples to introduce the main orig-
inal contribution of this paper. We use the space of prob-
abilistic opinions of experts to define spaces that we call
parameterized statistics of opinions. The idea and use of
these spaces to tasks of evidence are fundamentally sim-
ple: a probabilistic opinion is maintained and updated, as
in Bayesian analysis with conditional independence, and
a concurrent measure of uncertainty is maintained in terms
of a multivariate Gaussian distribution in log-probability
space. Once again, we have the idea of a spread of opin-
ions, but founded on notions of Bayes’ theorem for up-
dating, and with the connections to the Dempster/Shafer
theory made clear.

II. THE RULE OF COMBINATION AND NORMALIZATION

The set of possible outcomes or labelings will be de-
noted in this paper by A. This set is the ‘‘frame of dis-
cernment,’’ and in other works has been denoted, var-
iously, by Q, O, or 8. For convenience, we will assume
that A is a finite set with n elements, although the frame-
work could easily be extended to continuous label sets.
More importantly, we will assume that A represents a set
of states that are mutually exclusive and exhaustive. If A
is not initially exhaustive, it can easily be made so by
including an additional label denoting ‘‘none of the
above.”’ If A is not mutually exclusive, it can be made so
by replacement with its power set (i.e., the set of all sub-
sets), so that each subset represents the occurrence of ex-
actly that subset of labels, excluding all other labels. Of
course, replacing A by its power set is perilous in that it
will greatly expand the cardinality of the label set. For
practical applications, the implementer is more likely to
want to replace A by the set of all plausible subsets de-
scribing a valid configuration.

An element (or state of belief) in the theory of evidence
is represented by a probability distribution over the power
set of A, P(A). That is, a state m is

m:P(A) = [0, 1]
2 m(A) =1

ASA

There is an additional proviso that is typically applied,
namely, that every state m satisfies

m(@) = 0.

Section III-B introduces a plausible interpretation for the
quantities comprising a state.

A state is updated by combination with new evidence
or information which is presented in the form of another
state. Thus, given a current state m, and another state m,,
a combination of the two states is defined to yield a state
m; @ m, given by

% m(B) my(C)

_ BNC=4
(m @ my)(4) = 1 - an§=® my(B) my(C)
ifd+ @

and
(m @& m)(@) =0. (1a)

This is the so-called ‘‘Dempster Rule of Combination.”’
Note that the resulting function m is a probability mass
due to the normalization factor, and that (m; ® m,) (&)
= 0 by definition.

The problem with this definition is that the denominator
in (1a) might be zero, so that (m; @ m,)(A) is undefined.
That is, there exist pairs m; and m, such that the combi-
nation of m, and m, is not defined. This, of course, is not
a very satisfactory situation for a binary operation on a
space. The solution which is frequently taken is to avoid
combining such elements. An alternative is to add an ad-
ditional element my to the space:

my(A) =0 ford +# O

my(D) = 1.

Note that this additional element does not satisfy the con-
dition m( ) = 0. Then define, as a special case,

m; ® m, = my lfan§=g m(B) my(C) = 1. (1b)
The binary operation is then defined for all pairs m,, m,.
The special element my is an absorbent state in the sense
that my ® m = m @ my = my for all states m.

This space has an identity element. The identity state
my represents complete ignorance in that combination with
it yields no change (i.e., m; ® m = m @ m; = m for all
states m). This state places full mass on the subset which
is all of A:

m,(A) =1
m(A) =0 ford # A.

Definition 1: We define (I, @D ), the space of belief
states, by

Mm = {m:P(A) - R* U {O}LEA m(A)

=1, m(@)= 0} U {m},

and define @ by (la) when the denominator in (la) is
nonzero, and by (1b) otherwise. n
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The set M, together with the combination operation
@, constitutes a monoid since the binary operation is
closed and associative, and there is an identity element.'
In fact, the binary operation is commutative, so we can
say that the space is an Abelian monoid.

Still, because of the normalization and the special case
in the definition of @, the monoid M is both ugly and
cumbersome. It makes better sense to dispense with the
normalization. We have the following.

Definition 2: We define (IM’', @'), the space of un-
normalized belief states, by

m = {m:P(A) - R* U {0}

2 m(4) =1
ACA m(4)
without the additional proviso, and set

(m @' my)(4) = 2 m(B) - m(C) VA S A

(2)
for all pairs m;, my € M'. ]
One can verify that m; @' m, € IM’, and that @’ is
associative and commutative. Further, the same element
m; defined above is also in NM’, and it is an identity. Thus,
IM’ is also an Abelian monoid. Clearly, M’ is a more
attractive monoid than 9.
We define a transformation V mapping I’ to M by the
formulas

(Vm)(4) = < _’"fr‘l“()g),A O
(Vm)(@) =0 (3)
ifm(z) # 1 and
Vm = m,

otherwise.
A computation shows that V preserves the binary op-
eration, i.e.,

V(m @' my) = V(m) © V(m,).

