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Abstract

We have developed an approach to image decomposition for ATR applications called the “Feature Transform.”
There are two aspects to the Feature Transform: (1) A collection of rich, sophisticated feature extraction routines,
and (2) the orchestration of a hierarchical decomposition of the scene into an image description based on the
features. We have expanded the approach into two directions, one considering local features and the other
considering global features.

When studying local features, we have developed for (1) corner, T-junctions, edge, line, endstopping, and blob
detectors as local features. A unified approach is used for all these detectors. For (2), we make use of the theory
of Matching Pursuits and extend it to robust measures, using results involving LP norms, in order to build an
iterative procedure in which local features are removed from the image successively, in a hierarchical manner.

We have also considered for (1) global shape features or modal features, i.e., features representing the various
modes of the models to be detected. For (2) A multiscale strategy is used for moving from principal modes to
secondary ones.

The common aspect of both directions, local and global feature detection, is that the resulting transformations
of the scene decomposes the image into a collection of features, in much the same way that a discrete Fourier
Transform decomposes an image into a sum of sinusoidal bar patterns. With the Feature Transform, however,
the decomposition uses redundant basis functions that are related to spatially-localized features or modal features
that support the recognition process.

1 Introduction

By viewing the decomposition of a sensor image as a feature extraction process, the ATR recognition problem can
be seen as a pattern matching task of finding correspondences between model features and observed scene features.
If the features are made invariant to geometrical transformations, then the recognition algorithm requires only that
we find a match between a pattern of features for a model and a subset of the features of the image. Geometric
hashing forms a method for performing the pattern matching task. Generally, pattern matching uses a collection
of points in a single Euclidean space. However, the decomposition of an image will discover different kinds of
features, such as corners, lines, edges, endpoints, and blobs. Some features are described by two or three parameters,
and other features require a dozen parameters. Accordingly, patterns will be elements in a Grassmannian algebra,
meaning a collection of points in different dimensional spaces. The geometric hashing [14] engine can also be used
for such generalized patterns, but requires that the patterns be extracted stably from images, even in the presence
of partial occlusion, overlapping features (such as corners and edges sharing common pixels), noise, and viewpoint
transformations. Stability of the feature extraction process means, for example, that if a corner detector responds
to a particular location on a vehicle, then it should provide the same information under a range of circumstances,
such as viewpoint variations and varying operating conditions. For automatic target recognition, the features need
to be rich, descriptive, discriminative, and stable.

In this paper we develop an approach to image decomposition for ATR applications called the “Feature Trans-
form.” There are two aspects to the Feature Transform: (1) A collection of rich, sophisticated feature extraction
routines, and (2) the orchestration of a hierarchical decomposition of the scene into an image description based
on the features. We have expanded the approach into two directions, one considering local features and the other
considering global features.

When studying the approach based on local features we have developed for (1) corner, T-junctions, edge, line,
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endstopping, and blob detectors as local features. A unified approach is used for all these detectors. For (2), we make
use of the theory of Matching Pursuits in order to build an iterative procedure in which local features are removed
from the image successively, in a hierarchical manner. In particular a robust pursuit strategy is devised using results
involving LP norms.

When studying the approach based on global features we considered for (1) shape or modal features, i.e., features
representing the modes of the models to be detected. We derive the modes of the objects by concentrating on the
profile of objects from different views. For (2), a multiscale strategy is used for moving from principal modes to
secondary ones.

The resulting transformation of the scene decomposes the image into a collection of features, in much the same
way that a discrete Fourier Transform decomposes an image into a sum of sinusoidal bar patterns. With the Feature
Transform, however, the decomposition uses redundant basis functions that are related to spatially-localized features
or modal features that support the recognition process.

The organziation of the paper is as follows. We first present a novel model for detection of local features such
as corners, T-junctions, blobs. We then present a robust Matching Pursuit strategy, first extending the use to
the features described above and then showing how it can be robustify by using results involving L? norms, that
decomposes an image into its features by iteratively removing the “best” feature. We apply this method to images,
but we have not yet integrated this module with the local features described above. We then show how to build a
global feature representation of the images via the modes of the objects by concentrating on the profile of objects from
different views. We finally show a strategy for decomposing an image into global feature modes, by focusing within a
multiscale space from the principal mode to secondary ones. Some results using ATR images are demonstated. The
unification of the global feature strategy with the local one is a subject of current investigation.

