CORRESPONDENCE

Relaxation Processes for Scene Labeling
ROBERT A. HUMMEL anp AZRIEL ROSENFELD, FELLOW, IEEE

Abstract—A general treatment of ‘“relaxation” processes for
probabilistic classification of scene parts is presented. A geometrical
framework for studying such processes is defined in terms of finding
paths in a space. General conditions that should be satisfied by
path-finding procedures are formulated, and a variety of linear and
nonlinear procedures that satisfy these conditions are described.

I. INTRODUCTION

Let Ay, -+, A, be objects in a scene, each of which belongs to
one of the classes C, - -, C,,. Suppose that we are given an initial
set of probabilistic guesses as to the class assignments of the
objects—in other words, foralli=1,--,nand I=1, -, m, we
are given a number p;(l) which can be thought of as an estimate of
the probability that object A4; is in class C;. We want to iteratively
update these estimates until hopefully each 4; is nearly certain to
belong to a single class C;.

In [1] an iterative procedure for updating the probability esti-
mates was defined as follows: at the kth iteration, for every 4; and
every C; we compute

a() =3 T rufl D) 1
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Fig. 1. Fuzzy and probabilistic assignment spaces for m = 3.

Here the coefficients r; (], I') are fixed parameters representing the
compatibilities between given pairs of class assignments for given
pairs of objects. We then set

pEHO() = pP()(1 + g (1))
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This updating rule has been used in a number of successful and
partly successful experiments, particularly in connection with low-
level scene features such as edges and curves [2]. Modifications to
this rule have also been used in some cases.

This correspondence presents a general treatment of iterative
(“relaxation”) processes for updating probabilities. A geometrical
framework for the updating problem is defined, general condi-
tions that should be satisfied by updating rules are formulated,
and the rules treated in [1] are discussed from this standpoint.

I1. GEOMETRICAL INTERPRETATION

A. The Assignment Space

Let v;; be a variable representing the assignment of object 4; to
class C,. The state vector for A;is defined as 5; = (v;y, -, v;n), and
the total state vector is the concatention of these vectors:
0= (by, -**, 8,). The space of all possible values for p will be called
assignment space.

Various sets of values for the v;’s can be used. For example, if
each v; can assume only the value 0 or 1, we have the discrete
model treated in [1]. Our interest here, however, is in models
where the vy’s can assume continuous ranges of values—
specifically, values in the interval [0, 1], representing our degree of
belief in the assertion “A; is in class C,.” In the fuzzy model of [1],
the class memberships are not mutually exclusive, so that any
combination of vy’s in [0, 1] is allowable; thus the assignment
space is the unit hypercube [0, 1]™. In the probabilistic model, the
classes are exclusive, so that each state vector f; must satisfy
Y71 va=1 (as well as 0 < v; <1 for each I). Here the assign-
ment space consists of n copies of (m — 1)}-dimensional probability
space, which is a surface in m-dimensional space formed by join-
ing the basis vectors (0, -, 1, -+, 0). This is illustrated in Fig. 1
form=3.

B. The Tangent Space

The goal of relaxation processes is to define and traverse a path
through assignment space from the initial state vector toward a
less ambiguous vector. It is therefore important to consider the
possible directions that such a path can take at each point while
remaining in assignment space. In differential geometry, the set of
all such directions from a given point is called the tangent space at
that point [3].

In the fuzzy case, at any interior point of the unit hypercube,
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paths in every direction are possible, so that the tangent space at
all interior points is just mn-dimensional Euclidean space. In the
probabilistic case, paths must remain on the probability surface;
thus for any point p in the interior of that surface, an nm-
dimensional vector g is in the tangent space at p if and only if
Y1 4u=0,1 <i <n. In either case, for points on the boundary of
the assignment space (hypercube or probability surface), direc-
tions pointing out of the space are prohibited; only those pointing
back into the space or along the boundary are allowed.

In the object assignment problem, any scheme which collects
evidence for modifying the p;(I)’s defines a direction (of change)
for any given state vector p. However, this direction is not neces-
sarily a tangent vector, since it may point out of the space. We
shall now consider how to transform an evidence vector indicat-
ing a desired direction of change at a point into a tangent vector at
that point. This transformation, which will be referred to as the
updating rule, can then be used to determine paths leading to
improved assignments, by starting at the given point and moving
from point to point along tangent vectors.