Thus, Vis a homomorphism.2 Further, V is onto, since
for m € M, the same m is in M’, and Vm = m. The
algebraic terminology is that V'is an epimorphism of mon-
oids, a fact that we record in the following.

Lemma 1: V maps homomorphically from (', @')
onto (M, D). |

A ‘‘representation’’ is a term that refers to a map that
is an epimorphism of structures. Intuitively, such a map
is important because it allows us to consider combination
in the space formed by the range of the map as combina-
tions of preimage elements. Lemma 1 will eventually form

'A structure with a closed associative binary operation is sometimes call
a semigroup, so that the space in question is an abelian semigroup with an
identity.

2Strictly speaking, this merely shows that V is a homomorphism of se-
migroups; it is not hard to show that V maps the identity to the identity,
which it must since it is onto, and thus it is also a homomorphism of mon-
oids.

239

a small part of a representation to be defined in the next
section. In the case in point, however, if it is required to
combine elements in N, one can perform the combina-
tions in OM’, and project to IM by V after all of the com-
binations are completed. Since combinations in M’ are
much cleaner, this is a potentially useful observation. In
terms of the Dempster/Shafer theory of evidence, this re-
sult says that the normalization in the combination for-
mula is essentially irrelevant, and that combining can be
handled by (2). Specifically, given a sequence of states in
M to be combined, say m,, m,, * * + , my, we can regard
these states as elements in 9MN’. Since each m; satisfies
m;() = 0, then each satisfy Vm; = m;. Thus, V(m,
D mdD D m)=Vm; D - DVm=m @
- - + @ my, which says that it suffices to compute the com-
binations using @’ (2), and then project by V (3). Of
course, the final projection is necessary only if we abso-
lutely insist on a result in 9. If any more combining is
to be done or if we are reasonably broad minded, inter-
mediate results can be interpreted directly as elements in
m'.

III. SpACEs oF OPINIONS OF EXPERTS

In this section, we introduce two new spaces, based on
the opinions of sample spaces of experts, and discuss the
evaluation of statistics of experts’ opinions. Finally, we
interpret the combination rules in these spaces as being a
form of Bayesian updating. In the following section, we
will show that these spaces also map homomorphically
onto the space of belief states.

A. Opinions of Experts

We consider a set & of ‘‘experts,’” together with a map
p giving a weight or strength for each expert. It is con-
venient to think of &€ as a large but finite set, although the
essential restriction is that & should be a measure space.
Each expert w € & maintains a list of possible labels:
Dempster uses the notation I' (w) for this subset, i.e.,
I'(w) € A. Here we will assume that each expert w has
more than just a subset of possibilities I' (w), but also a
probabilistic opinion p, defined on A satisfying

po(A\) =0, VieA
po(A) >0  iff AeT(w)

and

<)\2pr()\) =1 or p,(N) = OV)\>, Vo € &.

As suggested by the notation, p, ( \) represents expert w’s
assessment of the probability of occurrence of the label
A. If an expert w believes that a label N is possible, i.e.,
A e I'(w), then the associated probability estimate p,( \)
will be nonzero. Conversely, if w thinks that A is impos-
sible (A ¢ I'(w)), then p,(N) = 0. We also include the
possibility that expert w has no opinion, which is indi-
cated by the special element p,, = 0. This state is included
in order to ensure that the binary operation, to be defined
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later, is closed. We denote the collection of maps { p,, | w
e &} by P.

It will turn out that the central point in the theory of
evidence is that the p,( \) data are used only in terms of
test for zero. Specifically, we set

2(3) = {1 if p,(A) > 0

0 ifp,(N) =0. )

Note that x,, is the characteristic function of the set I' (w)
over A, i.e., x,(A) = 1iff A € I'(w). The collection of
all x,’s will be denoted by X, and will be called the Boo-
lean opinions of the experts &.

If we regard the space of experts & as a sample space,
then each x,,( \) can be regarded as a sample of a random
(Boolean) variable x( \). In a similar way, the p,(\)’s
are also samples of random variables p ( A). The state of
the system will be defined by statistics on the set of ran-
dom variables {x(A)}rca- These statistics are measured
over the space of experts. If all experts have the same
opinion, then the state should describe that set of possi-
bilities, and the fact that there is a unanimity of opinion.
If there is a divergence of opinions, the state should re-
cord the fact.

To compute statistics, we view & as a sample space
with prior weights given by u. We extend p to a measure
on &, completely determined by the weights of the indi-
vidual experts p({w}) for w € &. (We are assuming that
& is finite.) That is,

W(®) = 3 u({o}).

If all experts have equal weights, then u is equivalent to
a counting measure, and statistics are then measured in
terms of percentages of experts. For minor technical rea-
sons (explained in Section IV), we allow weights on the
experts, so that statistics on the x(\)’s are in terms of
weighted percentages.

