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SAMPLING FOR SPLINE RECONSTRUCTION*
ROBERT HUMMELt

Abstract. The use of a prefilter prior to sampling or resampling can lead to reduced mean square
error after reconstruction. This means that the samples should be obtained from the original data by
convolution with an optimal local weighting function, whose form depends upon the reconstruction method
to be used. We display and discuss these weighting functions for the most common reconstruction methods,
namely nearest neighbor, linear and cubic spline interpolation.

1. Introduction. Suppose that a signal f(x) is to be sampled at equispaced points
{xi}i=- to obtain a sequence of samples {y;}{~ _«. Eventually, the samples will be used
to reconstruct an approximation f(x) to f(x). Both the sampling and reconstruction
components of this process may be varied to minimize the error between f(x) and
f(x) Typical sampling methods include block averaging:

x;+h/2
(1) Yi=I f(x) dx, h =x —xk-1,
xp—h/2

or delta function sampling:
@ yi= | F0080c-x) dx = fx).

Typical reconstruction methods include nearest neighbor, linear or cubic spline inter-
polation or (sin x/x) reconstruction, defined by

3) Fa) = E i sin ('n-(x—xi)/h).

i=—00 w(x—xi)/h

Throughout, A denotes the constant sampling rate, that is, the distance between
sampling points.

Each of the reconstruction methods is equivalent to an interpolation scheme,
since the reconstructed function satisfies f(x;) = y. Sampling, on the other hand, is
generally a linear process of the input signal, i.e.,

@ vi= | kof) dr

where k;(x)=k(x —x;) is the sampling kernel centered at x;. Only when k(x) is the
delta function does one necessarily have y; = f(x;), so that, in general, the reconstructed
function f(x) does not even agree with f(x) at the knots {x;}.

The Shannon sampling theorem [1] states that if it is known a priori that f(x) is
band limited (the Fourier transform of f has bounded support), and if the sample
spacing h is sufficiently small, then f(x)=f(x) for all x, provided delta function
sampling, (2), and (sin x/x) reconstruction, (3), are used. If the original signal is not
bandlimited, then exact reconstruction is not possible. The theory of optimal prefilters
can be used to show that if (sin x/x) reconstruction is used, then f will be closest to
f, in a certain sense, if f is sampled by a low-pass filter [2]. This method of sampling
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is equivalent to weighted sampling, (4), with .

1 sin (wx/h)
©) )=
We will provide a simple independent proof of this result later in this paper.

In this paper, we treat the following question. Suppose the reconstruction method
is fixed and specified. Then how should the samples be obtained in order to minimize
the L?(—00, o) error between f and f?

For (sin x/x) reconstruction, the solution is given by (5). However, in precision
processing of digitized images, for example, (sin x/x) reconstruction is often considered
too costly when interpolated values are needed for geometric correction and display
magnification [3]. The usual reconstruction schemes include nearest neighbor, linear
and cubic spline interpolation, which may be viewed as spline interpolation of degree
zero, one and three, respectively [4]. The popularity of spline interpolation methods
is presumably related to their ease in implementation and the strongly local dependence
of the interpolate values on neighboring samples.

Since it is customary to substitute spline interpolation for (sin x/x) reconstruction,
it is appropriate to replace low-pass filtering and delta function sampling with better
sampling methods. Despite the fact that the derivation of these methods is trivial
(§ 3), the corresponding sampling kernels (see Fig. 2) are relatively unknown in the
fields of signal processing and data compression. The optimal sampling problem is
equivalent to finding the spline which is closest to the given function in the L? norm.
(Note that the values of the spline at the knots are unspecified.) The sampling kernels
then represent the local dependence of the solution spline on the data.

The techniques for solving this problem are entirely known. The solutions in
certain specific cases have even been obtained. For example, Powell [5] has studied
the local dependence of the best L? approximating cubic spline. He obtains the L*
optimal kernel for cubic spline reconstruction (Fig. 2¢ in this paper), and displays this
kernel along with other kernels obtained by minimizing norm measures other than
mean square error. Specifically, he considers the problem of finding a cubic spline

-~

f(x) minimizing

© ©
j [fx)—fx)P dx +c z If (e +8) = f(x; + 0)%,
- jm=—
where 0 <8 <h. Interestingly, some of ‘these alternate norms lead to more localized
kernels and are therefore more advantageous for implementation.