2 Local piecewise constant feature detection

A critical component of most recognition systems is stable, representative, feature extraction from sensor data. One
of the key features to recognition are junctions, like corners and T-junctions, Y-junctions and so on. Such points,
for example, coincide with the images of trihedral vertices of an object. These are critical features for recognition
as suggested in early works by Huffman {11}, Guzman [10] on line labeling. We develop a “junction detector,”
to finds corners, tri-corners (tri-junctions), quad-corners (quad-junctions), etc., defined as points where three or
more homogeneous surface patches are located within an arbitrarily small neighborhood of the point. Thus, we
are proposing an approach of fitting piecewise constant junction templates to a set of data. Unlike many previous
approaches to junction extraction, our detector does not use prior edge extraction, but instead operates directly on
the local image data. It differes from [6] in that we do find an optimal method to partition the image and can be
extended to other features.

We model a junction as a region of an image where the values are piecewise constant in wedge-shaped regions
emanating radially from a central point. Moreover, we require the partitions to be located such as to provide high
contrast in the template values. The parameters of a junction consist of (i) the center location, (ii) the number of
radial line boundaries, (iii) the angular direction of each such boundary, and (iv) the intensity value within each
wedge. Using an L? norm and a contrast term we formulate the junction detection problem as one of finding the
parameter values that yield a junction that best approximates the local data. The best-fit parameter values provide
attributes of the detected junction. We use dynamic programming to excatly calculate the best-fit paramters. We
also show how this approach can be applied to build blobs and end-stoping detectors.

2.1 Formulation of the Problem

We need to fit a template to the image at a point. The number of partitions, with intensity at each partition, defines
a template. If the number of partitions is one, then the point in the image is a homogenous region with no junctions;
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if two, the region has a corner!; if three, the region has a tri-corner? and so on.

Specifically, a template is defined in terms of the following parameters, N-the number of partitions, f,-the angles
where a partition occurs, where p = 1,2,..., N, and Tp-the template value for each partition. The data is given by
I(z,y). The formula for the L? error yields

E= //[1(1', v) — T(nys,.1,)H =, v)Pg(e® + v*) dz dy,

where g(z? +y?) is a monotonic decreasing function, e.g. g(z?+y?) = 5‘;6‘(’2"'1‘2) and gives the scale of the junction
detection. To further exploit the radial symmetry of the template (it does not depend on the radial coordinate) we
choose the polar coordinate system

p=+Vz2+y?, 0=ArcTan1:-, and z=pcosl, y=psind.

Thus, we have p dp df = dz dy. In the new coordinate system the error can be written as

N 841 poo .
B =3 / [ W07 + TOF - 21,0 TO) £ 9(6) dp 0

N Bpt1 - -
=y, / [RI(6)*+ RT?~ 2R I(6) T, do
p=1"%
= E,+E)+ Ej3,

where E; = E:,v=1 f:’”" R I(6)? d9, E; = Z::;l R T?A6y, and E3 = —2 Z:,V—_-l f::“ R I(6) T, d6. Moreover,

R=["pa(p)dp, 102 = [ pg(p) I*(p.0) dp/R, 1(8) = [5"p g(p) I(p,6) dp/R, and A6, = by41 — 6.
We adopt the “circular” convention that for p = N we have p+ 1 = 1. Note that the integrals R, 1(6)? and I(6) can
be precomputed numerically.