We are now ready to introduce the spaces which we will
term ‘‘opinions of experts.’” The central point is that the
set of labels A is fixed, but that the set of experts & can
be different for distinct elements in these spaces. For the
first space, we also use a fixed set of positive constants
k), one for each label that will eventually be set to the
prior probability for the label A.

Definition 3: Let K = {«,} be a set of positive con-
stants indexed over the label set A. The space of proba-
bilistic opinions of experts (N, K, ®) is defined by

N = {(8, i, P)|#8 < oo, u is a measure on &,

P={p.} e Po:A— [0, 1]Vo,

and Yo, 21 p,(N\) = lorp, = 0}.
AeA

As noted earlier, the requirement that #& < o is for clar-
ity of presentation; Dempster defines the space 9T in a
more general setting.
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We define a binary operation on 9 as follows. Given
(&4, p1, Py) and (8&,, py, P,) elements in I, define

(89 K P) = (81’ Kis Pl) ® (82, K2, P2)
by

& = 81 X 82 = {(O)l, (.\)2)‘ Wi 681, 0)2682},

"({(“’b “’i)}) = m({e1}) - p({e})

and
P = {P(wn.wz) } (w1,2)€8

PR (N PR (Nl
2P (V) PR ()] ™

p(wn,wz)( )‘) =

provided the denominator is nonzero, and

Porw) = 0

otherwise. Here, P; = {p{)} s fori = 1, 2, and the
k)\’s are a fixed set of positive constants defined for \ €
A. |

To interpret this combining operation, consider two sets
of experts &, and &,, with each set of experts expressing
opinions in the form of P, and P,. We form a new set of
experts, which is simply the set of all committees of two,
consisting of one expert from &; and another from &,. In
each of the committees, the members confer to determine
a consensus opinion. In Section III-C, we will see how to
interpret the formulas as Bayesian combination (where &,
is the prior probability on A). And in the following sec-
tion, we will show that this space maps homomorphically
onto the belief spaces. Finally, if as in Dempster [5], we
only regard the opinions of these experts in terms of a test
for zero (i.e., disregarding the strength of nonzero opin-
ions), we arrive at yet another space. A depiction of the
combination of two Boolean opinions is shown in Fig. 1.

Definition 4: The space of Boolean opinions of experts
(', o) is defined similarly:

N = {(8, u,X)|#8 < oo, u is a measure on &,
X={X} %A~ {0,1} vo}.

If (&, p1, X;) and (&,, py, X,) are elements in ', define
their product

(& n, X) = (&1, 2y Xi) © (&5, 2, X3)
by
& = 8‘ X 82 = {((.01, wz)l w; € 81, wy € 82}

I"({(“’I’ ‘*’2)}) M]({wl}) : Mz({wz}),
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oy

(1,02)

Fig. 1. A depiction of the combination of two Boolean opinions of two
experts, as is present in combinations in 9U’, yielding a consensus opin-
ion by the element in the product set of experts formed by the committee
of two.

and
X = {x(wl.m)}(wl,wz)eg
X (V) = 2 (N) - 23 (N),
where X; = {x)|w; € §} fori =1, 2. |

B. Statistics of Experts

For a given subset A S A, the characteristic function
X4 is defined by
0 ifXgA

)\ =
xa(M) {1 i\ e A

Equality of two functions defined on A means, of course,
that the two functions agree for all A € A. That is, x, =
X4 means

x(N) = x4(N)  VAeA,

which is the same thing as saying I' (w) = A.
Given a space of experts & and the Boolean opinions X,
we define

B /.L{w68|xw = xA}

n(d) = = (5)

for every subset A € A. It is possible to view the values
as probabilities on the random variables {x(\)}. We en-
dow the elements of & with the prior probabilities
p({w})/r(8&), and say that the probability of an event
involving a combination of the random variables x (A\)’s
over the sample space & is the probability that the event
is true for a particular sample where the sample is chosen
at random from & with the sampling distribution given by
the prior probabilities. This is equivalent to saying

p({w € &|event is true for w})
n{8}
With this convention, we see that

m(A) = Prgb(xw = Xa)-

Prob (event) =
€

In fact, all of the priors and joint statistics of the x( \)’s
are determined by the full collection of 71 (A) values. For
example,

P =1)= 2 m

rob (x (o) ) aEea m(A)
and

Prob(x(Ng) = landx(\)) = 1) = ADear m(A4).

Further, the full set of values 71 (A4) for A S A defines
an element 1 € M'. To see this, it suffices to check that
L m(A) = 1, which amounts to observing that for every
w, X, = x4 for some A € A.

Recalling the definition of V (3), we may also consider
the numbers (Vi) (A). These values can also be inter-
preted as probabilities, provided we define probability in
a way which ignores experts who give no possibilities,
and provided there are some experts who give some pos-
sibilities (i.e., m(@) # 1). Then for4 + &,

m(A)
1 —m(Q)

is the probability that a randomly chosen expert w will
state that the subset of possibilities is precisely A condi-
tioned on the requirement that the expert gives at least one
possibility.

