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Reconstructions from Zero Crossings in Scale Space

ROBERT HUMMEL, MEMBER, IEEE, AND ROBERT MONIOT

Abstract—A useful representation of signal data, besides being a
complete and stable transformation of the information, should make
-explicit important features in the data. In computer vision, the one-
parameter family of images obtained from the Laplacian-of-a-Gauss-
ian-filtered version of the image, parameterized by the width of the
Gaussian, has proven to be a useful data structure for the extraction
of feature data. In particular, the zero crossings of these so-called scale-
space data are associated with edges, and were proposed by Marr and
others as the basis of a representation of the image data. The question
arises as to whether the representation is complete and stable. We sur-
vey some of the results and studies related to these questions, and sur-
vey several papers that attempt reconstructions based on this or re-
lated representations. We then formulate a new method for the
reconstruction from zero crossings in scale space, based on minimizing
equation error, and present results showing that the reconstruction is
possible, but can be unstable. We further show that the method applies
when gradient data along the zero crossings are included in the rep-
resentation, and demonstrate empirically that the reconstruction is then
stable.

I. NoTions
A. Representations

N the fields of signal analysis and image processing,
the first stage of a complete pattern recognition system
typically applies some numerical process to the digital
data. In image processing, for example, it is generally
considered useful to extract edges, comers, and textured
regions in the image. In other words, the features and sa-

lient symbolic information about signal and image data

are dynamically associated with groups or regions of the
data, and typically depend more explicitly on primitive
features such as discontinuities, extrema, and local statis-
tical properties of the spatially sampled data. It seems rea-
sonable, therefore, to transform the initial data to inter-
mediate representations to make the primitive features
more accessible to the algorithms for signal analysis. The
collection of all intermediate representations, which might

include binary edge images, texture measures, and other-

feature detectors, comprise a representation that replaces
the original signal for analysis purposes. This is the cen-
tral idea in vision processing, for example, of Marr’s
‘“Primal Sketch’’ [1] or Tenenbaum and Barrow’s ‘‘In-
trinsic Images’’ [2]. ‘

Since all analysis is done on the intermediate represen-
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tation, the representation should carry all the information
necessary for the interpretation of the data. Of course, the
main idea is that the relevant information should be more
explicit than the original samples, and that data redun-
dancies should be eliminated. The representation may
constitute a data compressed version of the original sam-
pling, but might as easily contain more bulk data, in the
attempt to represent different features. It should be pos-
sible to reconstruct a version of the original signal from
the intermediate representation since the representation
should contain all the essential information. While the re-
construction need not be mathematically identical, it
should have the same subjective interpretation as the orig-
inal signal.

It is important to emphasize that our interest, from the
computer vision standpoint, is independent of data
compression concerns. An intermediate representation
such as the zero crossings together with the gradients
along the zero crossings, discussed in detail later in this
paper, may contain redundant information and fail to be
compressive at all. Instead, our concem is with the qual-
ity of an intermediate representation for the purposes of
building a computer vision system. Such a system will
probably never actually perform a reconstruction. Ac-
cordingly, we do not care if the representation is bulky
and if reconstruction is expeusive. We do care that the
construction of the representation should be easy, and that
stable reconstruction is at least theoretically possible.

How can we evaluate the quality of an intermediate rep-
resentation? The usual method is to show that algorithms
making use of the representation are effective. While it is
difficult to fault success, this approach is limited by a lack
of generality. That is, the range of algorithms that can be
demonstrated is necessarily limited, and the reasons for
their effectiveness and limitations are always varied. For
example, we can never be sure if a partly successful vi-
sion system is limited because the features are inadequate
or because the pattern matching method is inextensible.

Alternatively, we can study a representation mathemat-
ically, to understand 1) the dependence of the represen-
tation on the initial data, 2) the fibers of the representa-
tion, and 3) the stability of the transformation. For the
first issue, the dependence, it is desirable to show some
form of continuity, so that small changes in the original
data result in small changes in the representation. By “‘fi-
bers,’’ as studied in the second issue, we mean the sets
of signals that map to a single representation. If the map-
ping is one-to-one, then the fibers are singleton sets, and
the representation is complete. Finally, stability of the
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applications. Many of the operators assumed a certain res-
olution level, and apply the operations to a neighborhood
of samples that is independent of the data. Thus, many
edge detectors assume that the edge can be discerned
within a three-by-three pixel neighborhood. Such opera-
tors frequently fail to find features when the data are sam-
pled too finely, and sometimes fail when the resolution is
too coarse. Nonetheless, in controlled cases, feature op-
erators can perform useful preprocessing for the analysis
of signal data.

In order to build into the process a certain degree of
scale invariance, and to make the feature detection oper-
ate dynamically on the data, the use of multiresolution
data structures has become an important aspect of signal
processing. One of the earliest uses of multiresolution
methods in computer vision was described by Rosenfeld
and Thurston [4]. A simple construction is to sample the
image at multiple resolution levels, forming a ‘‘pyramid’’
of images. Each layer represents a different scale for the
same image. Algorithms are then developed that incor-
porate feature-detector responses obtained by applying the
same operation to each level of the pyramid. From a sin-
gle high-resolution image, this pyramid can be obtained
numerically by successively blurring and subsampling the
original image. Each operation of blurring and subsam-
pling produces an antialiased version of the same image
at a coarser resolution. The resulting structure is called a
‘‘Gaussian pyramid.”’ Computational methods for build-
ing Gaussian pyramids, and other pyramids, are described
by Burt and Adelson [5].

We will describe a continuous formulation of these
multiresolution pyramids, in order to assist in the math-
ematical analysis, and to formulate scale space precisely.
We begin with data f(x), where x € R". Forn = 1, f(x)
could be an acoustical signal; for n = 2, we usually re-
gard f(x) as an image. The case n = 3 arises with seis-
mographic data, time-varying imagery, or tomographic
data. Higher dimensional domains for the data are possi-
ble. Scale space refers to a domain (x, ¢) for a set of data,
u(x, t), parameterized by a variable ¢ € R, giving vari-
ations on the data f(x). In particular, we will always as-
sume that ¢ = 0, and that u(x, 0) = f(x). Further, u(x,
t) will be continuous in ¢, and that for any 75 > 0, u(x,
tp) gives a variant of f(x). The idea of scale space, pa-
rameterized by a continuous variable obtained as the stan-
dard deviation of a Gaussian, is due to Witkin [6].