To guarantee that the partitions occur where the intensity gradient is high 3 we add the error term

N .
Ei= —,\Z/(%I%)z do.
p=1

We can discretize the integral over the angles 6 into a finite sum over of discrete angles A. The energy terms
E;, i=1,2,3,4 can then be computed numerically as follows. E; can be precomputed over the whole image and
plays no role in the minimization. Then,

N N k
Ey=Y T!R[k-jlA0 and Es=)» -2T, R Y I(6:) A9, (1)
p=1 p=1 i=j
where, we remind that T}, is the template value at partition p, and partition p starts at angle 6, = jA@ and ends
at Op41 = kA6. The last term, Ej, is readly computed once the partition angles are chosen.

1If the two partitions make an angle of 7 between them, it’s an edge.
2The angles between the partitions would denote a Y, T or other junctions.
3The error E; + E; + E3 do cause partitions to occur on unwanted (due to lack of contrast) places.
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2.2 The Dynamic Program (DP) Solution

Dynamic programming explores all possible solutions to optimize the given form. This is used to minimize E. We
just need to minimize [E; + E3— AEy], to obtain the template values, since E; is independent of the template and
can be precomputed.

The optimization of the error function can be formulated as a dynamic program as shown:
CJ’.’,c = cost of fitting T, to region (j, k), k> j

If the optimal I, is obtained then this cost is calculated, and the total error accumulated up to partition p becomes

, p=1,

P _ 3j
Fs = { min;; {Efi_l + Cf,-_,_,)j} otherwise.

= mi N
E = min Ey;.

s=1lm

E7; denotes the error in fitting n lines (or partitions), between angles 6, ...6;. Note that there is a wrap-around
involved since 2r = 0. * What is left to show is the calculation for C}’ &» Which requires the calculation for I,. Given
a partition, say p between angles j and k , we need to find the optimal I, and the cost CT,. Note that the last term,
Ej is fixed once the partition has been chosen. Moreover, E; is independent of the choice of template (though it
varies from point to point in the image) thus, we are left to find which T, minimizes E; 4+ E3. From (1) we have

3[E2 + E3] _

aT, '

G A i

Further, substituting back into the formulas, we obtain

N k Foa
min[E; + E3)= ‘ZE(—Z[—;:"_Z—.(]—G’-)XA
r=1

0.

To compute C?,, we add the extra term E4. The output of dynamic programingis N pairs of angles and intensities,
T({N,(6p, L);p€(1,2,...,N)}).

2.3 Blob detection

This approach of fitting piecewise constant features to the image can be expanded to other feature shapes. Suppose
we want to find “thik bars” in images. Let us define thik bars on a rectangular window oriented at angle 8. A thik
bar is a partition of this window into three stripes and the thik bar represent the middle bar and the other two
stripes the background. More precisely, for each orientation # we can represent the thik bar with the parameters
{Ty, T2, Ts; h}, where T; is the grey value of each stripe and h is half-width of the center stripe (with grey value T3).
Again, the mean squared error can be reduced to

41f s > j, the interval denoted is 85,8,41...0; ...0;.



3 hpis ~ ~ :
[ [uen-1@or da=y [ 6 - 21 00) + T dy,

where h, represent the width of the stripes, and can be derived from h and the width of the window w, since
hy=%—-h = hy=%+h = hz=w. An extra term can be added to enforce that the partition occurs at
high contrast I(y). The problem of finding the optimal h and the optimal 7, is reduced to the same form as on
the junction formulation and can be computed via dynamic programming. One can define a variety of other feature
detector in this way. We now study how to use these features to decompose an image for recognition.

3 Robust Matching Pursuit

We study the object recognition problem via a robust template decomposition approach. Our main interest is to
represent “objects” that appear in a given image with a linear combination of image templates from a well established
library of templates. The term “objects” depends solely on the kind of application. For example, if the application
is to recognize faces then we should have a template library with a large number of faces (or features of faces). Let
the image to be recognized be I and the established template library for some application be £. The task of image
recognition is reduced to a function approximation problem of the form

I:Zc‘ifl} (2)

where T; € £ (in fact, T} is a template applied by some translation) and ¢; is the choice of coefficients that “best”
decompose the image. The difficulty we have is that typically the library £ is large in order to accommodate many
possible situations and thus it is an over-redundant basis, i.e., there are infinite many solutions, c;, to this problem.