Under the assumptions that A # &, m() # 1, and
that probability is measured over the set of experts ex-
pressing an opinion &' = {w|x, # 0}, many of the quan-
tities in the theory of evidence can be interpreted in terms
of familiar statistics on the x( \)’s. For example, the be-
lief on a set A4,

m(4) = (Vm)(4) =

Bel(4) = EA m(B)

is simply the joint probability

Bel(4) = Pg)b(x()\) =0 for\¢A).

Note that the prior probabilities on the experts in &' are

given by pu({w})/u(&’). The denominator in these

priors is nonzero due to the assumption that m( ) # 1.
In a similar way, plausibility values

Pl(A) = Bn%g m(B) = 1 — Bel(A)

can be interpreted as disjunctive probabilities

Pl(4) = Prf';(’)b(x()\) =1 forsome A € 4).

The beliefs and plausibilities are the lower and upper

probabilities as defined by Dempster. The commonality
values

a(A) = Z m(B
( ) ACSB ( )
are jOint probabilities:

0(A) = Pg)b(x()\) =1 for\eA).
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To recapitulate, we have defined a mapping from P val-
ues to X values, and then transformations from X to i and
m values. The resulting element m, which contains statis-
tics on the X variables, is an element in the space of belief
states IM of the Dempster/Shafer theory of evidence (Sec-
tion II).

C. Bayesian Interpretation

We now interpret the manner in which pairs of experts
achieve a consensus opinion. We will show that the com-
bination formulas given for 9 and I’ are consistent with
a Bayesian interpretation. Our treatment is standard.

We first consider the combination of (&,, u;, P;) and
(82, p2, Py) in . We assume that the experts in §; have
available to them information s;. Note that all experts in
a given set of experts share the same information. The
information s; consists of Boolean predicates constituting
evidence about the labeling situation. For example, in a
medical diagnosis application, s; might consist of a state-
ments about the presence or absence of a set of symptoms.
Each set of experts &; deals with a different set of symp-
toms.

In general, the information s; is the result of a set of
tests having Boolean outcomes. We could write s; = f;(0)
where f; represents the tests and o is the current situation
which is an element in some sample space of labeling
problems ¢ € L. Assuming L is also a measure space,
there are prior probabilities on the information coeffi-
cients:

Prob(s;) = ere(;:b(jj(a) = 5).

There are also prior probabilities on the true label A (o)
for labeling situation g, given by

Prob(\) = Prozb(x(o) = ).

Note that these probabilities are not measured over the
space of experts &, but instead are measured over the col-
lection of instances ¥ of the labeling problem. For ex-
ample, in a medical diagnosis domain, £ might represent
the set of all patients. _

Forj = 1, 2, we will suppose that pf,,j )(\) represents
expert w;’s estimate of

Prob(Als;),

the probability (over £) that A(o) = A conditioned on
fi(o) = s;. The ‘“‘expert”’ (w,, w,) should then estimate
Prob( \|s;, s,), which is the probability that A(g) = N
given that fi(o) = s, and f,(0) = s,, thus combining the
two bodies of evidence seen by the two experts in that
committee. This committee proceeds as follows.

Bayes’ formula implies that

Prob()\|s|, )
_ Prob(\) - Prob(s,, 52| N)

Prob(s,, s;)
_ Prob(\) - Prob(si| \) - Prob(s,|s;, N)
- Pl'Ob(S], 52) )
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Applying Bayes’ formula to Prob(s;| \), this becomes
Prob(s,)

m . Prob()\lsl) . Prob(s2|s,, )\) (6)
At this point, we assume that
Prob(s,|s;, ) = Prob(s,| \). (7)

Using this assumption, we obtain by combining (6) and
(7) and applying Bayes’ formula to Prob (s, | N),

Prob(\|sy, 57)
Prob(A|s)) - Prob(A|sy)
Prob(\)

where c(s,, 5,) is a constant independent of A. Using (8),
expert (w;, w,) estimates that

(8)

= c(sy, 8) *

P (N) p2(N)

K\

(9)

based on the independence assumption (7) where k), =
Prob ( A). Since the left-hand side of this equation should
sum to 1 over A, we have that

p(wl,wz)()‘) = c(sl’ 52) )

1
R IO PGP

(10)

unless, of course, this denominator is zero, in which case
we resort to setting p(,, .,y = 0. Combining (9) and (10)
gives the combination formula given in Definition 3.
Thus, we have shown that combination in I is a form of
Bayesian updating of pairs of experts, based on an inde-
pendence assumption.

To interpret the combination formula of 9’ in a Baye-
sian fashion, a weaker independence assumption suffices.
The combination formula can be restated as

Xonay(N) =0 iff x(V(N) = 0orxP(N) = 0.