Accordingly, the computations of this paper are original only insofar as we
emphasize the sampling and reconstruction interpretation of the results. However,
we bring together the optimal kernels for linear, cubic spline and (sin x/x) reconstruc-
tion, and show how other reconstruction schemes can be treated similarly. We restrict
our attention to distributed L? norms, although the results of Powell can be extended
to other reconstruction methods treated here. The problem of minimizing the L
norm could also be treated, but generally leads to nonlinear sampling methods.

A related problem in sampling and reconstruction, which is not treated elsewhere,
occurs when previously sampled data must be resampled to achieve data compression.
In this case, single samples are taken to represent blocks of values in the original
data. The samples can be obtained as a weighted average of the data values in the
block and can also involve values in neighboring blocks. Most frequently, linear
interpolation is used to recover the data values within each block. Once again, the
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weights used to obtain the samples should be chosen so as to minimize the sum of
square difference between the original data and the reconstructed data. We will treat
the case when a sequence of data {v;}i~ o is to be resampled to achieve an n-fold
compression factor, so that

o
(6) Yi= p3 ki * Univj
j=—c0
represents the values in block number i. The weights {k;} (see Fig. 3) play the same
role as the kernel k(x) in the continuous signal case.

Viewed as a method for data compression, weighted resampling as expressed by
(6) can be compared to more standard encoding schemes, such as Fourier transform
or other transform encoding [6], [7] and run length or difference encoding [8]. Higher
compression ratios may be possible, but resampling as studied in § 4 is limited to
linear encoding methods for which the reconstruction method is given by an interpola-
tion formula. Interpolation methods other than spline reconstruction include Hermite,
Lagrange and Chebyshev approximation. Least squares approximation is a familiar
and applicable concept for many such interpolation schemes (see, for example, [9]),
but is generally restricted to finite sets of sampling data, where the degree of the
approximating polynomial increases as the amount of data increases.

Sampling and digitization is increasingly important as high speed digital signal
processing technology enters the communications and robotics fields. Pulse code
modulation of acoustical signals can be used for transmission and high fidelity record-
ing. In image processing, intensity data sampled on a lattice of picture elements (pixels)
can be used for image enhancement, industrial inspection tasks or for subsequent
transmission, as from a satellite. In these applications, various sampling kernels can
be obtained by suitably manipulating the point spread function of the sensor performing
the sampling. If needed, electronic integration methods can be employed.

2. Spline reconstruction. We recall some facts about spline reconstruction of
infinitely many samples at equispaced knots. We assume that x; —x;_-; = h for all / and
that the set of data {y;} is bounded. For zero order splines (nearest neighbor interpola-
tion) we have

™ s()= 3T yiBolx—x),
where
1, k= '2—'
(8) Bo(x) = "
0, Ix | > 5

First order splines (linear interpolation functions) can be constructed using ‘““chapeau
functions”

1-|x|/h,  |x|=h,

©) \ Bio={, i

by the formula

(10) so)= i yiBs(x — x,).
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Although there is no unique cubic spline interpolating the data {(x;, y;)}, there is
always exactly one such bounded cubic spline. It can be constructed as follows. Let

(11) Ba(x)=j By(x")Bi(x —x')dx', ie., Bi(x)=BiB(x).

The function B;(x) is the cubic B-spline [4] and satisfies
(12) Bs(x)=0 for |x|>2h, Bi(-h)=Bj(h)=% Bs0)=%

Thus, for any bounded sequence {v;}i~-«, the function

(13) s)= Y vBs(x —x)

i=—00

is a bounded cubic spline interpolating the data {(x;, §v;,_; +3v; +3v:.1)}. In order to
interpolate the data {(x;, y;)}i= -, it suffices to solve the infinite linear system

(14) §vi-1+30; +80i1= y; foralli.
This system can be solved, as we show in § 5, yielding the linear relation
(15) v = Z CiYi+j for all i

j=—e

where {c;} is a square summable sequence of fixed constants. Combining (13) and
(15), we have ’

