SETL — A Parallel Specification Langﬁage

SETL — A Language for Prototyping Programs

i Essentials of SETL
i Expressing concurrency in Parallel SETL
]
Based on
° Programming with Sets: An Introductionto the SETL Programming

Language, by R.B.K Dewar, E. Dubinsky, E. Schonberg, and J.T.
Schwartz, Springer-Verlag, 1986.

i A Set-based language for prototyping parait¢l algorithms, by R.

Hummel, R. Kelly, and S. Flynn Hummel, Proceedings of CAMP-

Paris.

© Hummel/Hummel

91,

Parallel Computing

Basic Features of SETL

Primitives include sets and tuples
Mathematical syntax

Weakly typed

Dynamic typing

A variable can change type within the program
Rich operator set, overloaded

Complete loop construct

Inefficient

Page 1

An Introductory Example

program primes; -- This program prints
-- out a list of prime numbers which
-—- includes all primes less than a parameter
-- value which is specified as input data.

read (n); -- read input parameter

primes := {}; -- set of primes

p := 2; -- initial value to test

while p < n loop -- loop as long as p < n

if notexists t in primes | p mod t =0 then
print (p); -- no divisors, it’s a prime
primes with:= p; -- add it to set of primes
end if;

p :=p + 1; -- move to next test value

end loop;

end primes;

© Hummel/Hummel

Basic features

The -- ’acts as a comment delimiter

Semicolons ‘ ; ’teminate statements

Variable types:
. Integers, reals, booleans, strings
o Tuples and sets
Assignments and expressions:
i identifier := expression;
i identifier binop:= expression;
Eg., x +:= 1;
Sameasx := x + 1;
In general:

identifier := identifier binop expression;

Parallel Computing

Page2

Operators on Simple Types * Canappearon left hand side
e

- — - om
Some binary operators
Binary Operator Functions * Undefined state
+ Addition, string concatination . All identifiers are initialized to om
- Subtaction
i Multiplication
/ Division real result
div Integer division, integer result
mod Integer remainder
“ Exponentiation
and Boolean and
or Boolean or
|
Unary Operators
type Returns string
float Converts integer to real
floor Floor
ceil Ceiling
fix Truncates real to integer
str String representation of a value
val Integer or real equivalent of a string
not Boolean negation
Num of chars in a string
L -]
Substrings
. abc(4..7) extracts substring

© Hummel/Hummel Parallel Computing Page 3

Tuples

. Ordered sequence of zero or more values
i Each element can have its own type
i Tuples can contain tuples, sets, strings, etc.
° Subtuples allowed similar to substrings
. Examples

a := [1,2,3];

b := [1,9,%"abc","def",al;

c :=b(l..3); -- ¢ = [1,9,"abc"]

d := b(4..); -- d = ["def’,[1,2,3]]

b(3..) = []; == b= [1,9]

x = [1..10]; -- x =

- [1121314:5r61718191101

y := [1,3..11]; --y = [1,3,5,7,9,11]

d Note special form [first, next..last]

© Hummel/Hummel

Tuple Operators

Binary Operators
Operator Function
+ Tuple concatination
with x with t appends element x
to tuple t
50—
Unary Operators
Operator Function

Index of highest defined element
type Returns string ‘tuple’

Binary operators with side effects

x fromb a
x frome a
a with:= x

Removes first element from tuple a, assigns to x
Removes last element from tuple a, assigns to x
Appends x to tuple a

. Stacks and queues are easily implemented using fromb, frome,
and with.

Parallel Computing Page 4

SETS

Like a tuple, but unordered
Repeated values ignored

Examples:
a:={1,2,"abc"};
b :={1,abc",2};
c:={2,1,"abc"2}; —a=b=c
d:={a,"def" [a,b] };
e={afa}}; —#e=2
fr={hft={{}}; -#=0#1=1

g:={1.10}; -g={1,234,56,7,89,10}

Binary set operators

+ Set union

- Set difference

' Set intersection
with Add one element to a set
less Remove an elt from set

xfroms Remove arbitrary elt from set s and assign to x
Unary set operators

Number of elements

type Returns the string "set"

arb

Select arbitrary element

© Hummel/Hummel

Parallel Computing

Maps

A set whose elements are all tuples of length 2
Map notation

sqrt = { [1,1],[4,2],[9,3.[16.4] }

X =sqgrt(9); - x=3
sqri(25) = 5; — Adds [25,5] to set sart

Multivalued maps
f = {["a",1],["b",2], ["c", 3], ["a",10] };

x := f{"a"}; -- x = {1,10}

y := £{"b"}; --y = {2}

yl := £("b"); -- yl =2

y2 := f("a"); --y2 = om

z = f{"d"}; -- z = om

f{"d"} := {4,5}; -- Adds ["d",4] and
-- ["d",5] to £

Maps are the most important construct in SETL
Example applications

Map from student names to test scores
Databases: maps from keys to data

Page 5

Map operators

Binary Operators

a lessf x

Removes pairs for one domain element, i.e., removes
all pairs of form [x,?] from a .