Using Bayes’ formula and assuming that all prior proba-
bilities are nonzero, it suffices to show that

Prob (s, s,|A\) = 0  iff Prob(s,| ) = 0
or Prob(s,| \) = 0.
The “‘if >’ part follows since
Prob(s;, 5,| N) = Prob(s;| \) - Prob(s,|s;, N)
= Prob(s,| \) - Prob(s;|s5, ).

The “‘only if’’ part becomes our independence assump-
tion, and is equivalent to

Prob(s;| A) > 0 and Prob(s,|\) > 0

implies Prob(s;, s;|\) > 0. (11)

This assumption is implied by our earlier hypothesis (7).
However, assumption (11) is more defensible, and is ac-
tually all that is needed to regard updating in the space of
‘‘Boolean opinions of experts’” 91’ as Bayesian. Since the
Dempster/Shafer theory deals only with the Boolean opin-
ions, (11) is the required independence assumption.
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IV. EQUIVALENCE WITH THE DEMPSTER/SHAFER RULE
oF COMBINATION

At this point, we have four spaces with binary opera-
tions, namely, (9N, ®), (N, o), (M', @’), and
(M, D). We will now show that these four spaces are
closely related. It is not hard to show that the binary op-
eration is, in all four cases, commutative and associative,
and that each space has an identity element, so that these
spaces are Abelian monoids. We also have the following.

Definition 5: The map T

T:91 — 9V
with (&, p, X) = T (&, u, P)is given by (4), i.e., x,(\)
= 1iff p,(N) > 0, and x,( N\) = O otherwise. |

There is another mapping U, given by the following.
Definition 6:
U:a - '
with m = U(E, u, X) given by (5), i.e.,
m(4) = p({o e &lx, = xu})/u({8}). W

We will show that T and U preserve the binary operations.
More formally, we show that T and U are homomor-
phisms of monoids.
Lemma 2: T is a homomorphism from 9T onto I'.
Proof: 1t is a simple matter to verify that

T(&, P,) o T(&,, P,)
= T((Sh Pl) ® (82, Pz))-

The essential point, it turns out, is that since the proba-
bilistic opinions are all nonnegative:

P’ () - PQ(N) >0
iff pV(N) > 0and p{2(N) > 0.

T is easily seen to be onto. |
Lemma 3: U is a homomorphism of 91’ onto IM’.
Proof: Consider (&, u, X) = (&1, u, X;) 0 (&,,
Wy, X,). For each w; € &, and w, € &,, the corresponding
x{) and x2) are characteristic functions of subsets of A,
say XB and Xc, respectively. It is clear that

XD xP =y, iffBNC=A.
Thus,
Xon,w) = X4 iff x(}) = x5 and
x3) = xcwhere BN C = A.
So

{(wl’ w2) € 8|-x(«>| w) — XA}

= U {CO]'X( ) = XB} X {O)zlx( ) = Xc }
BNC=4

Since this is a disjoint union, using properties of mea-
sures, this gives

l"{(‘-"h w2) € glx(wl w) = XA}

=Bn% Fl{"-’lealx B}

#2{0’2 € 82|x( ) = Xc }

We can divide both sides of this equation by p{&} =
{8} - m{&,} to obtain

m(d) = 2 r(B)mf(C)

where m = U(E&, p, X), and m; = U(§,;, u,,X) i=1,
2. Thus,

U((Sl, His Xl) ] (82’ K2, X2))
= U(8y, p1, X)) ®" U(&, mas X3),

which is to say that U is a homomorphism.

Finally, we show that U is onto. Recall that there are n
elements in A, and so there are 2" different subsets of A.
For a given mass distribution m € M', consider a set of
2" experts &, with each expert w € & giving a distinct
subset I'(w) S A as the set of possibilities. If we give
expert w the weight pu{w} = Mm(I'(w)) and set x, =
Xr (o) then it is easy to see that m = U(§, p, X). n

In the immediately preceding proof that U is onto, we
assigned weights to experts. This is the only place were
we absolutely require the existence of differential weights
on experts. However, if we content ourselves to spaces
M’ and M containing only rational values for the mass
distribution functions (as, for example, is the case in any
computer implementation), then the weights can be elim-
inated and replaced by counting measure.

Recall from Section II that the map V: M’ — M is also
a homomorphism. So we can compose the homomor-
phisms T:91 — I’ with U: N’ — M’ with V.M’ -
M to obtain the following obvious theorem.

Theorem: The map Vo Uo T:9 — IM is a homo-
morphism of monoids mapping onto the space of belief
states (M, D). |

This theorem provides the justification for the view-
point that the theory of evidence space M represents the
space I via the representation V © U o T. The proof fol-
lows from the lemmas; since each of the component maps
in this representation is an onto homomorphism, the com-
position also maps homomorphically onto the entire the-
ory of evidence space.

