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Abstract

The practical scene matching problem presents certain complica-
tions which must extend classical image processing capabilities.
In this paper, we consider certain aspects of the scene matching
problem which must be addressed by a smart sensor for terminal
homing. In the first section, we outline a philosophy for treat-
ing the matching problem for the terminal homing scenario.

Later, we consider certain aspects of the feature extraction pro-

cess and symbolic pattern matching.

Fundamentals

We begin with a reference image which contains as much detail as
possible about a region of space near the target ground space.
The form of the representation is a central question, but the
ultimate effect is that a representative description of the
expected scene can be constructed from a range of viewing posi-

tions and orientations.



From a specified sensor position and orientation, a model of the
expected sensor output can be built. Since illumination models
present additional complications, pixel intensity information is
less important than the higher order constructs, such as edges,
corners, and regions, represented in a predicted reconstruction.
Thus the stored information that the edge of a building connects
locations (Xl’yl’zl) with (xz,yz,zz), together with sensor posi-
tion parameters, yields a prediction of an edge on the sensor
image plane connecting points (Xl’Yl) with (X2,Y2). The three
dimensional structure of the reference is important when the
sensor is close to scenes containing tall objects, such as
buildings, and in that case the reconstruction process must
include hidden surface suppression. For relatively far range
scenes, or relatively flat target areas, it generally suffices
to represent the reference data in terms of its two dimensional

domain coordinatized by a ground based coordinate system.

The stored data might include an approximated intensity image,
perhaps a registered array of expected edge responses, a symbolic
description of the probable objects and their features, and re-
lational descriptors modifying the objects. Relational descri-
ptors about objects should be generated in the reconstruction,
although lists might be maintained pointing to pairs of objects

about which a relation description should be generated.



The perspective transform which converts the reference data into
a predicted scene depends on six parameters. - In practice,
searching the (six dimensional) parameter space for the best
match with the sensor image is unrealistic. Instead, symbolic
techniques should be used to identify match points and match
lines, which provide relations which constrain the parameter
Values.2 In some implementations, investigators have used affine
linear transformations or polynomial coordinate transforms to
approximate the six parameter perspective transformation, as
determined by match points and match lines.3 Although this is
apparently an unnecessary complication, in practice the quali-
tative behavior of the transformation varies smoothly with
changes in the match point information, whereas the nonlinear
solution equations to obtain the sensor viewing position para-
meters using perspective transforms can be unstable. When one
uses a smooth approximating transformation to model the perspec-
tive transformation, the sensor parameters are of secondary im-
portance. Instead, the approximating transformation can be used
to locate the target position in the sensed image, and provide

incremental update guidance to the missile's navigation system.

Because of the complexities of the matching problem, it is
probably wiser to attempt to solve for an approximating trans-

formation, rather than backsolving for the six sensor parameters.



Perhaps as matching techniques become more sophisticated, and
sensors become smarter, the terminal homing device will be able
to provide the navigation system with precise location informa-

tion.

Extracting Symbolic Descriptions

The symbolic description of the sensed scene is formed from a
small set of primitive scene constructs. The minimum set of
constructs needed for symbolic descriptions consists of straight
lines, representing edges and lines observed in the sensed
images, and corner descriptors, which express relational features

between the lines.

Curved lines, edges, regions and spots could also be included as
primitives. Typically, however, straight line and corner
primitives are used to build symbolic descriptions, which can

include configurations and regions formed from the primitives.

There are many edge and line detectors available which can be
used by a long line extractor to locate long lines and edges.
For example, one can use a Sobel edge detector, followed by non-
maxima suppression and thresholding, as input to a merger which

locates initial and terminal points of aligned responses,



optionally bridging gaps.2

These algorithms are essentially non-adaptive, unintelligent
functional operators which operate on pixel intensities. An
intelligent sensor should be able to "look more closely'" for
edges in certain regions, or certain orientations. It is freq-
uently more important to extract weak edges, if they are long,
while rejecting edge segments which might be strong but not
sufficiently long or prominent in the scene. As conditions
change, the edge extraction process must be easily adjusted

automatically.

One way to perform local edge and line extraction, making use of
a knowledge base which can adjust for conditions or cueing, is
to use relaxation labeling.4 Earlier studies have shown that
relaxation labeling can be used for line and curve extraction.5
The relaxation labeling process performs a general labeling
function, by assigning labels from a set of possible labels to
each of many objects. In line and curve extraction, each pixel
is an object and the labels consist of line descriptors specify-

ing one of quantized set of orientations, or a no-line label.

The first step of a relaxation labeling process to extract lines

and edges is to obtain initial estimates for label assignment



values. This can be done by applying local operators at every
point in the image to obtain an edge or line response for each
orientation at every point. The initial estimate of the no-line
label should be inversely related to the strength of the edge
and line responses at the point. Thus at iteration zero, at
every pixel (say, pixel number i), we have m distinct line
orientation responses, Pi(l), Pi(2), P Pi(m), corresponding
to the m quantized orientations, and the no-line value Pi(m+1).
These values are normalized so that at every pixel, the sum of

the m+1 values is 1.

A relaxation labeling algorithm is then used to update these
values. The process is conceptually parallel and iterative, with
each pixel updating its assignment values for each label indepe-
ndent of the processing at other pixels. At the heart of relax-

ation labeling is a set of compatibilities matrices.