C. Updating Rules

Let p be a current assignment vector, and let g be an evidence
vector that defines a desired direction of updating. We cannot
simply update p by adding g to it, since the vector g may not be a
tangent vector. In general, we must use g to determine an updated
assignment vector p' for which the following conditions are
satisfied.

a) The components of p' — p and g should have the same rela-
tive sizes. Ideally, if g; is positive (negative), p; should increase
(decrease); or, if this is impossible because p’ — p would then not
be a tangent vector, at least the changes in the components of p
should be in the same order of size as the components of g.
Usually, we would want the components of p’ — p to be smaller in
magnitude than those of 7; by making these components small, we
can help to insure that p’ remains inside the assignment space and
to reduce errors.

b) If g =0, p should not change. If g+ 0, p should change
unless g is perpendicular to all the tangent vectors at p (or unless p
lies in the boundary of the assignment space, and g points away
from the space and is perpendicular to all tangent vectors at p that
lie in the boundary face).

c) P’ is in the assignment space and lies close to p.

Given g, there are many different ways to define p' — p so that
these conditions are satisfied. Some examples of such updating
rules are given in the Appendix.

In the assignment spaces considered here, the surface is “flat,”
so that p’ — p is a tangent vector at p since p' is in the assignment
space. In general, p' — p is approximately a tangent vector if all its
components are small.

By a) and b), p' — p is approximately proportional to the
projection of g on the tangent space at p. Thus for a given g,
updating rules that satisfy a) and b) will all tend to behave sim-
ilarly; the exact choice of a rule may be relatively unimportant.

III. ITERATIVE PROBABILITY ESTIMATION

A. Conditional Assignment Probabilities

Up to now we have not discussed the goal of the updating
process. We were concerned with how an “evidence vector” g
could be used to define an updated vector p’ lying in the assign-
ment space, but we did not consider in what sense p’ might ~ a
better assignment vector than p was. In this section we present one
approach to defining a goal in the probabilistic case.
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Suppose that the given scene is a member of an ensemble of
scenes, each containing n objects Ay, - -, A, that can belong to the
mclasses C,, -+, C,.. Let E; be the event that object 4; is in class
C,. We can define the probability of E;;, either a priori or condi-
tioned on some other event(s). For example, let M; be a vector of
measurements made on A;, 1 <i < n; then we can consider the
conditional probabilities (E | M), 1 < I < m. The initial probabil-
ity estimates referred to in Section I would ordinarily be ob-
tained in this way. These estimates should be relatively easy to
make, since they are made for each 4; independently of the others,
based on M; only.

Alternatively, we can consider the more informed set of condi-
tional probabilities P(E;| M), where M = (M, -+, M,); here the
probability of each E; is conditioned on the full set of measure-
ments made on all the A’s, rather than just on the measurements
M; made on A, Ordinarily, these probabilities are hard to
compute, since it is difficult to describe the dependency of E; on
the entire collection of measurements.

Let p° be the assignment vector whose (i, I) component is
P(Ey|M;), and let p be the vector whose (i, [) component is
P(E4|M). We shall assume that p° is known (or has been
estimated) and that we want to estimate p. In the next subsection
we discuss the problem of estimating p, given p°, in terms of the
geometrical formalism introduced in Section II.

B. Linear Approximation

Since we do not know how to compute p from the set of mea-
surements, we use the components (or a subset of the components)
of the initial assignment p° to estimate p;, for each (i, I). Since we
do not know the exact functional relationship which finds p given
p°, we may use a linear approximation for p;, — pj in terms of the
initial components of p°, given by

= —-p%= Z‘ sii(l, V)pSy-
Js
Since this is only an approximation, it is not in general a tangent
vector, and we must use an updating rule to change p° in the 6°
direction, as discussed in Section II-C(a). Furthermore, we change
p° by only a small increment, since ¢° points toward p, but
p° + 3° may be very far from p. This yields a new vector p', and
we can now repeat the process, adding a small increment in the
direction ' where
6’;‘( = Z S,'j(l, I')p},