3.1 Brief Review on Matching Pursuit

Inspired by Mallat and Zhang’s work [15] we consider a matching pursuit strategy where, at each stage, the criteria of
best selection is based on minimizing the image residue. The approach is actually based on a function decomposition
method known as Projection Pursuit by Friedman and Stuetzle [9]. Projection pursuit is a non-parametric regression
method that is-concerned with “interesting” projections of high dimensional data and reveals a close connection to
the proposed template matching method. Let us be more precise and briefly review this approach.

Suppose we are given a signal f, and a library of functions D = {g,}yer where D represents a large, over-
redundant family of functions. The Matching Pursuit introduced for signal processing in [15] is a greedy stage-wise
algorithm and relies on the inner product methods on Hilbert spaces. A “best” (or almost the best) matching library
element to the residual signal structures at each stage is decided by successive approximations of the residual signal
with orthogonal projections on elements in the library. Thus, at each stage, for any element g, € D

RN-1f=< RN-'fg,>g,+RNf A3)

where RY f is the N-th residue after approximating RVN=1f in the direction of g+ (assume that the initial residue
is the function f, i.e., R°f = f). The matching pursuit strategy is to find g, that minimizes ||[RN f|| (or the g,
closest to RN~1f), that is
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HRN-1f— < R¥-1f,g,+ > gyl| = anEiFnRN-‘f- < RN-f g, > g,ll.

We then consider how this approach could be combined with the junction and blob detectors developed in the previous
section. We also study how to extend this approach from L2 norms to LP measures to account for mismatches and
occlusions. In this case the difficulty arises, since then, there is no definition of inner product.

3.2 A sketch on how to decompose the image into junctions

We here sketch a method on how to decompose the image into multiple junctions. The matching pursuit strategy
would first select the features that best fit the image, the ones that give the minimum error, and procede hierarquicaly
by removing each template from the image and reconsidering the residual image for the next best fit feature. In the
case of features being T-junctions, corners, edges we devise a hierarchical structure where we first find the T-junctions
(3 partitions) followed by corners (2 partitions), followed by edges (2 special configured partition, 180 degrees). The
intuitive reason for such hierarchie is that at an n-junction (n partitions), one also detects an n-1-junction, thus, the
first ones to be detected (and removed) are the higher ones.

At stage i of the pursuit process, when n-junction detection takes place, one finds the best set of parameters
y={(zc,¥c); (6p,Tp) p=1,...,n}, where (z.,yc) is the center of the junction, via the method presented in section
2. Once the parameters are extracted and the detected template removed we can compute the residual image. More
precisely, say the detected template is g, = 2;':1 Tou(0,0,,thetayyy), where u(z,z1,22) = 1, if 1 <z < z2 and
zero otherwise. The residual image R’ f becomes

R"_lf=g-,+R'.f.

The difference between this pursuit strategy and the one previously reviewed, is that the choice of template gy and
its coefficient was not based on the inner product < R¥~1f, g, > but rather on the error measure E1 + E3 + E3+ E4
proposed in section 2. A

3.3 Matching Pursuit with L? norms

In many applications one may want tc look into higher level features, that can not be detected with the methods
discussed in section 2. Thus, we now extend the theory of pursuit strategy for a general class of templates, but
using a more robust measure than the L? norm. We choose a cost function based on a concave L? norm with
0 < p < 1. Thus, we don’t have a clear definition for inner product on the image space. Nevertheless, the notion
of projection can be recaptured via the values of cost function, that is, the criterion for a template to be “best
matching” or “closest” to the image is to minimize the values of cost function. In the same way, we have used this
to the n-junction decomposition discussed above.

The LP-methods, with 0 < p < 1, are often seen in robust regression and function approximation problems [8].
The essence and strengths of LP-methods are originated from their robustness in handling corrupted data and the
concavity property of such a norm. There are many local minima to a “concave minimization” problem but, they
can be exactly characterized anmd used for an efficient algorithm.