The natural framework for the analysis of scale-space
formulations of multiresolution representations is in terms
of the heat equation [7], [8]. We define u(x, t) to be a
bounded solution to the heat equation:

u(x, 0) = f(x).  (Heat EQuation)

The solution is given by convolution against the funda-
mental solution to the Heat Equation, which for the do-
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main R” is given by

u(x, t) = Sj ,K(x =y, 1) f(y) dy,
where

K(x, 1) = (4mr)™"/2e~ 1014

‘We see that u(x, t) is obtained by blurring f(x) by in-

creasingly diffuse Gaussians, parameterized by ¢+ > 0,
with standard deviations o satisfying 26> = 4t. In com-
puter vision, scale space sometimes refers to the (x, o)
variables that can be used to reparameterize the domain
of u. We retain.the (x, t) parameterization to keep the
linear Heat Equation relation for the function u.
Convolution by Gaussians is considered special for
many reasons [7], [9], [10]. We see from the above anal-
ysis a relationship between Gaussian convolution, the
Heat Equation, and the Laplacian operator. Of course,
Gaussian convolution enjoys other properties; for-exam-
ple, the central limit theorem implies that Gaussian con-
volution is easy to implement by an iterative procedure.
In computer vision, in an idea that dates back to 1955
[11], the image data f(x) are often filtered with the La-
placian of a Gaussian, instead of filtering by a Gaussian.
The use of a Laplacian-of-Gaussian-type filter is in part
motivated by the existence of center-surround receptive
fields, which exhibit excitatory/inhibitory center/sur-
round response patterns [12], but can also be motivated
on a predictive encoding basis [13]. Experiences with
Laplacian-of-Gaussian convolutions have demonstrated
their utility for computer vision applications. Filtering by
the Laplacian of a Gaussian can be written in three ways:

AK *f=K* Af = A(K * f).

If we denote the result by v(x, ¢), we see that
1) v(x, t) is the f(x) data filtered by the Laplacian
of a Gaussian,
2) v(x, t) is the solution to the Heat Equation with
initial data Af, and
3) v(x,t)is Au(x, t), where u is the solution to the
Heat Equation with initial data f(x).
We will refer to v as the scale-space function of the data
f. The scale-space function v provides a continuous-do-
main analog [14] of the Laplacian-pyramid data structure
[51. A
A difference of two Gaussians is often used in place of
the Laplacian-of-Gaussian. We see from the Heat Equa-
tion formulation the basis for the approximation. Namely,
since K (x, ¢t) is itself a solution to the Heat Equation,

(8K)(x. 1) = 3y (. 9)

= lim (K(x, t + 7) — K(x, 1)) /7.

=0

That is, the difference of Gaussians is a good approxi-
mation to AK as the separation between the spread of the
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two Gaussians approaches zero (and the difference is
scaled). In actual use, it is more frequent to use a differ-
ence of Gaussians where the ratio of the two scales in the
o-variable is given by 1.6, but the rationale for this choice
is not the degree of approximation to the Laplacian-of-

Gaussian [15].
C. Zero Crossings

The zero set of v(x, t) is the point set in (x, t) where
v = 0. The set might be empty (for instance, if fis sub-

harmonic or superharmonic [16]) everything (if f is har- -

monic [17]), or a proper subset of (x, t) space. In the
latter case, zeros can be isolated points, lines, and sur-
faces (but never regions). We distinguish components of
the zero set which form manifolds of codimension one.

Definition: The zero crossings of v(x, t) refer to the
point set

3{(x, )|v(x, 1) < 0} N 3{(x, )] v(x, 1) > 0},

where 3S refers to the boundary of the set S. |

That is, the zero crossings are surfaces in scale space
that separate regions where the scale-space function v is
positive from regions where v is negative. If we intersect
these zero-crossing surfaces with a plane {t = 5}, fixing
a single level, we obtain the ‘‘zero-crossing curves’’ at
that level [see Fig. 1(b)]. These curves also separate pos-
itive and negative regions, but in this case the regions lie
in the plane determined by the fixed level. The zero-cross-
ing curves at the continuum of levels trace, and thus de-
velop, the zero-crossing surfaces, which we refer to sim-
ply as the zero crossings. Of course, our terminology of
‘‘curves,’’ ‘‘surfaces,’’ and the fixed ‘‘plane’’ are moti-
vated by the case of a two-dimensional spatial domain
(i.e., x € R?); however, the concepts are valid for any
spatial dimension.

Zero-crossings curves have been used for segmentation
of imagery by edge detection [15], and for stereo match-
ing and motion correspondence between pairs of images
(e.g., [18)). It has also been suggested [10] that they form
a nearly complete representation of Af. Marr also sug-
gested that the zero crossings might be a complete rep-
resentation [1], but further thought that perhaps the zero-
crossing information would need to be supplemented with
gradient data along the zero crossings. These suggestions
form the basis of the interest in zero crossings as an in-
termediate representation for images.

It should be noted that there is a long and distinguished
history of the analysis of zero crossings in mathematics.
Kedem supplies a survey together with some advances
[19]. In this and related work, analysis is generally re-
" stricted to signals of one variable, and the representation
is based on the local statistics of zero crossings (the num-
ber of crossings per unit length). Issues such as the local
density of zero crossings become very important when
they are used for stereopsis computation with image pairs.
Presumably, this body of mathematical work is quite rel-
evant to image representation, but has not been applied to
computer vision in a major way.
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Witkin [6] observes that zero crossings in scale space
evolve as ¢ increases, and are never created at some non-
zero t. This property, discussed in [9] and in [10], ensures
that zero-crossing surfaces are nested, one within another,
enclosing regions containing the face {¢ = 0}, or forming
a sheet meeting the face {r = 0} and extending to ¢t =
. In Fig. 1(b), this property is reflected in the fact that
the zero-crossing surfaces close at the top—there are no
surfaces that hang from the top, closing below. The prop-
erty can be given a precise statement.

Evolution Property of Zero Crossings: Let C be a con-
nected component of the set of zero crossings in the do-
main {(x, ?)|xeR", T\, =t < T}, where0 < T, <
I,,ThenC N {(x,t)|t=T,} + @. |

When first observed, the evolution property sparked a
great deal of interest in scale-space methods. It was
thought that the property gave great justification to the use
of Laplacian-of-Gaussian filtering, and indeed, that the
Gaussian was the only filter that would yield this property
[91, [10]. Under appropriate restrictions, it is true that the
Gaussian is special in terms of yielding the evolution
property. However, as we will see in Section II-A, the
evolution property is essentially an expression of the
Maximum principle for the Heat Equation.

The practical import of the evolution property is that
the zero-crossing information can be simplified, and rep-
resented in a symbolic (or approximate) way by describ-
ing the nesting and some other simple features of the zero-
crossing surfaces. The hope is that the simplified or sym-
bolic representation will also suffice to form a complete
representation of the original data, at least for image anal-
ysis purposes. For instance, Johansen considers the rep-
resentation of signals by the ‘‘toppoints’’ of the zero
crossings in scale space (with 7 extended to —oo0) [20].
To date, the hope of simplifying the representation of the
fingerprint of zero crossings has borne little practical fruit,
but has nonetheless sparked a wide range of interesting
mathematical analysis.