Js

In other words, we define an iterative process for which
P! == o ) siill U)ps
T

where the scalar « determines the size of the increment and the
approximation is determined by the updating rule which trans-
forms the summation quantity into a tangent vector. This updat-
ing process is essentially the same as the linear process considered
in Section IV of [1]. For a suitable choice of a, and suitable
coefficients s;;, a few iterations of this process should ordinarily
yield an assignment close, or at least closer, to the desired p.
Note that * is recomputed at each iteration using the same
linear approximation, based on the assignment components of
that iteration. Each iteration estimates the vector p independently
of the previous assignments, as though the measurements had led
to an initial assignment equal to the current iteration. In this way,
the linear approximation must estimate the difference between p
and the current assignment p* for each iteration. If the
classification of objects conditioned by all the measurements gives
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a p which assigns a single class to each object with near certainty,
then the estimate of p should not change greatly as the iterates
move successively closer to p, since pis in a “corner” of the assign-
ment space. Under these conditions, the process should converge
to p.

The coefficients s;i(I, I') in the linear approximation describe
how E; depends on the evidence for E ;. that is currently available.
This probability in turn reflects the initial measurements made at
the object A4;. In other words, s;;(I, I') is related to the correlation
between E; and Ej;; this is the basis for calling the s;;’s “correla-
tion coefficients” in [1].

If one knew the exact dependence of p on the initial assignment
p° then the s;(I, I') could be computed from the best linear
approximation of this assignment-valued function. On the other
hand, since these coefficients involve only pairs of (object, class)
pairs, they should be relatively easy to estimate, as compared with
specifying the dependence of E; on all the (object, class) assign-
ments at once.

C. Updating in log Probability Space

For some purposes it may be advantageous to use an assign-
ment space based on logarithms of probabilities, rather than on
the probabilities themselves. The ordinary probability assignment
space is bounded by faces at which at least one of the probability
components is zero. If a vector is near one of these faces and we
update it, we must be careful to make the component of displace-
ment toward the face very small, to insure that we remain within
the space. Thus the dynamic range of the updating rule near the
boundaries of the assignment space is severely limited. In log
probability space, on the other hand, zero maps into — oo, so that
the faces of the space recede to infinity, and updating becomes a
less critical process.

If we define the log of a probability vector componentwise, the
updating process in log probability space has the form log p’ —
log p. We can define a linear approximation to the log updating
vector t° in the same manner as in Section I11-B:

\
23 = [log p — log p°Ju = B Zl ti(l, U)pje
il

where the scalar B defines the size of the increment in the t°
direction. By the remarks in the preceding paragraph, this approxi-
mation should give a more uniform estimation of p for the vari-
ous p*’s. The updating scheme resulting from this lir .r
approximation rule is equivalent to

0 ifl,1)pjir®
pu = pl,jeﬂI'}( )Pt

B
= pf) (l + 2 tlh l’)P?")
0t

where we have further approximated the exponential by the first
two terms of its expansion. For f = 1, this is just the nonlinear
updating rule defined in [1], provided that we normalize it (by
dividing by the sum, over I, of the right sides to insure that
Y. pa=1). For B> 1 we obtain the “accelerated” nonlinear
updating rules discussed in [4].

D. Higher Order Approximations

Nonlinear approximations to p — p° or to log p — log p° can
also be used to define updating rules. For example, using a Taylor
expansion gives, to a first approximation,

[log p —log p°lu= 3.

i, la=

Citly, -, nP1ly """ Pnia-




768

In this expression, the c’s express the dependencies between E;
and the joint occurrences of the sets of events E,,, -+, E,,; this is
more general than using the dependencies between E; and the
events E ., taken one at a time, as we did in Section III-B.

The disadvantage of this method of approximating p — p° is
that it will be much harder to define the dependency of each E;; on
every set of events Ey;,, --, E,;, than it was to define its depen-
dency on single events. One way to reduce this problem is to limit
the permitted combinations of events; but even if we restrict our-
selves to combinations k at a time, we still need to determine
O(m*) dependencies, while in Section III-B we needed to know
only O(m?) of them.

Another possibility is to search for a locally supporting
configuration of p’s corresponding to a large positive coefficient
City, - 1,- The search can be guided by large assignment values pj;.,
as well as by models of compatible configurations. In the absence
of a supportive configuration, it can be assumed that either the
evidence for updating is ambiguous or that the evidence indicates
that p;; should be decreased. The latter case occurs when the local
configuration supports some other class at object A; and will be
automatically incorporated into the updating scheme by the nor-
malization of the probabilities. This represents another way in
which search techniques may be used in conjunction with iterative
probability updating processes; compare [5], [6].