Library of templates: Suppose we now have created a well-defined complete template library £ = {r;; j =
0,1,...,m} = {eo, 71,72, -+, Tm} for some application, where 79 = eg is the canonical template. A canonical template
is a trivial template with zero gray-level value pixels everywhere except one pixel at the extreme left and top corner
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that its gray-level value is 1. We still have to consider all possible linear transformations L; for each non-canonical
template 7;. These linear transformations include all possible translations and possibly affine transformations to
account for scale and changes of viewing the scene (in this paper, we only study the case that L; is just a translation).
Let the image to be recognized be I of dimension n and each template 7; is of dimension ny < n (the dimension
of an image is just its total number of pixels). Furthermore, let P = {p;,p,, - - ,Pn} and Q; = {q1,92, -, qnp} be
the pixel sets of I and 7, respectively. (We order the pixels from top to bottom and left to right.) Let L;(r;) now
represent a translation on template 7; such that its first pixel is positioned at the i-th pixel p;, i.e. ¢1 = p;. In order
to define a template everywhere in the image and take advantage that in this case L; is simply a translation we write

. _J 7mi(pe —%) where 0 < pr —i < np,
Tij(pe) = { 0, otherwise

We also define the index set I';; = {p;, piy1, ..., P(i+ny} as the pixels set where the template T;; takes the values from
7; . We can rewrite the decomposition equation (2) as

I(pe) = Y ciTio(pe) + 3 O eaTij(pe)

=1 i=li=1

where A = j x n + i and py is the k-th pixel of the image.

Let us consider the matching pursuit strategy. Let the initial residual image R°I = I. Then, at stage N, if
template T;; is chosen, the N-th residual image can be derived as follow:

RNI(py) = RN-(p) - exTii(pe) fork=1.n and A=jxn+i.

Thus, RV I can be derived by “projecting” RVN=17 in the direction of Ti; and the best matching T;; is the one that
minimizes the residue at stage N.

Cost function (LP-method) The cost function F, at stage N, using the L? norm is defined as

Fylex) = : Y k= 3 P (4)

; 13
lc,\]P . ]Varzance(Tj)I 2 ker,; ker;

where rp = |RN‘II(pk) —eaTii(pi)| is the k-th residue at pixel Pk, k € T'y; when RN-17 is matched by the template
T;j. The normalized residues .

- Tk
Tk

" eal- |Variance(r;)|3

are used to avoid “over-utilization” of templates on darker regions of the image.

Local Minima: Due to the concavity of the cost function Fp(c), the solutions to the reduced linear system that
are local minima to Fy(c) are at the vertices of the polytope that is the intersection between the subspace expanded
by the reduced linear system and the np hyperplanes, each defined by ¢, =0, k € T (see for example [7]). For each
hyperplane ¢, = 0 the solution of the reduced linear system becomes ¢ = I(px)/T;;(px). This results guarantee that
we only need to search for nr coefficients ¢ to obtain the one that minimizes 7r. Typically, the size of templates
are not large so the estimation of ¢, and 7% can be rather efficient.
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4 Shape feature representation and decomposition

It is interesting to also consider features that capture global properties of the objects, such as “shape features”.
Following Cootes and others [5,16] we represent the shapes using the principal components of the shapes over the
training set. Our training set is derived from the profiles from different views of the same object and we will discuss
its implications.

Our shape representation is based on the method of Principal Components (also called principal modes, the modes
of variation, or the Karhounen-Loeve transform). Consider a collection of two-dimensional shapes (21,2, ...2,,) each
embedded in an image. Here we think each shape as being a profile of an object taken from different views. More
precisely, each shape z; = (i1, ¥i1, ...Zin, Yin) is defined by n points so that there is a natural correspondence between
the points for any two shapes z; and z; (i.e., the corresponding points define some landmark in each of the images).
Considering the training set of an object, by taking multiple profiles from different views, we compute the mean
shape as the average of all shapes as

m
_ 1
27]5:——2 Tik -
m <
1=1

We then compute the covariance matrix C
1 m
Cu = — z;(l'u = Za)(zik — Zix) -
1=
Finally, we compute the eigenvectors and corresponding eigenvalues of C so that