In the next section, we consider some of the mathe-
matical results related to the evolution property and the
issue of completeness of the representation by zero cross-
ings.

II. ANALYTICAL RESULTS
A. Evolution Property

In this section, we show that the evolution property,
applied to level crossings (and not just zero crossings), is
equivalent to the classical Maximum Principle for para-
bolic partial differential equations. That is, we will show
that the evolution property can be derived simply from the
maximum principle, and moreover, that any scale-space
construction that obeys the evolution property for all level
crossings, subject to minor restrictions, will satisfy a
maximum principle. :

The classical maximum principle for the solution to the
parabolic Heat Equation du/dt = Au states (see, e.g.,
[211-[23]):

Maximum Principle: Let D S R" be open and bounded.
Suppose u is a solution to the Heat Equation in 7 = {(x.
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t)|xe€D,0 < t < T} of class C? and is continuous in
the closure T. Then u assumes its maximum at some point
(x, t) for which eitherx e dD ort = 0.

The maximum principle holds for more general para-
bolic partial differential operators, but certainly not for all
parabolic equations. It is not known (to the authors’
knowledge) how to characterize parabolic equations giv-
ing a maximum principle. For example, the maximum
principle does not hold when the biharmonic operator is
used: du/dt = A?u. Generally, the elliptic operator will
be second order in order for a maximum principle to hold.

We will assume that whenever a maximum principle
holds, a similar minimum principle also is given. For lin-

_ear parabolic operators, such as the Heat Equation, a min-
imum principle follows from the maximum principle.
However, since we can envision more general operators,
we will henceforth assume that the statement that a max-
imum principle holds means that both a maximum and
minimum principle hold. .

Next, let us denote the construction of the representa-
tion of the image f in scale space by the operator v = Sf.
In the previous section, we described the construction of
v, given f € L* (R?), according to

v(x, 1) = Sz AK(y = x, 1) f(y) dy.

However, we now wish to permit more general construc-
tions, allowing, for example, f to be defined on an irreg-
ular or bounded domain, or allowing constructions in-
volving differential operators with nonconstant coef-
ficients. However, we will need to place restrictions on
the growth of functions v = Sf as |x| = o and on the
boundary of the domains. Specifically, we will assume
that the domain of f is D (which may or may not be
bounded), and that the corresponding scale space will have
(x,t) € D X [0, ). There is a class of permissible im-
ages f for which the scale-space operator v = Sf is de-
fined, and we assume that for ¢’s constructed in this fash-
ion:

i) veC(D x (0, ®))
ii) v(x,t) = 0 forx € dD,

t=0;

Note that this means for the Laplacian-of-Gaussian con-
struction given above, we must limit application to func-
tions fthat tend to zero as | x| — o. The space f e L (R?)
N L*(R?) suffices, for example. This restriction is
stronger than necessary, but not terribly objectionable.

Our main result in this section is that a scale-space con-
struction v = Sf, given the boundary restrictions, satisfies
the evolution property for level crossings if and only if a
maximum principle holds (meaning both a maximum and
minimum principle). The result is Theorem 1.

Theorem 1: Consider a scale-space construction v =
Sf satisfying i), ii), and iii) above for all admissible func-
tions f. Then the following are equivalent.
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1) The maximum principle holds for functions v = Sf
obtained from admissible f’s.

2) The evolution property holds for level crossings of
solutions v» = Sf obtained from admissible fs.

Proof: We first show that the maximum principle
implies the evolution property. For if the evolution prop-
erty fails for a level crossing [/ of v(x, t), v = Sf, then
there is a component C, and bounds ¢,, t,, where C is a
connected component of {v(x,t) > |ty <t < 1} or
{v(x,t) < 1l|t, =t =< 1,} such that C does not meet the
plane {¢t = ¢t,}. If I # 0, then the component C must be
bounded, since |#| — O uniformly as |x| = o. Thus,
the supremum (or infemum) of v(x, t) is attained at a
finite point (xo, Zp) in C. If / = 0, then the supremum (or
infemum) in C is nonzero, and once again attained at a
point (xo, 7o) of C. Since (xo, f) cannot lie on the level-
crossing surface (assuming v is nonconstant), it must
either be in the interior of C, or lie on the top surface {¢
= t,} within C. In either case, we can place a bounded
cylinder within C with (xo, p) in the interior or top, in
violation of the maximum principle.

To show that the evolution property for level crossings
yields the maximum principle, an even simpler argument
suffices. For, suppose that D X [t,, ,] is a bounded cyl-
inder, with a maximum (or minimum) at a point (xo, )
in the interior or top of the cylinder, in violation of the
maximum principle. Either way, there is a value [/ less
than the maximum (or greater than the minimum) at (x,,
fo), but greater (or less than) the values of v on the sides
and bottom of the cylinder. Thus, a component of the
level-! crossing within the wedge ¢, < ¢ < 1, lies entirely
within the interior of the cylinder, and thus does not meet
the plane {¢ = 1, }. Thus, the evolution property fails if
the maximum principle is violated. |

As a result of the theorem, we have an evolution prop-
erty for scale-space constructions more general than La-
placian-of-Gaussian filtering. For example, let D be a
bounded domain, and consider scale space T = D X [0,
o) with functions constructed as follows.

For f € L* (D), solve foru € C(T),

Au=%ian(O, ®)

u(x, 0) = f(x)

u(x, 1) = f(x),
Then let

x € dD, t=0.

v(x, 1) = % (x, 1).

We observe that v = 0 on the sides of the scale-space
cylinder, and that the maximum principle holds since v
satisfies the Heat Equation. Thus, level crossings of v
evolve as ¢ increases, and always meet the base {r = 0}.

Under more restrictive assumptions, one can show that
the evolution property requires Laplacian-of-Gaussian
scale-space construction [9]. The assumptions. however,
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require that the domain be all of Euclidean space, and that
the underlying equation have constant coefficients. Fur-
ther, proofs of the evolution property have frequently as-
sumed that a level-crossing component not meeting {7 =
0} will have an extremal lower point, which is an invalid
restriction. Given the equivalence of the evolution prop-
erty to the maximum principle, any proof that does not
cite the maximum principle or essentially redo the proof
is suspect. Since the proof of the maximum principle is
slightly delicate, especially in the absence of strong reg-
ularity assumptions, the former course seems more appro-
priate.