The significance of this result is that we can regard
combinations of elements in the theory of evidence as
combinations of elements in the space of opinions of ex-
perts. For if my, - - - , m; are elements in 9N which are
to be combined ‘under @, we can find respective pre-
images in 91 under the map Vo U o T, and then combine
those elements using the operation & in the space of opin-
ions of experts 9. After all combinations in 9 are com-
pleted, we project back to M by Vo U o T; the result will
be the same as if we had combined the elements in IN.
The only advantage to this procedure is that combinations
in 9 are conceptually simpler: we can regard the com-
bination as Bayesian updatings on the product space of
experts.

V. AN ALTERNATIVE METHOD FOR COMBINING
EVIDENCE

With the viewpoint that the theory of evidence is really
simply statistics of opinions of experts, we can make cer-
tain remarks on the limitations of the theory.
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1) There is no use of probabilities or degrees of confi-
dence. Although the belief values seem to give weighted
results, at the base of the theory, experts only say whether
a condition is possible or not. In particular, the theory
makes no distinction between an expert’s opinion that a
label is likely or that it is remotely possible.

2) Pairs of experts combine opinions in a Bayesian
fashion with independence assumptions of the sources of
evidence. In particular, dependencies in the sources of in-
formation are not taken into account.

3) Combinations take place over the product space of
experts. It might be more reasonable to have a single set
of experts modifying their opinions as new information
comes in, instead of forming the set of all committees of
mixed pairs.

Both the second and third limitations come about due
to the desire to have a combination formula which factors
through to the statistics of the experts and is application-
independent. The need for the second limitation, the in-
dependence assumption on the sources of evidence, is well
known (see, e.g., [29]). Without incorporating much more
complicated models of judgments under multiple sources
of knowledge. we can hardly expect anything better.

The first objection, however, suggests an alternate for-
mulation which makes use of the probabilistic assess-
ments of the experts. Basically, the idea is to keep track
of the density distributions of the opinions in probability
space. Of course, complete representation of the distri-
bution would amount to recording the full set of opinions
D., for all w. Instead, it is more reasonable to approximate
the distribution by some parameterization, and update the
distribution parameters by combination formulas.

We present a formulation based on normal distributions
of logarithms of updating coefficients. Other formulations
are possible. In marked contrast to the Dempster/Shafer
formulation, we assume that all opinions of all experts are
nonzero for every label. That is, instead of converting
opinions into Boolean statements by test for zero, we will
assume that all the values are nonzero, and model the dis-
tribution of their strengths.

A simple rewrite of (8) of Section III-C yields

Prob(\|s;, 5,) = c(sy, 53) * Prob(\)
Prob(A|s;) Prob(\l[s,)
Prob(\) Prob(\) °
This equation depends on an independence assumption,
(7). We can iterate this equation to obtain a formula for
Prob( A|s;, - -+, 5¢). In this iteration process, s, and s,
successively take the place of s; A -+ A s; and s;4,
respectively, as i increases from 1 to k — 1. Accordingly,
we require a sequence of independence assumptions,
which will take the form
Prob(s;|sy A =+ As;_1, N) = Prob(s;| \)

fori = 1, - - -, k. Under these assumptions, we obtain

Prob(X|s, - - -

’ sk)

k
50 - prb(n) - IT T0A)

=l oo =i Prob(\)
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In a manner similar to [3], set
Prob ( xlsi)]
L(\|s) = log[ Prob(N) |

(Note, incidentally, that these values are not the so-called
‘‘log-likelihood ratios’’; in particular, the L( \|s;)’s can
be both positive and negative.) We then obtain

log [Prob()\lsl, s s)]
= ¢ + log [Prob(\)] + ,gk:l L(\|s;)

where ¢ is a constant independent of A\ (but not of sy,
s sk)-

The consequence of this formula is that if the indepen-
dence assumptions hold, and if Prob( \) and L( A\ |s;) are
known for all A and i, then the values Prob(\|s, * - -,
s ) can be calculated from

Prob()\|sl, cee L S)

Prob(\) - exp [i L()\ls;)]

k
- (12)

2. Prob(\’) exp [Z L(N |si)]

N i=1 .

Accordingly, we introduce a space which we term
‘‘logarithmic opinions of experts.’’ For convenience, we
will assume that experts have equal weights. An element
in this space will consist of a set of experts §; and a col-
lection of opinions Y; = {y} .s.. Each y{) is a map,
and the component ( \) represents expert w’s estimate of
L(\|s):

¥$:A = R, y5(N) = L(M|s)

Note that the experts in &; all have knowledge of the in-
formation s;, and that the estimated logarithmic coeffi-
cients L(\|s;) can be positive or negative. In fact, since
the experts do not necessarily have precise knowledge of
the value of Prob( A), but instead provide estimates of
logs of ratios, the estimates can lie in an unbounded range.