Suppose that i and j are distinct pixels, and 2 and 2~ are labels.
The coefficient rij (2,27) is used to denote the compatibility

of pixel i having label % with pixel j having label 2°. For
example, if pixels i and j are horizontally adjacent, and % and
2” are both horizontal edge labels, then rij (2,27) should be
large and positive. On the other hand, if i and j are the same
two pixels, 2 is a horizontal edge label, and &~ is a vertical

edge label, then rij (2,27) should be negative, representing the
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fact that straight lines do not take sudden right angle turns.
When there is no influence of the object label pair (j,%2”) on
the object label (i,%), then rij(l,K’) should be zero. For

example, when pixels i and j are far apart, the entire matrix

of values should be zero.

Using these matrices, an updating evidence value is obtained
for each object-label at every iteration according to the

formula qi(SL) = Z g’ r (2,27) PJ (27).
J

i3
The Pj (27) values represent the current assignment values.
Generally, a positive qi(z) means that Pi(ﬁ) should be increased,
while a negative qi(Q) means that Pi(z) should be decreased for
the next iteration. This updating must be done subject to the
normalization constraint Z:Pi (2) =1, Pi (2) > 0, at every
iteration. A heuristic updating formula was introduced in (4),
but more recent studies have led to a better updating method

(6).

Essentially, the relaxation process applies local constraints,
codified by a matrix of compatibilities, to iteratively update

initial labeling assignment values. As information in the scene



propogates from one portion of the image to another by repeated
application of local constraints, eventually the assignments
relax to a labeling which is everywhere locally consistent (see

,&ﬂ for recent theoretical results).

Further processing is still required to analyze global struct-
ures, extracting symbolic representations, and to perform
matching. However, relaxation labeling permits one to include
local processing as part of the sensor, or immediate post-
sensor function. By varying the assignment compatibility para-
meters of the relaxation process, the extraction of lines and
edges can be adjusted dynamically for varying conditions. With
modern VHSIC designs real time implementation of relaxation

labeling have become a real possibility7.

Symbolic pattern matching

Using a symbolic representation of the sensed scene, a compari-
son can be made against the reference image in order to locate
a match and establish a coordinate transformation. Symbolic
techniques are crucial to the terminal homing scenario because
of the unreliability of pixel intensities, and because of the

high computational overhead required for correlation techniques.

Unfortunately, the matching problem in the presence of noise,



ambiguity, incorrect descriptions and missed constructs is far
from trivial. Standard techniques try to measure a mismatch in
a proposed correspondence by computing an average value of the
difference between certain feature values of lines, regions,

and edges of the sensed and reference scene.8 Search techniques
can then be used to find the correspondence with the least mis-

match.

Using artificial intelligence theories, the possible alternate
approaches to the matching problem can become extremely sophis-
ticated. Recent studies of the related correspondence problem
in motion and steriopsis studies suggest that matching can be
treated as a labeling problem.9 In the following, we show how
the matching problem can be formulated in the general framework

of relaxation labeling.

Suppose that al,az,...,an are object primitives extracted from
the sensed scene. There are certain objects in the reference
scene, 21,... m—1’ and some of the sensed objects ay may be
spurious, or outside of the reference area, and thus should

be labeled with a no-match label, Qm' The goal of the pattern
matching process is to label each object ai with a label Rk(i),
where 1 < k(i) < m for each i.



Certain constraints can be imposed. For instance, if the
objects in the reference are distinct, then two different

objects aj and aj should not be labeled by the same 2 with

k’
1 < k < m-1. That is, if it is known with a large degree of

certainty that object aj is label 2 with k < m-1, then no

k’
other object aj should have label 2..

k
There are also positive constraints. A match between object ay
and label Qj should enhance the labeling of nearby objects with
labels with are close to label Zj in the reference scene. Re-
lational structures should be taken into account when assessing
the degree of enhancement, and current estimates of the coordi-
nate transformation are also helpful in assessing the compati-

bility of two neighboring matches.

In terms of the matrix of compatibilities, we can translate
these constraints into numerical values. For example, rij(2,15
should always be negative, reflecting the bias toward label
uniqueness. On the other hand, if objects aj and a. are
neighbors, and the reference objects £ and 2~ are similarly
close, then rij(ﬁ,ﬁ’) should be positive, especially if the
object relational descriptors between aj; and aj and between

% and 27 match. For example, if the objects are straight lines,

the relational descriptor might be the angle at which the lines
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meet.

Initial matching probabilities can be assigned by labeling each
object ai with a set of labels Qj, where every reasonable match
is given a nonzero possibility. Updates are made iteratively,
using local constraints, until objects are matched, or every-

thing is labeled by zm, "no match'".

Implementations of this sort have been proven feasible in the
image plane for disparity analysislo, and symbolic pattern
matching using relaxation labeling is currently under further

investigation at Honeywell.

Conclusions

As increased processing capabilities become available for sensor
and image processing systems, more sophisticated techniques for
object extraction and pattern matching become appropriate. In
the future, general ideas from artificial intelligence, will be
more and useful for terminal homing requirements of fast scene
recognition and pattern matching. Honeywell has been investi-
gating relaxation labeling as an application of artificial
intelligence to the symbolic pattern matching problem for ter-

minal homing.
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