A version of the evolution property is easy to establish
when the scale space is a discrete domain. For simplicity,
let us treat the case of one space dimension, and assume
that we are givendataf;, i = - -+, —1,0,1, - - - . We
obtain scale-space data v; ;, where k is the scale, or level,
k=20,1, - - - . The method by which v is constructed is
unimportant at this point; a maximum principle states that
in any rectangular grid of lattice points { (i, k)|i; =i <
i, ky = k < k,}, the maximum of v; , must occur on
either the bottom k = k, or the sides, i = ij ori = i,.
The maximum principle will surely hold true if v satisfies
a construction

Viks1 = G 4Vi-1k T QGiaVik T Giv1,4Viv 1.k
where

a_; + di,k + Gk = 1 and all aiy > 0.

Given the maximum principle for discrete data, we can
easily obtain an evolution property. The evolution prop-
erty will state that for any 4-connected component of grid
points of { (i, k)| v, > 0, k|, < k < k, }, this component
will include points on the bottom level k = k.

B. Completeness when Gradients are Included

We now show that the zero crossings, when supple-
mented with gradient data along the zero crossing bound-
aries, are sufficient (in theory) to reconstruct the original
function f (x). Actually, the method is used to reconstruct
Af(x). However, if we assume that f(x) = 0 as |x| —
o, then f(x) can be reconstructed by solving Poisson’s
equation. Details of these ideas were reported earlier in a
technical report [24]. In the same report, it is observed
that completeness of the representation involving gra-
dients along the zero crossings is easily established, by a

nonconstructive proof, using the Hopf maximum princi-

ple for the Heat Equation. We instead provide a construc-
tive proof below, although it should be noted that the con-
structive method is unstable.

The use of gradient data for the representation also ap-
pears in [7], but the gradient data there are not limited to
the zero crossings. The use of gradient data along zero
crossings is discussed in [25]. Many researchers have
noted from a casual observation of zero crossings of im-
age data that zero crossings with large gradient magni-
tudes are of greater significance than those with low gra-
dient magnitudes.
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1) Continuous Case: Specifically, let Q be a bounded
connected component of {(x, 1)|t = 0, v(x,?) # 0},
and denote by D the set {x € R"|(x, 0) € Q}, and by T
the zero crossings 32 N {# > 0}. Let 7 be a value such
that 7 > sup {r|(x, t) € Q}. Next, denoting Af (x) by
g8(x), we set §(x) = g(x) forx € D, and g(x) = 0 else-
where. Let b(x) be the g(x) data blurred to the level 7:

b = | KG: =3, 80 &

[see Fig. 1(c)]. Finally, for fixed y and 7 define
wix,t) =K(x -y, 17—1).

Theorem 2: Suppose that the data g(x), x € D, are con-
tained under a bounded zero crossing surface T' of the
scale-space function v. We require that g(x) belongs to
the class S’ of tempered distributions (and thus has a Fou-
rier transform from which g can be recovered) [26]. Then
b(x) can be reconstructed from the data I' and Vv along
I'. Thus, g(x), forx € D, is theoretically reconstructible.

Proof: Observe that
ow

—_ = 0.
o + Aw

Using this fact and Green’s theorem, we have

S <21-)—Av>-wdxdt+s (a—‘z+Aw>
a \ dt o \ ot

-vdxdt

0=

San [(bw)t + (vVw — wVv) - n] do

where (n, {)(x, t) is the outward pointing surface normal
to I' at (x, ¢) and do is surface area measure. The gradient
V is with respect to spatial coordinates only. Using the
facts that (n, {) = (0, —1)whent =0andv =0onT,
the equation reduces to

So v(x, 0)w(x, 0) dx

= - Sr w(x, t)(Vv - n)(x, t) do.

Using the definitions of g, b, and w above, the equation
becomes ’

b(y) = Sr K(x —y, 7 —1)(Vv - n)(x,1t) do.

Thus, given the zero crossing I' and Vv (x, t) for (x, 1)
€T, the blurred data b(x) can be constructed by a simple
linear process. Since the blurring operation taking g (x)
to b(x) is one-to-one, g(x) for x € D can theoretically be
reconstructed. n

Deblurring is, of course, a classic unstable process. The
situation is not hopeless, however, since g (x) has known
compact support, which might be used to advantage. and
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also since errors that occur are predominantly in high-fre-
quency components, which might not be as essential to
visual interpretability. Further, one might hope that ap-
proximation methods would suffice [27]. Nonetheless, the
method is provably unstable.

However, the foregoing analysis applies only to the case
where Q is bounded. Next consider an unbounded com-
ponent Q of (x, ) space with the zero crossings removed.
Let 7 be greater than the range of ¢ in all of the bounded
components of that space. Finally, let @, = @ N {(x,

t)|0 < ¢t < 7}. We repeat the previous argument, re-

placing integration over Q by integration over Q.. There
is now in addition to D = {x € R"|(x, 0) € Q,}, another

boundary portion D, = {x € R"|(x, 7) € 2, } to consider
in the surface integral. Thus, we obtain

SD v(x, 0)w(x, 0) dx

+ Srn{mr} w(x, t)(Vv - n)(x, t) do

_ {v(y, 7)
0

Here we have used the fact that w(y, 7) = K(x — y, 0)
is a delta function centered at x = y. With g(x) and b(x)
defined as before, we have

(y,7) €D,

otherwise.

b = [ K& =57 = (0 m)x, 1 o

(x, ) €D,.

Since v(y, ) is unknown, the equation gives no useful
information when ( y, 7) € D,. The missing data could be
supplied by analytic continuation of b(y) from (y, ) ¢
D,, assisted by the fact that the above equation holds with
the unknown but (hopefully) small error v(y, 7) when
(y, 7) € D,. Once b(y) has been extended in this way,
&(x) is once again found by deblurring.

The lesson of this section, ultimately, is that even for
bounded zero crossmgs supplemented with gradient data
along zero crossing, reconstruction by the indicated
method is still unstable.

2) Discrete Data: 1t is interesting that the analytical
result above can be converted to a discrete form, without
involving any discrete approximations. This is because
Green’s theorem can be converted to a discrete sum. For
a signal or image defined on a discrete lattice, we first
define a notion of a Gaussian pyramid (actually, a
“‘monolith’’), and a Laplacian pyramid, and then the con-
cept of zero crossings in the discrete scale space. Knowl-
edge of the zero crossings together with gradient data, in
the formulation below, will translate to knowledge of the
values of the scale-space function on a discrete set of
points, with the points located on either side of a zero
crossing. Since values are given on both sides of a zero
crossing, the gradient values are implicitly encoded in the
representation.
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For siniplicity, we treat the case of one unbounded
space dimension, although the results extend easily. We

are given data f;, i = ,—1,0,1, - -+, and define
g = ifi-r = 3fi + ifisr-

We define the filtered data v; , recursively

' Vo = 8i>

Vike1 = 30ic1x + 30k + 001

We also define the blurring kernel, using binomial coef-

ficients
K,,‘=—l;( % >, -k=si=<k k=0,
T4 N\i+k
and K; ; = 0 elsewhere, for k = 0. Both v and K satisfy

a discrete version of the Heat Equation, namely,

Vigs1l — Uik = 301k — 30is + i1

It is not hard to prove a discrete analog of the evolution
property for zero crossings. The key, as indicated in Sec-
tion II-A, is a discrete version of the maximum principle,
which is easy to establish.