16 - s@)= Y T yieeBalx—x)

i=—00 j=—00

is the unique bounded cubic spline interpolating {(x;, y;)}. This can be written as

(17) s@= T yblx—x),

= -0

where

Y(x—x0)= E c-iBs(x —x;).

i=-c0

Equation (17) is the cubic spline version of (7) and (10). The function ¢ (x —xo)
is itself a bounded cubic spline interpolating the data {- - -, (x_2, 0), (x-1, 0), (xo, 1),
(x1,0), (x2,0), -} and is the cubic spline version of the zero order spline Bo(x) or
the linear spline B;(x) (see Fig. 1). These are the cardinal spline functions of order
zero, one and three.

’—"‘=~' T .
-3 2 —1 1 12 3 #h

F1G. 1. Basis cubic spline.
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The cubic B-spline is used more commonly than ¢(x) to represent cubic splines
since B;(x) has compact support. However, ¢ (x) decays very rapidly, and thus the
sum in (17) is essentially finite for fixed x. Further, ¢(x) reproduces the coefficient
data (i.e., s(x;) =y; in (17)) so that in practice reconstruction using ¢(x) is probably
more appropriate when infinitely many samples (or a very large number of samples)
must be interpolated.

3. Derivation of the sampling kernels. In this section we derive the kernels k (x)
which should be used for sampling when a fixed reconstruction method is specified.
The mathematical derivation given in § 3.1 is standard and included only for complete-
ness. Section 3.1 may be skipped, if desired, since § 3.2 presents a summary of the
method for finding the sampling kernels and applies the method to zero, first and
third order spline reconstruction. The resulting solution kernels are displayed in Fig. 2.

3.1. Mathematical formulation. Denote by A the linear transformation which
takes a sequence of sample values {y;};>_w into the reconstructed function f(x). We
write

f=Ay

regarding the sequence of samples as an infinite vector y. For spline reconstruction,

s = Ay is given by equation (7), ( 10) or (17). We assume a priori that A restncted to

square summable sequences (yel ) is a bounded linear transformation into L*(R).
For a given function fe L %(R), the samples y should be obtained so as to minimize

the L? norm

(18) Ay - fllc=.
A standard argument shows that y is a solution to the “normal equation” [10]
A*Ay= A%,

where A* is the adjoint transformation to A, taking L*(R) into [, Note that A*A is
a bounded linear transformation taking I/? into I, Providing the transformation is

nonsingular, we obtain
y=(A*A)'A¥.

In particular, the samples y; depend linearly on the function f(x). That is, y; is a
projection of the linear operator (A*A)™'A* operating on f and thus given by aformula

19) | yi=| ko d,

where k;(x) is the L*(R) dual element representing the y; functional. Finally, if A is
covariant with respect to rigid left and right shifts of the samples (i.e., the transforma-
tion y; - y;+x transforms s = Ay by s(x) - s(x + xi)), then the kernels k;(x) are indepen-
dent of i modulo interval shifts thus yielding a unique kernel k& (x),

ki(x)=k(x —x;).

To calculate k(x), it suffices to find ko(x). Let v=(A*A)'A*5, where 6,(x) =
8(x —1t) is the delta function with unit mass at x =t. Then from (19),

(20) vo= J ko(x)86(x —t) dx,

so clearly vo = ko(t). We will calculate vo and thus ko(t), when A is given by a formula
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of the form
(21) (Ay)x) =2 yp (x — x)).

For nearest neighbor, linear and cubic spline interpolation, ¢ (x) is the cardinal spline
Bo(x), B1(x) and ¢ (x) of (17), respectively.

Setw=A*5, =A*Av. If e; € I” denotes the unit basis vector with a nonzero value
in the ith coordinate and ( , ) denotes the standard inner product in / or in L2, then

22)  wi=(w,e)=(A*S, e) = (6, Aer) = j §(x — 1) (x —x1) dx = b (t —x).