In analogy with our map to a statistical space (Section
III-B), we can define a space which might be termed the
‘‘parameterized statistics of logarithmic opinions of ex-
perts.”’ Elements in this space will consist of pairs (#,
C) where # is in R” and C is a symmetric n X n matrix.
We next describe how to project from the space of loga-
rithmic opinions to the space of parameterized statistics.

Let us suppose that for a set of experts & and for A =
{N\, ***, \,}, the n-vectors composed of the logarith-
mic opinions y, € R", y, = (¥,( M), =+, yu(N,)) are
approximately (multi-) normally distributed. Thus, we
model the distribution of the random vector y = (y(\;),
+++, ¥y(N,)) by the density function

1
(27)"*Jdet C
o NTm—ly— —
~exp ((¥ —u) C7'(y — u)),
where # € R” is the mean of the distribution, and C is the

m(y)

yeR"
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n X n covariance matrix. That is, in terms of the expec-
tation operator E { + } on random variables over the sam-
ple space &,

s Up)
u; = E{}’()\i)},
and for C = (¢y),

cj = E{()’()\i) - ) (}’()‘j) - ”j)}'

These measurements of the statistics of the y( A)’s can be
made regardless of the true distributions. The accuracy of
the model depends on the degree to which the multinor-
mal distribution assumption is valid.

Next we discuss combination formulas in both spaces.
Suppose (&;, Y;), i = 1, 2 are two elements in the space
of logarithmic opinions, each describing a sample space
of experts together with opinions. Since according to (12)
the logarithmic opinions add, we define the combination
of the two elements by (&, Y) where

£=8 %8,

E=(u1,-°-

Y= {y(w.,m)}(m,wz)68

Y(wl,wz)(x) = yg:ll)()‘) + }’5.922)()\)-

To consider combinations in the space of statistics, let
m; () be the density function over R” for the random vec-
tor ) over the sample space &;, i = 1, 2. Assume that
each m; is a multinormal distribution, associated with a
mean vector 7" and a covariance C"). In order that the
projection to the space of statistics be a homomorphism,
the definition of combination in the space of statistics
should respect the true statistics of the combined opin-
jons. The density function m(y) for the combination
Viwrway» (w1, w2) € & is given by

n(3) = | m()m(5 - 7) dy.

This is the point where we use the fact that the logarithmic
opinions add under combination.

Projecting to the space of statistics, we discover the ad-
vantage of modeling the distributions by normal func-
tions. Namely, since the convolution of a Gaussian by a
Gaussian is once again a Gaussian, we define the combi-
nation formula

(@D, ¢V @ (7@, c?)
= (@0 +7?, cV + c®).

That is, since m; and m, are multinormal distributions,
their convolution is also multinormal with mean and co-
variance which are the sums of the contributing means
and covariances. (This result is easily proven using Fou-
rier transforms.) An extension to the case where &, and
&, have nonequal total weights is straightforward.
Having defined combination in the space of statistics,
one must show that the transformation from the space of

opinions to the space of statistics is a homomorphism,
even when the logarithmic opinions are not truly normally
distributed. This is easily done since the means and co-
variances of the sum of two random vectors are the sums
of the means and covariances of the two random vectors.

To interpret a state (#, C) in the space of parameter-
ized statistics, we must remember the origin of the loga-
rithmic-opinion values. Specifically, after k updating it-
erations combining information s, through s, the updated
vectory = (y;, * * * , yn) € R" is an estimate of the sum
of the logarithmic coefficients:

k
yj = El L(\|s).

According to (12), the a posteriori probabilities can then
be calculated from this estimate (provided the prior
Prob(\)’s are known). In particular, the a posteriori
probability of a label A is high if the corresponding coef-
ficient y; + log [Prob(\;)] is large in comparison to the
other components y; + log [Prob(\;)].

Since the state (%, C) represents a multinormal distri-
bution in the log-updating space, we can transform this
distribution to a density function for a posteriori proba-
bilities. Basically, a label will have a high probability if
u; + log [Prob(\;)] is relatively large. However, the
components of & represent the center of the distribution
(before bias by the priors). The spread of the distribution
is given by the covariance matrix, which can be thought
of as defining an ellipsoid in R" centered at &. The exact
equation of the ellipse can be written implicitly as

(5-u)'c(3-a)=1

This ellipse describes a ‘‘one sigma’’ variation in the dis-
tribution, representing a region of uncertainty of the log-
arithmic opinions; the distribution to two standard devia-
tions lies in a similar but enlarged ellipse. The eigenvalues
of C give the squared lengths of the semi-major axes of
the ellipse, and are accordingly proportional to degrees of
confidence. The eigenvectors give the directions in which
the eigenvalues measure their uncertainty. Bias by the
prior probabilities simply adds a fixed vector, with com-
ponents log[ Prob ( A;)], to the ellipse, thereby translating
the distribution. We seek an axis j such that the compo-
nents y; of the vectors y lying in the translated ellipse are
relatively much larger than other components of vectors
in the ellipse. In this case, the preponderant evidence is
for label A;.