Unary map operators
domain Yields domain of a map
range Yields range of a map
e _ -]}

Maps permit associative access to data

. firstname ("Lincoln") := "Abraham";
. x := firstname ("Kennedy");
R N S
’Atoms

© Hummel/Hummel

Type atom is usually used as a domain element

Created by:
X := newat ();
Guaranteed to be unique

Conditional Statements

The if statement
if test then
statement; statement; statement;
else
statement; statement; statement;

end if;

The case statement
case
when testl => blockl
when test2 => block2
otherwise => blocke

end case ;

There is a case expression statement

Conditional blocks (in ifand case statements) can return expressions instead

Parallel Computing

Page 6

Tests Loops

Binary test operators Several forms
=,/=,<,>,<=,> As expected . for form
in Left operand is an element of right set for Teerator foo
or tuple end loop;
notin Left operand is not an elt in right set or . Herators:
tuple for x in set loop unordered iteration
subset Left set is a subset of right set for x intuple loop ordered iteration
incs Left set includes set forxins | test loop conditional test
S for xin primes | x < 100 IOOp Example
Unary test operators for y=f (x) loop Loops for [x,y] in £,
setting both x and y
even, odd integer even or odd test l Infinite |
is_integer , is_real ,is_tuple, is_set, Type tests oop niinite foop
is_map, etc. —————— —
Test forms
See also quantified tests, below
while test loop loop while test succeeds
until test loop end loop if test succeeds at end

Blocks can contain continue or quit

© Hummel/Hummel Parallel Computing Page 7

o Examples

Implicit loops .
{[x**2,x] : x in {1..100}} sqrt map for first 100

Q e T —. squares
uantified tests {a : a in tuples | a(l) = Selected elements in
. "Fred"} tuples
. Can be used in place of any test L.
. Are general expressions returning true or false ta in tuples | a(l) = Abbreviation of above
exists iterator |test "Fred")
forall iterator |test [1*¥*2 : i in [1..100]] Ordered tuple of 100
if exists x in s | x < 10 then squares
return forall x in t |
exists y in s | x = y; R
- Other features
Compound operators
. List-directed I/O
. binop / set or tuple . File VO
. Examples . Declarations for initializing
+/ s Computes sum of elementsin s . Program form, procedures, packages
t/t Computes sum of elements in t . Block structured, nested procedures & vbls
*/1a in s | 3 in a) Computes intersection over all * Procedure parameters can be rw, rd , or wr
sets in s (a set of sets) that . Procedure name variables
contain 3 i Recursion
N Compound types using tuples and selectors
Set and tuple formers * Command line processing
. { expression : iterator } — Setformer
i { expression : iterator} — Tuple former

© Hummel/Hummel Parallel Computing Page 8

FTP Availability Expressing Parallelism using SETL

SETL2 Interpretter Three basic constructs:

i ftp cs.nyu.edu ° Data (Set) parallelism

* cd pub/setl2 ; binary

e get appropriate_version

e MS-DOS, Macintosh, Sun3, Sun4, etc.

i Documentation included with distribution
SETL2 Description . Queue (Farm) parallelism

. ftp c¢s.nyu.edu

. cd pub/local/hummel/setl2 ; binary

. get seti2.ps.Z
Parallel SETL paper . Queue parallelism:

b ftp cs.nyu.edu

. cd pub/local/hummel/papers ; binary

. get parsetl.ps.Z

© Hummel/Hummel Parallel Computing Page 9

Data Parallelism Static Concurrency

L R
Parallel iterators MIMD Processing

i Keyword over or pairs o for x over set parloop

. Not necessarily SIMD . for pairs y=f(x) parloop

° for parallel iterator loop . lterate variables are replicated, so each has separate values

for x over set parloop . Semantics:
4 May iterate over tuples or strings also Set or map or controling structure is evaluated
———————— As many processors as are available are assigned independently to iterates
. qs ors Loop is repeated until all iterates are completed
Sena"zab“lty Synchronization at the end, unless —
End may be: unsynchonized end loop;

hd Code is written assuming one or more processors . Parallel iterators in implicit loops

* Must be correct even if only one processor . Compound operators will generally denote concurrency

i l.e., if over is replaced with in, still correct —
R S - SHHAE)FDFCN:eSESH1g

Implicit data parallelism

° Keywords simd over and simd pairs
. Parallel iterator in implicit loop denotes concurrency o Synchronization after every statement
o Examples:

{x**2 : x over set | T(x)}

exists x over set | condition

© Hummel/Hummel Parallel Computing Page 10

SIMD Iterates Dynamic Parallelism
Code Queue Parallism, Farm model, Task Queues
d for x simd over nodes parloop . while queue /= [] parloop
hd statementl; statement2; ... b x fromb queue;
b end parloop; .
— - -] d end parloop;

Is equivalent to:

Semantics
M for x over nodes parloop
* statementl; i
M end parloop; .
i for x over nodes parloop i
* statement2; b
d end parloop;

Block statements (if, case)

. Subblocks may execute concurrently
i Synchonization between statements within subblocks

© Hummel/Hummel Parallel Computing

Queue parallelism is dynamic

Changes to queue are permitted

Queue may be a tuple, bag, or set

Available processors extract from queue

Continue beyond end only when everyone is waiting for more
work

Concurrent inserts and deletes into the queue may take before
and during the loop

withident
Unique identifier assigned (as with newat ())
while queue /= [] parloop
withident t ;

x fromb queue; ...

Page 11

Pipeline Parallelism Slide operator

R L -]
Syntax Used for pipeline concurrency
. for x pipe nodes loop d Window of data
. for pipe y=f(x) loop . Fixed length fifo queue:
. Example: t= mknullfq(k),
for x pipe tuple loop Makes fixed length queue of length k
statementl; d tslide:= e;
statement2; ... Appends e to queue t,
end loop; Pops first element off t if too long
_ - R
Semantics Example code
. Statements operate concurrently tl := mknullfg(3); t2 := mknullfg(3); t3
. One instance of each statement for each iterate :=mknullfq(2);
. For any given iterate, statements execute in order EUt =[] Loop
. or e pipe x loo
. Same as if executed sequentially localize tl, t2, t3, t4;
. Successive iterates may follow one statement behind previous t1l slide:= e;
hterate if ready(tl) then t2 slide:= (+/ tl) / 3.0 end
if;

if ready(t2) then t3 slide:= median(t2); end if;
if ready(t3) then t4 := max/ t2 ; end if;
if t4 /= om then out with:= e - t4;

end loop;

© Hummel/Hummel Parallel Computing Page 12

Localized variables

M
lterate variables

The Advantage of Maps

All variables are considered shared

. lterate variables are replicated, one per iterate
. For static loops, variables are considered localized

Map evaluates on iterate variables

i for x over set parloop

hd f(x) := func(x):;

b ... end parloop;

. Then f(x) is localized, i.e., stored locally to x

. If enclosing parallel loops, then must be constrained by all
enclosing loop variables

o For dynamic loops, must be constrained by withident variables

10—

Declared localized

* localize x;
. Then x is replicated, as if dependent on all enclosing iterate
variables

. Random access using accesses to other localized map evaluates

. If f(x) is localized, then it will exist after termination of the loop

. Declared localized variables are scoped only to the loop (and
embedded loops)

U The set of indices must be stored, so withident variables will need

to be inserted into a set

e —

Data parallel control

. Each element in the set of nodes defines a thread of control

{5

Dynamic parallelism

. Each queue item defines a thread
o Localized variables are maps over the withident variable

© Hummel/Hummel Parallel Computing Page 13

Atomic Operations

Added atomic operations

Atomicity not guaranteed Fetch and ®
. Within concurrent processing, N Fetch&Op(variable, increment)
. Updating a complex data structure might not be atomic: * Same as atomically performing:
S := S less x; procedure Fetch&Op(variable increment)
S might be updated between access and write zaf=xv;riab Lo
variable Op:= increment;
e = . . return x;
Atomicity is guaranteed for certain accesses end Fetchs&Op;
o Hardware support is common for many ®’s

. Concurrent readers always allowed
N Concurrent writes are atomic
. Assignment operators
X +:= value ;
. Concurrent inserts, deletes, unions, etc., into (e.g.) sets, using
assignment operations
N Concurrent operations on shared tuples using with, fromb, frome
i Implicit set formers using parallel iterates
. Compound operators (reductions)
+/ set

© Hummel/Hummel

Parallel Computing

{5 —

Parallel Prefix

o ® // nodes;
. Eg., + // tuple
i Equivalent to:

[+/tuple(l..i) : i in [l..#tuple]]

5 ——

Concurrent assignments

. [a, bl :=1[Ptr(x) , Ptr(y) 1;

Page 14

Comments

Parallel SETL can be executed with simple keyword substitutions
Permits verification of the algorithm

Doesn’t exercise the concurrency
l.e., Won’t find race conditions

Loops do not guarantee concurrency, but permit concurrent operation
As much parallelism as available

Parallel SETL is a prototyping language, for expressing parallel algorithms,
much as SETL is for expressing and prototyping sequential algorithms

© Hummel/Hummel Parallel Computing Page 15