Further, since w=A*Ayv,

o

w; = Z a;jvj,
j=—o0

where
a;=(A*Ae; e;)=(Ae, Ag;) = J‘ ¢(x—x;)p(x—x;)dx

=(¢ *¢)(xi -x;)= dj—i«

That is, A*A, which takes /? into /2, can be viewed as an infinite matrix whose entries
a; = d;_; are constant on diagonal bands (i.e., a Toeplitz matrix). In § 5 we show that
A*A can be inverted for the various forms of ¢ (x) under consideration, yielding for
w=A*Ay,

& ]

(23) vi= X Cj-iW;

j=~w

for a set of constants {c;} = ¢. Since ko(t) = vo and w is given by (22), we have

(24) ko(t)= Y ciolt—x))=Ac.
j=-0

Note that (24) implies that the optimal kernel for a fixed reconstruction method
is itself a reconstructed function, using the data ¢ as sample values. If the reconstruction
method uses kth order splines, then the sampling kernel k(x) will be a kth order
spline. The data vector ¢ is obtained from the infinite matrix inverse to the matrix
A*A which in turn is the matrix of L? inner products of the basis functions ¢ (x —x;)
used for reconstruction.

3.2. The solution kernels. The method for finding the optimal sampling kernel
for a reconstruction method of the form (21) can be summarized as follows:

Let ¢(x) denote the basis function which serves to interpolate data {y;} to a
function (Ay)(x) given by (21). Construct the infinite matrix A*A whose entries a;
are given by the L? inner products

ay =[ & (x —x)é(x —x,) dx = ($*d)(x; — x1),

noting that the matrix is symmetric and Toeplitz (i.e., a; depends only on |j —i]).
Invert this matrix (see § 5) to obtain a symmetric Toeplitz matrix whose values in
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diagonal and successive off-diagonal bands are denoted by co, €1, €2, * * * . The solution
kernel is obtained from the reconstruction (using the basis function ¢) of the data

{c:}, where c_; =c:.

We supply four applications of this procedure.
(i) Nearest neighbor reconstruction. When ¢ (x) is Bo(x), as defined in (8), we have

a; = J [Bo(x "xi)]z dx =h,

a.-i=,[Bo(X-—x.')Bo(x—xi)dx=0v i#]

so A*A =hI, where I is the infinite identity matrix. Thus, (A*A)'=1/hI and
c¢=(-+:0,0,1/h,0,0 ), s0 k(x)=Bo(x)/h (see Fig. 2a).

A 1/h
T T St
-h h
FI1G. 2a. Sampling kernel for nearest neighbor reconstruction.
)
41
-3 -1 1 3
— T T e — —
-2 \/ \/ 2 #h
4-1
F1G. 2b. Sampling kernel for linear reconstruction.
A
42
41
—_ T -
-3 -2 -1 1 2 3
4-1

FIG. 2¢c. Sampling kernel for cubic spline reconstruction.
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Note that the sampling kernel corresponds to a sampling method based on
unweighted block averaging. That is, if nearest neighbor interpolation is to be used
as the reconstruction method, then the samples should be obtained by computing the
mean value of the input signal in intervals centered at each sampling point, each
interval having the same length as the sampling rate.

(ii) Linear interpolation. When linear interpolation is used for reconstruction,

& (x) =Bi(x), (10), (¢ *¢)(x) = B3(x) and for a;; = d;_,,
d-1=Bs(-h)=§,  do=B(0)=}
d d1=Bs(h)=%,  d,=Bi(nh)=0, |n|z2.
Thus, A*Av =y is the transformation
yi=8vio1+3vi+4visy forall i,

In §5 we show that this transformation can be inverted and gives rise to the
vector csatisfying c; = c_; and approximately (co, ¢y, * - - ) = (1.732, —.464, .124, -.033,
.009, -.002, - - - ). More precisely,

(25) co=v3, ci1=(3-2); fori>0.

For linear interpolation the optimal sampling kernel k(x) is the linear spline
interpolating this data, as displayed in Fig. 2b.

Accordingly, when linear interpolation will be used to reconstruct functions from
sampled data, the optimal samples are obtained by convolving the original function
against the piecewise linear kernel displayed in Fig. 2(b). Note that this kernel decays
geometrically so that the convolution has essentially finite support, with a radius of
three or four intervals for high accuracy. The kernel can be generated easily using
(25) and can be implemented quite easily in special purpose electronic hardware
embedded in the sampling sensor.