IV. CONCLUDING REMARKS

In this correspondence we have introduced a convenient
geometrical representation for problems involving class assign-
ment vectors—discrete, fuzzy, or probabilisticc. We have for-
mulated conditions that must be satisfied by any process that
updates assignment vectors, and have shown how a variety of
updating rules can be formulated that satisfy these conditions.

For probabilistic assignments, we have introduced the notion of
transforming locally conditioned into globally conditioned prob-
abilities and shown how this can be regarded as the goal of a
probability updating process. Finally, we have defined a set of
approximate updating processes (linear, log-linear, and polyno-
mial) and discussed their interpretation and implementability.

The concepts introduced in this correspondence provide a con-
venient framework for discussing assignment updating processes
and have led to the formulation of several interesting updating
rules. However, many basic issues have been left unsettled,
notably just how the initial probability estimates and the
coefficients in the approximate updating rules are to be deter-
mined in practice. Nevertheless, the framework provided in this
correspondence should facilitate the further study of assignment
updating processes in a variety of problem domains.

APPENDIX
ExAMPLES OF UPDATING RULES

The following are some examples of updating rules that satisfy
the conditions discussed in Section II-C. They serve to illustrate
the variety of possibilities; it would be of interest to test them in
actual applications.

In the fuzzy case, one simple possibility is to set p' — p =
ha/|gq| (where h is small), where p’ is truncated if it lies outside the
unit cube (i.e.,any component < 0 or > 1isset to 0 or 1). Alterna-
tively, we can let p’ be defined componentwise using any function
g(pir qi,) such that g(p, q) is monotonic in g and g(p, 0) = p, while
g(p, 9> 1 as g— oo, and —»0 as q— —oo; there are many
smooth functions having these properties. The min-max fuzzy
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updating rule given in [1] provides still another possibility, since it
is guaranteed to yield values in the unit cube.

Probabilistic updating rules must satisfy stronger restrictions;
p’ must lie on the probability surface. The rule used in [1] (see (1)
and (2) in Section I) satisfies our conditions, provided that the g;
are greater than — 1, to assure that the pj; are nonnegative. More
generally, one might use the rule

. _ _pue™

Pu= ; pue®”

in which nonnegativity is guaranteed. For another viewpoint
about such exponential rules see Section III-C. Another possibil-
ity is to find the tangent vector ¢ at p that is nearest to g; this can
be done as follows.

i) If Pu = 0 and qu < 0, set vy = 0.
ii) Let k; be the number of I's for which 1) holds for each i; let
¢ = ZI q:'l/(" - k).

iii) For each ! such that i) does not hold, set v, = q;, — ¢;.

We can then update p by moving in direction &, but adjusting the
size of the step taken in each direction to assure that the resulting
p’ remains on the probability surface.

ACKNOWLEDGMENT

The help of Ms. Shelly Rowe in preparing this paper is
gratefully acknowledged.

REFERENCES

[1] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, “Scene labeling by relaxation
operations,” IEEE Trans. Syst., Man, Cybern., vol. SMC-6, pp. 420-433, 1976.

[2] S. W. Zucker, R. A. Hummel, and A. Rosenfeld, “An application of relaxation
labeling to line and curve enhancement,” IEEE Trans. Comput., vol. C-26, pp.
394-403, 1977.

[3] B. O'Neill, Elementary Differential Geometry. New York: Academic, 1966.

[4] S. W. Zucker, E. Krishnamurthy, and R. Haar, “Relaxation processes for scene
labeling: Convergence, speed, and stability,” JEEE Trans. Syst., Man, Cybern.,
vol. SMC-8, pp. 41-48, 1978.

[5] J. M. Tenenbaum and H. G. Barrow, “Experiments in interpretation-guided
segmentation,” Artificial Intelligence, vol. 8, 1977, pp. 241-274.

[6] ——, *MSYS: A system for reasoning about scenes,” Stanford Research Institute
project 1187, Annual Report to the Office of Naval Research, 1975.