For example, in a three-label case, we might have priors
of approximately (0.01, 0.19, 0.8), and evidence with
the following means and covariances in log-probability
space of

u; = (1,0, —0.01)

050 0
=10 050
0 0 0.001
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and
u, = (0.4, —0.1, —0.2)
20 0
G,=10 005 O
00 0.1

Then adding means and covariances, and using (12) to
reinterpret in terms of probabilities, we come up with a
current estimated probability distribution (0.64, 0.08,
0.28), but with a large uncertainty region. For example,
within a one-sigma displacement from the mean opinion,
we have the distribution (0.13, 0.18, 0.69). We conclude
that the evidence tends to indicate that label 1 is probable,
but there is considerable uncertainty.

Clearly, the combination formula is extremely simple.
Its greatest advantage over the Dempster/Shafer theory of
evidence is that only O(n?) values are required to de-
scribe a state, as opposed to the 2" values used for a mass
distribution in . The simplicity and reduction in num-
bers of parameters has been purchased at the expense of
an assumption about the kinds of distributions that can be
expected. However, the same assumption allows us to
track probabilistic opinions (or actually, the logarithms),
instead of converting all opinions into Boolean statements
about possibilities.

VI. CONCLUSIONS

We have shown how the theory of evidence may be
viewed as a representation of a space of opinions of ex-
perts where opinions are combined in a Bayesian fashion
over the product space of experts. (Refer to Fig. 2.) By
‘‘representation,”” we mean something very specific—
namely, that there is a homomorphism mapping from the
space of opinions of experts onto the Dempster/Shafer
theory of evidence space. This map fails to be an isomor-
phism (which would imply equivalence of the spaces) only
insofar as it is many-to-one. That is, for each state in the
theory of evidence, there is a collection of elements in the
space of opinions of experts which all map to the single
state. In this way, the state in the theory of evidence rep-
resents the corresponding collection of elements. In fact,
what this collection of elements has in common is that the
statistics of the opinions of the experts defined by the ele-
ment are similar in terms of the way statistics are mea-
sured by the map U.

Furthermore, combination in the space of opinions of
experts, as defined in Section III, leads to combination in
the theory of evidence space. This allows us to implement
combination in a somewhat simpler manner since the for-
mulas for combination without the normalization are sim-
pler than the more standard formulas, and also permits us
to view combination in the theory of evidence space as
the tracking of statistics of opinions of experts as they
combine information in a pairwise Bayesian fashion over
the product space of experts. Applying a Bayesian inter-
pretation to the updating of the opinions of experts also
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Probabilistic Opinions
of Experts
(N.K,0)

Boolean Opinions
of Experts
Ww'e"

Logarithmic Opinions
of Experts

19)

Parameterized Statistics
of Logarithmic
Opinions of Experts

Unnormalized
Belief States
M’

T

Normalized
Belief States
(M,®)

Fig. 2. Names of spaces and maps between them. Each box contains the
name of space, and each arrow is a homomorphism that maps onto the
next space, thereby defining a representation. Note that the left branch
gives the spaces involved in the interpretation of the Dempster/Shafer
theory of evidence, whereas the right branch is the alternative method
for combining evidence presented in Section V.

makes clear the implicit independence assumptions which
must exist in order to combine evidence in the prescribed
manner.

From this viewpoint, we can see how the Dempster/
Shafer theory of evidence accomplishes its goals. Degrees
of support for a proposition, belief, and plausibilities are
all measured in terms of joint and disjunctive probabilities
over a set of experts who are naming possible labels given
current information. The problem of ambiguous knowl-
edge versus uncertain knowledge, which is frequently de-
scribed in terms of ‘‘withholding belief,”” can be viewed
as two different distributions of opinions. In particular,
ambiguous knowledge can be seen as observing high
densities of opinions on particular disjoint subsets,
whereas uncertain knowledge corresponds to unanimity of
opinions where the agreed-upon opinion gives many pos-
sibilities. Finally, instead of performing Bayesian updat-
ing, a set of values is updated in a Bayesian fashion over
the product space, which results in non-Bayesian formu-
las over the space of labels.

In meeting each of these goals, the theory of evidence
invokes compromises that we might wish to change. For
example, in order to track statistics, it is necessary to
model the distribution of opinions. If these opinions are
probabilistic assignments over the set of labels, then the
distribution function will be too complicated to retain pre-
cisely. The Dempster/Shafer theory of evidence solves
this problem by simplifying the opinions to Boolean de-
cisions, so that each expert’s opinion lies in a space hav-
ing 2" elements. In this way, the full set of statistics can
be specified using 2" values. We have suggested an alter-
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nate method, which retains the probability values in the
opinions without converting them into Boolean decisions,
and requires only O (n*) values to model the distribution,
but fails to retain full information about the distribution.
Instead, our method attempts to approximate the distri-
bution of opinions with a Gaussian function.
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