(iii) Cubic spline interpolation. For cubic spline interpolation, it is somewhat

‘simpler to use the B-spline B3(x) (11) and to define the transformation s = Av by
(13) to determine the kernel k(x). The vector v which minimizes s —f] = |Av—f]|
satisfies, as before,

v=(A*A)T'A*f

and yields the optimal samples y given by (14). In this case, A*A is an infinite matrix
with seven nonzero bands containing the constant values B,(ih), i = -3, -2, -1,
0,1, 2,3, where B5(x) = (B3B;)(x) is the B-spline of degree 7 centered at zero. The
inversion of this matrix can be done numerically. The reconstructed function gives a
kernel for determining the components of v, which in turn determines by means of
(14) a kernel k(x) for sampling the values of y.

In fact, the inversion of the matrix A*A yields the values {c;} given approximately
by (co,c1,+)=(4.96, —-3.09, 1.71, —92, .49, -.26, .14, ---). Then ko(x)=
Zﬁ_m ¢iB3(x —x;), and the resulting kernel k(x) (which is a cubic spline) is shown in
Fig. 2c.

The kernels for both linear and cubic spline interpolation (Fig. 2b and 2c) exhibit
oscillatory behavior reminiscent of a sin x/x kernel. The functions are not spline
approximations to sin x/x, however, since they decay exponentially. The oscillatory
behavior and exponential decay result from inverting the positive matrix A*A.

For the sampling kernel in Fig. 2c, a truncated version with a support radius of
four intervals will yield very nearly the same samples.
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(iv) (sin x/x) reconstruction. In any case the observation that the kernels in Fig. 2b
and 2c behave qualitatively like (sin x/x) is consistent with the result stated earlier
that (sin x/x) reconstruction calls for low-pass prefiltering. We can use the methods
of § 3.1 to verify this result. Specifically, we use the basis function

_sin(mx/h) . (ﬂ-_x)
é(x) ——_—wx/h =sinc 7 )

The coefficients of the A*A matrix are calculated from the function given by the
convolution of ¢(x) with itself. However, the Fourier transform of sinc(x) is
m - rect (x). (NB: rect (x) is the characteristic function of the interval [-1, 1].) Thus,
(sinc* sinc) (x) is a function whose Fourier transform is w2 rect? (x)=m2 - rect (x),
namely, = - sinc (x). After a scaling substitution, we obtain ¢*¢ = he¢ and (A*A);; =
he (x; — x;) = h8,,. That is A*A = hl, and from (24), it follows that the sampling kernel
is (1/h)¢, as stated in (5), which implies a low-pass filter.

4. Resampling. We will consider a particular example. More general cases can
be treated analogously.

Suppose we are given a sequence of data {v;};~ -, and wish to resample to achieve
a threefold compression factor. That is, we wish to find samples {y;};= - so that y;.
represents the block of data containing v3;—1, v3; and vs;+1 (see (6)). The sample {y;}
should be determined so that the vector v' reconstructed from y by, say, linear
interpolation should be the closest / 2 approximate to v. We write v/ = Ay and note that

Vo =%Yo,

v =3yo+iy1
v =3yo+3y1,
v3 =y, etc

The operator A is represented by an infinite matrix, whose columns contain the values
(---0,% %1, §, 10,--.). These values are shifted downward three rows in each
successive column. As before, the optimal samples are given by

=(A*A) 1A%y,

where A* is the adjoint, or transpose, matrix to A. The samplmg weights {k; } (see,
(6)) will arise as the “middle” row of values in the matrix (A*A)~ lA*,

To calculate the weights {k;}, we first observe that A*A is given by a matrix {a;},
with constant bands a;; = d;_;, and :

O

- - 19 - 4 -~
d_1=%5 do=v, di1=3 a=0, lk|=2.

When this matrix is inverted (§ 5), one obtains a symmetric matrix with constant bands
containing the values (approximately)

(26) c0=.5222, c¢1=-.1153, ¢3=.0255, c4=-.0056, etc.

The resulting weights {k;} are obtained by linearly interpolating two values between
each component of ¢, yielding the weights plotted in Fig. 3.