To formulate the reconstruction method, let Q be a
bounded 4-connected collection of pixels (i, k) with a non-
empty set D = {i| (i, 0) € 2}. Let T be an upper bound
T > max {k|(i, k) € 2}, and define b; to be the data g;,
i € D, blurred to level T:

jE’K‘JT 8-

Finally, denote the set of pixels on the boundary of Q by
da10@ = {(i, k) |(i £ 1, k) ¢ 2},
do.n@ = {(i, k) e B|(i, k + 1) ¢Q},
do.-n® = {(i, k) eQlk > 0, (i, k — 1) ¢ 0}

Then simple but messy algebra allows us to show Theo-
rem 3. ‘

Theorem 3:
Vik * Uitk
4b; = z [——_' = (K pe—jT—k-
I = T11 (LD €de0)D 2 (Kitemjr-k-1
. Kivejr—k-1+ Kij7_41
—Ki_jr-k-1) —
2
(v -y + . 4y
( i+ek t.k)] (k) €02 ik+1
K iy — 4p; K.
=i T=k=1 7 G bedeog ¢ iTRTok

To reconstruct data by the above equation, choose a
connected component of { (i, k)|v(i, k) > 0} (or, re-
spectively, <0). If the component extends to infinity in
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either coordinate, truncate the domain to become a con-
venient bounded collection of pixels, and denote the re-
sult by Q. We store the sets 34,0y, (0, +1){, and D as
defined above. For pixels (i, k) in 8.9, (respectively,
9¢-1,0)2), we store the information v; , and v;,, ; (re-
spectively, v; , and v;_, ;). For pixels (i, k) in 99 ,,%,
we store the data v; ; ., and for 9o —;,{ pixels we store
v;.,. Using the above equation, we choose a T and recon-
struct the blurred data b;. To reconstruct the data g; for i
€ D, it suffices to deblur the b; data by solvirg for g; in
the linear equations defining b;. In fact, the system is
overdetermined, although still poorly conditioned, espe-
cially if | D| or T is large.

In order to make the computations feasible, it is nec-
essary to modify the formulas for a bounded spatial do-
main. For example, a common approach to constructing
a discrete scale-space function involves solving a bounded
domain problem, with —N < i < N, by setting v; , = 0
for i = +N. The blurring kemel X is changed by this
modification, but the proposition carries over with little
change.

There is another version of the formula for b; above,
and thus for the reconstruction of the image data, where
the stored information consists of the precise locations of
the zero crossings, assuming a linear interpolation of val-

_ues between grid points. The gradient data, in the form
of the difference of the neighboring grid values, still need
to be included. With this information, the formulas sim-
plify some, but the information in the mpresentatlon is
clearly equivalent, so we omit the details.

II. COMPLETENESS AND A BRIEF SURVEY OF
RECONSTRUCTIONS

Under certain restrictions on the class of signals, it can
be shown that the zero crossings in scale space form a
complete representation of the signal data. There have
been many different studies and theorems along these lines
for applications to computer vision. An oft-cited study,
for the case of signals in one dimension, is provided by
Logan [28]. Logan’s theorem requires that the function
be bandpass, and satisfy certain technical conditions con-
cerning the signal’s Hilbert transform. Further, the result
is intended for the reconstruction of a function repre-
sented by the zero crossings at exactly one level of reso-
lution. While feasible as a complex analytic result, our
interest here is in the more practical possibility of recon-

struction given zero crossings at multiple scales of reso-

lution in scale space.

More complex analytic results can be used when the
image data are polynomial In fact, when f(x) and thus
Af(x) is a polynomial in x € R", then v(x, t) is a poly-
nomial in (x, t) € B"*'. Accordingly, the zero crossings
are part of the analytic varieties of the polynomial v as
studied in algebraic geometry. It is well known that the
varieties in C" determine the complex polynomial defined
on n complex variables. It is not as commonly used, but
nonetheless true, that an n-dimensional subportion of the
intersection of the analytic variety with R"*' determines
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an irreducible polynomial. A proof of this result, supplied
by Mumford, is given in the Appendix. Related proofs are
given by Huang and Sanz [29] and Curtis, Oppenheim,
and Lim [30]. Thus, the case of polynomial data can be
settled with algebraic geometry.

However, these results depend heavily on the assump-
tion that the data are polynomial. It is obvious that there
are many different functions, even smooth functions, that
have identical zero crossings. Interestingly, the complete-
ness in the case of polynomial data applies equally well
to the scale-space function v(x, t) as to the original data
S (x) or, for that matter, any single level of the scale-space
function v(x, #). That is, the polynomial f(x) is deter-
mined by its zero crossings (providing it is irreducible as
a polynomial), a level of the scale-space function v(x, fp)
is determined by its zero crossings, provxdmg it is irre-
ducible, or the scale-space function v(x, t) is determined
by its zero crossings, providing it is irreducible. In any of
the above cases, f(x) can theoretically be reconstructed.
However, it is in some sense more likely that v(x, ¢) will
be irreducible, and we expect the reconstruction of f from
the function v to be more stable than reconstruction from
a single level of v, or from the zero-crossing curves of f
alone.

Yuille and Poggio [31] prove a similar result: showing
that when Af (x) and hence f(x) is polynomial in x, and
if n = 1, then reconstruction from zero crossings is the-
oretically possible. They refer to the validity of the ob-
servation for larger n. Their method relies on an expan-
sion of the analytic structure of a zero-crossing contour,
using arbitrarily high derivatives of the contour, at two
points of the zero crossing in scale space. While the
method is constructive, it is not likely to lead to stable
reconstructions.

Curtis, Shitz, and Oppenheim [32] and Sanz and Huang
[29] extend the above results to the case when f(x) is a
band-limited function which is irreducible as an entire
function. These results are likewise of an algebraic ge-
ometry nature, and rely on the fact that there is a finite
Fourier series of the band-limited function that provides
a polynomial of several complex variables for represent-
ing f.