Cc =Psp-1,

where S is the diagonal matrix of eigenvalues and the columns of P are the unit eigenvectors of C. The matrix
P defines the modes of variation of the shapes, and the variance associated with each mode is expressed in the
associated eigenvalue. We order the columns of P and S so that S;; > Si+1,i+1, Vi < 2n. Then, P defines a new
set of orthogonal basis vectors for our set of shapes. The modal representation for a shape z {whether or not it is
part of our training set) is then defined by the equation

z=z+Pb,

where b is a vector of weights for the 2n modes. Each column of P is comprised of n two-dimensional displacement
vectors, one for each point, so that by varying the weights one can create new instances of the family of shapes. The
i'th column of P is referred to as the ith modal shape.

The modal representation provides a statistically orthogonal basis, so that to the largest degree possible, the
modes represent independent shape features. This basis is ordered so that the low-order modes provide coarse
features with the detail enhanced by the higher-order modes. This basis is optimal for the description of the training
set in the sense that for any n < mag(b), the sum of the squared errors between the training set and its approximation
as a linear combination of the first n modes is minimal over all possible orthogonal bases [13,17].
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Figure 1: Contours from different views normalized and located at the gravity center.

Figure 2: The First three modes, a., b., c., where the display represents the possible displacements with respect to
the mean.

4.1 Setting up the Training Set

To build the training set, we take projections of a three-dimensional model of the vehicle of interest from many
different points of view. For purposes of illustration we show variation only over the rotation angle, though in
practice our training sets are constructed over a range of rotation, depression, and tilt angles. We store each of these
profiles tagged with the parameters of the view.

In order to compute the modal representation, we need a correspondence between the members of the training set.
The correspondence is important because the modes will model variance over the locations of the corresponding points
of the profiles. We use the following simple algorithm to extract equally spaced points along the profiles. We first
center the profile at the center of gravity. We then select points (X, Yiow ) and (X, Yaign) along the curve such that the
length of the curve (in the counter-clockwise direction) from (X, Yiow) to (X, Yaign) is the same as the length of the
curve from (X, Yaign) to (X, Yiow ). We sample evenly around the curve between these points. This process produces
a list of n points (Xo, Yo, X1, Y1, ...Xn-1,Ya_1) for each profile, where Xo = X,Yo = Yiow, Xny2 = X, Y2 = Yhiga,
and the rest of the points are evenly spaced between these two. This method produces nicely correlated points
because the points (Xo,Yp) and (X, 2, Yn/2) move only up and down (ie. the modal shapes for the training set have
X component equal to zero for these two points); while the rest of the points scale with the length of the profile,
which tends to vary smoothly over the training set.

In Figure 1 we illustrate some of the correlated contours used to build the training set. Figures 2a-c show the
first three modes of variance extracted from the training set, each varied from plus 10 percent to minus 10 percent
of the total variance of the mode over the training set.

4.2 Image shape-feature decomposition

Qur approach is similar to the methods of deformable contours, or snakes [3,12], where an energy function has two
terms, one for the image features and one for the shape. Our improvements are as follow. First, we search for
the minimal energy shape configuration in the lower-dimensional space of the modes rather than in the space of the
shapes. Second, we make use of the hiearchical ordering of the modes and multi-resolution image features to allow for
a coarse-to-fine search in both the image feature space and the shape feature space. Finally, we provide a framework
in which these methods can be used for images with occlusions, and for shapes which are not normally distributed
about the mean. We use a training set constructed from profiles of military vehicles from many points of view, and
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apply these methods to the identification of these vehicles in sensor images.