Once again, we observe an oscillatory behavior of the weights and a geometnc
decay.
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1
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L e 'l 1 1 'l 1 ) m— | T’
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F1G. 3. Sampling weighis for 3 to 1 data compression, assuming linear reconstruction.

S. Inverting infinite matrices. Consider a transformation 7' taking /% into /* of
the form

!
w; =(Tv); = Zla,-v.'ﬂ' for all i.
Pl

When [ =1 there are three coefficients a_;, ao and a, and so the infinite matrix
corresponding to T is tridiagonal. When a; =a_, the transformation and its matrix
are symmetric.

For such infinite symmetric tridiagonal matrices, it can be shown that the matrix
is invertible if and only if it is diagonally dominant, in which case the inverse is given
by the formulas

[~ o}

(27) vi= Y Wiy

j=—co
where

1
Ci=C—-j Co= y Ck+1= QCg.
aiv(ao/ay) —4

Here a is a root of the polynomial a;x*+aex +a, satisfying |a|<1. The values in
(25) and (26) come from applying these formulas.

When there are more than three nonzero constant bands, such as in the calculation
of the kernel for cubic spline interpolation in § 3.2(iii), formulas for a bounded inverse
of the form of (27) depend on the roots of the polynomial ¥ a;z°*". It can be shown
that an inverse exists if none of the roots in the complex plane lie on the unit circle.
In that case the coefficients c; in the inverse transformation, (27), will decay rapidly
but not necessarily in a precise geometric fashion as in the tridiagonal case. For
symmetric infinite matrices with five, seven and nine nonzero bands, explicit formulas
using roots to quadratic, cubic and quartic polynomials are at least theoretically
available. In practice, however, if an inverse exists, the middle row of the inverses of
finite versions of the matrix will converge rapidly to the sequence of values c; in the
inverse. This process is frequently simpler to apply than the explicit formulas. In any
case our viewpoint in terms of the applications of these results to sampling is that the
inverse should be obtained once and for all for the purpose of finding the sampling
kernel. The kernel will generally be implemented directly, so that the linear system
will never require resolving. Since the values c; in the bands of the inverse Toeplitz
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matrix asymptotically decay exponentially, only a few significant nonzero values are
involved in the construction of the kernels.

6. Summary. The substitution of the appropriate sampling kernel of Fig. 2a, b, c
for the more standard delta function sampling method, whenever practical, may lead
to reduced mean square error after reconstruction. The expected decrease in mean
square error depends on the autocorrelation function of the initial function but in
some instances can be substantial. For example, if the autocorrelation function decays
exponentially and if the sampling is very fine, a numerical calculation shows that a
35% reduction in total expected mean square error can be expected by using the
optimal sampling kernel prior to linear reconstruction as opposed to normal delta
function sampling. The improvement compared to block averaging is a less dramatic
17% of the mean square error.

Alternatively, one can view optimal sampling as permitting wider sampling
distances for a fixed mean square error. For example, suppose that the autocorrelation
function decays exponentially and that a sampling rate is desired so that the expected
mean square error will be no larger than 10% of the signal variance when linear
interpolation is used for reconstruction. A numerical analysis shows that relative
sampling rates of .3, .4 and .475 are required for delta sampling, block averaging and
sampling using the optimal kernel for linear reconstruction respectively. Thus fewer
samples are needed if optimal sampling is used. Of course, for different autocorrelation
functions, these figures will change, but since the optimal kernel is derived by minimiz-
ing expected mean square error, some improvement in expected L? error is guaranteed.

Extension to sampling in two or more dimensions is straightforward, especially
if the reconstruction basis functions are separable in each variable. Extending these
results to higher order splines or other linear reconstruction methods is straightforward.
It is also possible to find the optimal kernel for a fixed spline reconstruction scheme,
subject to the constraint that the kernel vanish identically outside a fixed neighborhood
of the origin. In that case, the best kernel depends on the autocorrelation function
of the original data and can be determined from the solution to a variational problem.
In all realistic cases, the resulting kernel is closer to a truncated version of the optimal
kernel than it is to a delta function or to the block averaging kernel.

Acknowledgment. The author thanks Professor Azriel Rosenfeld, who suggested
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