Since the determination of a polynomial by its varieties
is essentially an analytic continuation result, stability of
the reconstruction is unlikely. That is, small errors in
measurement of the zero crossings could lead to arbitrar-
ily large errors in the determination of Af (x). Put differ-
ently, there can be widely different initial data leading to
nearly identical zero-crossing data.

Worse, settling the case for polynomial data, or even
irreducible entire band-limited data, says little about the
general case of continuous initial data. Although the
Stone-Weierstrass theorem says that a continuous func-
tion can be uniformly approxunated by a polynomial on a
compact set, the zero crossings depend on the initial data
globally, and the dependence cannot be localized. Fur-
ther, the lack of stability means that the approximation is
irrelevant. The situation is similar to the fact that a poly-
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nomial of a single variable with all real roots is deter-
mined by its zeros, but that given all the zeros of a con-
tinuous function, one knows nothing more than the zeros.

Based on these results of completeness under certain
restrictions, there have been a number of attempts at re-
constructions from zero crossings. The hope is that nat-
ural image data will sufficiently restrict the class of ad-
missible functions that some stable reconstruction method
can be found. We briefly survey below three such at-
tempts. In Section IV, we provide a formulation for a new
attempt at reconstruction.

A. Curtis-Oppenheim

Curtis and Oppenheim, using results that show that
band-limited images are completely represented by their
zero crossings under certain conditions, present some ex-
periments with reconstruction [33]. In their formulation,
they begin with a band-limited image f (x, y), and record
a large number of locations in the (x, y) domain where f
crosses some threshold (such as zero, assuming that f has
both positive and negative regions). These locations are
recorded with great precision, to ultra-subpixel accuracy.
The image is reconstructed from this information. Thus,
in their work, the image is reconstructed from a number
of level-crossing contours. Clearly, the assumption that
the image is band-limited is crucial, for otherwise there
are an infinity of images having precisely the same level
crossings. In essence, the work constitutes reconstruction
from thresholded imagery, but with the understanding that
the image is band-limited, and that the level-crossing con-
tours are recorded with great accuracy.

The method begins by writing the discrete image f as
the inverse Fourier transform of its discrete Fourier trans-
form F:

N—-1 N-1

1 Z Z F(u v)eZnuk/N erl/N

flk 1) =17

This function is interpolated to an entire band-limited pe-
riodic function, f (x, y), given by
N-1N-1
f(x, )’) Z 2 F(u v)eZﬂux/N ery/N

It is the locations of zeros of f(x, y) that are recorded,
say (X, Ya)s n = 1, , K. We can then write the K
equations E

N-1N=1

Z 2 F(u, v)eZtm:../N 2xivya/N _ 0,

u=0 v=0

n=12--,K

If the mean value p of f(x, y) is not zero, then the addi-
tional equation F(0, 0) = uNz is included. Otherwise,
one more equation is needed, giving the location and value
of f(x, y) at a single location where f is nonzero. Assum-
ing the former case, we have K linear equations in the
unknowns F(u, v), (4, v) # (0, 0), where (u, v) ranges
over the known (band-limited) support of F. By using
many more equations than unknowns. and computing the
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least squares solution, reasonable reconstructions are ob-
tained. However, in the examples shown, the number of
independent nonzero spectral components is roughly 200.
Further, the locations of these spectral components were
chosen carefully, in advance, and the image to be recon-
structed was obtained from a full-resolution image by set-
ting all except the 200 Fourier coefficients to zero. By
tiling Fourier space (as Rotem and Zeevi do; see below),
a general image could be reconstructed by this method
using the zero crossings of multiple images, each ob-
tained by filtering the initial image. However, since a 256-
by-256 image contains 64K independent spectral compo-
nents, it is not clear how many levels will be needed.
Nonetheless, the method provides a theoretically possible
means for representation and reconstruction from multiple
images of zero crossings.

B. Rotem-Zeevi

Rotem and Zeevi, in a paper in which they extend the
Logan theorem for application to two-dimensional im-
ages, experiment with reconstructions from zero-crossing
data [34]. Their method is based on first decomposing the
given image f(x, y) into a sum of images f;(x, y), with
each f; obtained from f by a filtering operation in Fourier
space. Each f; has the property that its discrete Fourier
transform has nonzero coefficients in a region that is
bandpass of one octave or less in at least one of the two
spectral dimensions. Further, the low-frequency compo-
nents are omitted from the reconstruction process, and
simply stored as part of the representation, and an attempt
is made to reconstruct only a low-pass version of f, where
all frequencies above half of the maximum are omitted.
Thus, for a 256-by-256 image, where spectral frequencies
range from — 128 to 127, only the frequencies in the range
—64 to 64 are included in the reconstruction, and the
spectral frequencies where both components u and v sat-
isfy |u| < 8, |v| = 8, are stored separately, and ex-
cluded from the reconstruction. The remaining spectral
domain is decomposed into 19 regions, so that there resuit
19 images, fi, k = 1, +, 19. If f, denotes the low-
pass image composed of frequencies below 8, and if g(x,

y) is the high-pass image composed of frequencies above
64 (m either dxmensnon), then

f=f+ ka+g

By keepmg the filters yielding the decomposmon sym-
metric (i.e., including the component for ( —u, —v) if the
coefficient for (u, v) is included), we can be sure that if
fis a real-valued image, then each of the images in the
decomposition will be real valued.

Rotem and Zeevi reconstruct each of the f; from the
information sgn( f;), k = 1, * - -, 19. Since each f, is a
bandpass of f, they correspond, crudely, to the levels of
the scale-space function v that we use to reconstruct f.
However, the analogy is poor, since the f; are true band-
pass images, with one octave or less in frequencies in at
least one of the two spectral dimensions, whereas a level
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of v is only an approximate isotropic bandpass filter of f.
Further,. the number of free variables in any given f; is
small—the greatest number of spectral components used
in any of the f; is 1024, whereas the sgn( f;) have 64K
bits of information, for each k. In any case, the recon-
struction of an f; works as follows.