The energy function: In our formulation the energy function assigned to each shape is based solely on how well
the image features at the current configuration match the expected image features. This is because, different than
on our recent investigations using medical images, the assumption of normal distributions does not hold for profiles
of military vehicles. Since our goal is to find the maximal probability configuration of the shape in the image, we
define the energy in a manner analogous to the Mahalanobis distance:

E = —In(Pr(z)),

where 2; = {z;1,zi2,...Zin} is a configuration of the shape. To compute Pr(z;), we consider each component of z;
independently. In the studies we have done, the z;; are either the pixel values, the values of the image gradients,
or the directions of the image gradients, at the control points of the shape. The probability of the shape occurring
given the image evidence (assuming all configurations of the shape are equally likely) is

P!‘(:C.') = H Pr(:c;k) .
k

In the case where a portion of the shape is obstructed from view, the image features x;; at the control points are
considered to be random. For the unobscured z;i, we expect a relatively small Gaussian variance which is derived
from the expected variance in the pixel values. Hence, the probability distribution for each xi is

Prob(zix) = Po+ (1 - Po)e—(:vak—i‘.‘k)/2,\2 ’

where Py is the probability that this point is obscured from view and X is the variance of z;; about it’s mean, Z;;.

For the studies described, we use the direction of the gradients in the image so our energy term is a function of
the difference between the actual and expected directions of the gradients in the image. We choose the direction of
the gradients regardless of magnitude because they are relatively stable under various sensor conditions and so are
well suited to the identification of solid structures in range images.

At full resolution, the expected gradients are simply the perpendicular vectors to the curve. At lower resolutions,
however, the expected gradient directions may change because finer shape features may be obscured by more gross
features. To determine the expected directions of the gradients for each profile in the training set, we compute
multiresolution images from binary representations of the profiles and store the gradients along the profiles at each
level of resolution.

4.3 The Search Algorithm

Given the modal representation which captures the variance of the profiles over the training set, we construct a
mapping from the real-world parameters (angles of rotation) to the modal parameters for each profile. This will
allow us to perform our search in the modal shape feature space while constraining our search to the profiles found
in the training set. In practice, this mapping is stored in a matrix indexed by the real-world parameters, so that
each entry contains the modal weights. More precisely, we compute the vector of modal weights

b=P}X - X),
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Figure 3: a. Original FLIR image enhanced with histogram equalization. b.The lowest energy segmentation c. A
reduced resolution version of the resulting contour approximated using only the first three modes.

needed to reconstruct each profile and store these at the entries of the matrix which corresponds to the parameters
of this view of the object.

The exhaustive approach is to try each point in sequence, selecting the parameters which yield the lowest energy,
or highest probability. This is not practical for a large data set with more than one degree of freedom. We have
implemented a method which uses multi-resolution image analysis and the hierarchical ordering of shape features
provided by the modal shape representation. The idea is that reduced resolutions allow gross changes in the shape
using the large-variance modes, while the fine adjustments need to be made only at high image resolutions. The
algorithm is outlined below.

possible — hits := all locations in the image (quantized by the lowest level of resolution)
Loop for each level of image resolution, from low to high
Determine the relevant subset of modes
Loop for each location in possible — hits, until convergence
Adjust each modal weight until it is locally minimal

possible — hits := all those locations whose energy is less than a fixed threshold.

The relevant subset of modes is that set which moves some points more than one pixel distance in the current
image resolution. Similarly, the adjustment for each mode is that step which move some points in the modal shape
more than one pixel distance.

Our search is constrained to the set of shapes found in the training set, so that adjusting each mode moves us
to a new entry in our S matrix - and hence provides a new value for all of the modal weights. Since the modes
comprise a linearly independent orthogonal basis for the set of shapes, we expect (and have observed) that when a

single mode reaches a non-global minima, it will be shifted out of the minima by a strong gradients in the energy for
other modes.

This method has been successfully applied to sensor images. The number of configurations tested is orders of
magnitude fewer than the exhaustive approach, even with the threshold used for further consideration of locations
set quite high. We illustrate the results of one segmentation. The original image, an FLIR image enhanced with
histogram equalization for purposes of display is shown in Figure 3a. We illustrate the lowest energy segmentation
in Figure 3b. Figure 3c shows a reduced resolution version of the resulting contour approximated using only the first
three modes (the modes shown in Figures 2a-c) overlaid on the Gaussian filtered image. At the displayed level of
resolution, only the first three modes were used for the search, because only these modes had components greater
than the effective pixel size at this level of resolution.
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