Suppose that f; is bandpass in the horizontal spectral
dimension. It is then easily shown that each row of f, is
a one-dimensional bandpass signal. (Alternatively, if f, is
bandpass in the vertical spectral dimension, then columns
of f; are bandpass.) The spectral support of the rows or
columns is the corresponding band in the horizontal or
vertical dimension of the spectral domain of f,. The re-
construction begins by finding individual rows or columns
that can be reconstructed from the sign data along the row
or column. For a one-dimensional row S which is band-
pass, denote by B, the bandpass filter; thus, S = B,(S).
Given the data sgn(S), let So = B,(sgn(S)). The algo-
rithm to recover S proceeds iteratively, beginning with S,
and iteratively setting

Sae1 = S, = c[By(sgn(S,)) — So-

The iteration is not guaranteed to converge, but if it does,
one generally has that sgn(S,) = sgn(S). Providing all
the conditions for uniqueness of the representation of the
one-dimensional signal by its zero crossing are met (i.e.,
Logan’s conditions), then this will imply that S, and §
differ only by a multiplicative constant. Having recon-
structed a number of rows (or columns), modulo multi-
plicative constants, the one-dimensional signals must be
individually scaled. By reconstructing a one-dimensional
signal in a transverse direction, ratios can be obtained to
scale the individual rows (or columns) modulo a single
multiplicative constant, relative to the whole image. If the
image is bandpass in the vertical dimension, then columns
can be reconstructed. If the image is only low-pass in this
dimension, Zeevi and Rotem show that it will be band-
pass in a diagonal direction, and so some diagonal can be
reconstructed. In practice, they reconstruct several trans-
verse one-dimensional signals, and use averages to best
scale the individual rows. Reconstruction along columns
that do not initially converge can be assisted by initial-
ization with data obtained from diagonals or rows, and
from horizontally blurring the partially reconstructed im-
age.

gOnce each f} is reconstructed to within a multiplicative
scale factor. a scale factor is applied, based on the as-
sumption that the variance of each f is known in advance.
The final reconstruction of f is performed using the recon-
structed f;, the stored f,, and by omitting g. The result
shown in their paper is visually good, and they show that
errors are mostly concentrated on the edges of the original
image.

C. Sanz-Huang

More recently, Sanz and Huang have shown examples
of reconstructions.of images using zero crossings of the
scale-space function recorded at four levels [29].
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First, four levels of the scale-space function v(x, y, 1;)
are chosen, i = 1, 2, 3, 4, where v is the scale-space
function of the initial image f. The information that is
stored in the representation is sgn(v(x, y, t;)) fori = 1,
* - -, 4. The operator that takes f(x, y) to L v(x, y, #;)
is linear, and a pseudoinverse is computed. This operator,
which cannot restore the very low spectral components or
the very high spectral components, is nonetheless a con-
volution operator (assuming an unbounded domain), given
by convolution against a function ¢. That is,

f=o*2u(, 1)
:
The reconstruction algorithm proceeds iteratively, begin-
ning with
So=¢* 2‘3 sgn(v(-, -, 1;)).
Given S, the next iteration is obtained by first computing
the scale-space levels of the estimate S,
vn(" ) ti) = AK(" i) ti) * Sm
and then modifying v, so that the data have the right sign
Ua(x, y, 1;)

.

Finally, the #’s are summed and filtered to obtain the next
estimate

if sgn(v(x,y, 1)) >0
if sgn(v(x, y, )) < 0.

v,,(x, ) ti)l
vn(x’ Y, ti)l

sn+l = ¢ * ;ﬁn(.) "ti)‘

This procedure is not guaranteed to converge, but was
used for experimental purposes anyway. When applied to
large, natural grayscale images, they resulted in recon-
structions that had scale-space functions whose signs
agreed, on the four levels, with the original sign data of
the representation, at roughly 80 percent of the pixels.
However, the reconstructions, while clearly related to the
originals, had a rather stylized or ‘‘impressionistic’’ ap-
pearance, and many perceptual differences from the orig-
inals.

D. Comments

Each of the above reconstruction techniques attempts
to find a function that satisfies the given zero-crossing in-
formation by taking some measurement of the error of the
zero crossings of the reconstruction with the desired zero
crossings. We might call this generic approach one of
minimizing data error: the error in realizing the zero-
crossing data. As yet another version of minimizing data
error, we could take as a measure of the error the square
integral of the L2 difference between the sign of the scale-

space function and the desired sign of the scale-space
function:

S: |sen(v(-, -, 1)) = sen(wo(-, -, r))“2 d,
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where sgn () is the given data in scale space, and v =
AK * f. This functional is not differentiable with respect
to the reconstructed image f due to the discontinuous sig-
num function. However, if we replace the signum func-
tion sgn with a C* approximate, say y, then the error
measure becomes a smooth function of the f data. Sup-
pose that instead of being given the sign of the scale-space
data, we are instead given So(x, y, t) = Y (vo(x, y, t)).
Suppose that f is the current estimate of the original im-
age. Then the gradient of the error measure with respect
to the estimate f is proportional to

[ [0eC =5t

~W(v(es 1 D) * AK|(x, y, 1)

where v = AK * f. Thus, a simple gradient descent pro-
cedure can be formulated to minimize the error. The re-
sult is a particularly simple linear iterative process. Of
course, the representation is now the approximate signum
of the v, data, ¥ (v,), rather than the simple boolean in-
formation about the sign of the filtered data or the location
of the zero crossings. Further, convergence is not guar-
anteed and can be very slow. If the true signum data are
used as the target data in place of Sy, then convergence of
the iterative process is much worse.

Instead of pursuing this approach, we instead develop
the idea of minimizing equatxon error, discussed in the
next section.

IV. FORMULATION AND METHODS
A. Egquation Error Minimization

In this section, we describe a method for reconstructing
an image from its zero crossings based on minimizing
equation error. The method was reported for a different
application (deblurring) in conference proceedings [35],
and preliminary results on reconstructions from zero
crossings were shown at a different conference [36]. The
use of minimization of equation error to solve ill-condi-
tioned inverse problems is motivated by a related tech-
nique that has been applied to identification problems for
elliptic equations [37], such as in porous-media flow
problems (i.e., oil recovery). In these applications, the
method proved more favorable than more typical identi-
fication problem methods, related to minimization of data
error. Although one can provide heuristic arguments mo-
tivating the selection of equation error minimization for
inverse problems, a thorough mathematical justification
of the stability and advantages of the method is still lack-
ing.

Our approach to reconstruction from zero crossings is
to reconstruct the function v in scale space, and make use
of the fact that v satisfies the Heat Equation. The discre-
tized data can be viewed as a multilevel grid of units com-
municating locally. The essence of the idea is that the
units should achieve values satisfying the given zero-
crossing constraints, and also satisfying, to the extent
possible, a discrete version of the Heat Equation. As in a
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network, the values are updated iteratively using infor-
mation from local values to minimize a measure of error.
As such, the method is amenable to implementation using
networks of analog processors connected in a mesh by
tunable resistive links.

We first sketch the formulation of the approach in a
continuous domain. Consider the initial image f(x) and
its scale-space Laplacian-of-Gaussian filtered data v, (x,
t). We assume that the zero crossings in scale space of v,
are given, in the form of knowledge of sgn{vy(x, ¢)] at
all points. We then pose the problem: ’

- 2
v
Av—at

subject to sgn[v(x, 1)] = sgn[vy(x, 1)}].

Here, the norm || -
R x R*. .

We in fact advocate a slightly different measure of the

equation error. We transform the Heat Equation, a sec-

ond-order partial differential equation, into a first-order
system

Find v minimizing

|| is the L? norm over the scale space

Vv=a,‘
ov
V-o=—.
? at

The problem is now reformulated as the search for a pair
of functions (v, o) minimizing

2
v 2
“V . a—;“ + [|Vv - of

subject to

sgn [v(x, £)] = sgn [vo(x, 7)]

These problems can be given a more precise formula-
tion using the theory of variational inequalities [38]. The
spaces of admissible functions (functions satisfying the
inequality constraints) for the unknowns v and o should
be defined as convex subsets of appropriate Sobolev
spaces. When this is done, the problem becomes a stan-
dard ‘‘obstacle problem,’’ for which existence and
uniqueness of a solution can easily be shown. Further, the
only local minimum of the functional is also the global
minimum. However, we can only be sure that the Heat
Equation is satisfied if the error is actually zero. Accord-
ingly, we know that if we minimize the equation error,
we (at least in theory) will have no problems with local

‘minima, and will find a single global minimum; further,

we know that we can always find a global minimum, but
that we have a solution to our reconstruction problem (that
is, a solution to the Heat Equation with the given con-
staints) only if the error at that minimum is zero. In gen-
eral, existence of a solution to the -Heat Equation with
given sign constraints is not guaranteed.

Numerical methods for the solution of constrained
quadratic optimization problems, such as this one, are
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much studied in numerical analysxs Related optimization
problems frequently occur in computer vision [39]. In the
next two sections, we discuss some of the implementation
details for the experiments described in Section V, con-
centrating on the discrete formulation peculiar to the
equation error minimization problem for reconstructions
from zero crossings.

B. Discrete Formulation

We now describe the discrete formulation of these
ideas. The case of a finite-difference discretization for n
= 1 will be described in some detail. Extension to two
spatial dimensions involves some complications which
will be summarized more briefly. A finite-element for-
mulation is also given for the case n = 1.

1) One Spatial Dimension: From the given initial data
fi» we recursively construct the scale-space function v;,
from the formulas:

Vio = H.ﬁ'-l - 2f; +f;-l]

Viker = $Uicix + 2006 + Vi1 4]

To make the computation feasible, the space and scale
domains must be bounded. Various approaches to han-
dling the spatial border points are possible. A particularly
convenient one, analogous to Neumann boundary condi-
tions, is defined as follows. Let us assume that f; is de-
fined for0 < i < N — 1. We then extend f; to be penodlc
with period N, according to the formulas

fvvi = fu-1-is
all i.

i=01,---,N—-1,

f2N+i = Jis

Then the values v; ; are defined for all i and all k = 0.
The scale-space function v; ; is periodic with period 2N
in the variable i, and has the same structure as the ex-
tended f; data. Specifically, the data from i = 0 e ,N
— 1 are repeated in reverse order from i = N, 2N
— 1, and then extended as a 2N block periodlcally (see
Fig. 2).

The v data approximate the Laplacian applied to the
Gaussian-blurred image data. Associated with the com-
puted scale-space data v; ; are the sign data S; ;, which
are defined to be 1, 0, or —1 according to whether v; ; is
positive, zero, or negative, respectively. In practice, the
v data and resulting S data are calculated only for 0 < i

= N -1, and for0 < k < T, for some arbitrary cutoff

T.

Having computed the representation in the form of the
S; i data, we proceed to the reconstruction. The discrete
reformulation of the Heat Equation as a first-order system
involves the introduction of a second grid of data, o; ,
which ideally satisfies

Oik = %[vi,k - vkl
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——  afm—— °-—*—-”-44———- .
Fig. 2. Borders are handled by extending the original data f. The data f;,
*, fu- are repeated alternately from left to right, and then from right
to left, to form a doubly infinite signal that is periodic with period 2N.

Note that the values at the endpoints, e.g., the datum fy _ ,, appears twice
-in succession.

Then the equation error is defined by the quadratic func-
tional

N— 2
E=Y X (vu zv:-l.k_ai'k)

k20 i=0
o, 0ix\
i+ 1,k — Oik
+ (vi,lc+l “UkT T 5 ) .
We minimize E subject to the constraints
Vi, =20 whenS;;, =1
Vig = 0 when S,-'k = —1.

A further constraint is needed to ensure that the solution
v = 0 is not obtained. In principle, this could be done by
specifying a single value for v at some node. In practice,
such a constraint would propagate only very slowly
through the grid, making convergence difficult. We chose
instead to specify v at the maximum level k = T, where
it is ordinarily quite smooth. Little is added to the repre-
sentation by inclusion of the v; r data, since these data
could be quite accurately represented by a very few float-
ing-point values specifying the low-order discrete Fourier
coefficients. Recall that a similar approach is utilized by
Zeevi and Rotem (Section ITI-B). (In experiments involv-
ing fixed gradient data along the zero crossings, the zero
solution is no longer admissible, and the v; r data are not
included in the representation.)

As in the continuous case, the minimization of the
(coercive), quadratic functional on a convex set results in
a unique local minimum which is also the global mini-
mum. The difficulty comes about because of the large
number of variables. Without care, convergence can be
extremely slow. Further, we do not know in advance how
‘‘shallow’’ the minimum will be on the convex set. When
the minimum is shallow, then the problem is unstable,
and we expect to see dependence on initial conditions in
the iterative minimization algorithms. Such is the case for
the experiments with reconstructions from zero crossings
alone. When the minimum is sharper, convergence should
be faster and independent of the initial conditions, as is
the case in the experiments with reconstructions from zero
crossings with gradient information.

In the experiments described in Section V, we used a
conjugate-gradient approach to minimizing the error func-
tional. The inequality constraints were imposed by means
of a penalization method, adding to E a term that grows
quadratically in the variable whenever a constraint is vi-
olated. By placing a large weight on the penalization term,
a functional suitable for minimizing is obtained that will
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ensure, upon convergence, that the constraints hold ap-

proximately. Specifically, we use a penalization term of
the‘ form

A 5‘22 |sgn (vie) - S:.kl * Vi

The gradient of the equation error with respect to the
unknowns can be represented as a sum of discrete con-
volutions applied to the data v and o, which may be re-
garded as image arrays. Then for E equal to the equation
error as above, the values of dE /dv; , and 3E /dg; , form
image arrays also, which we will denote by V,E and V E.
The formulas (valid for k > Q) are

C 0 -4 0 0 0 o
VE=|-1 10 -1|*v+|0 -4 4|=*g,
| 0 -4 o0 0 2 -2
-2 20 00 O
VE=| 4 -4 0|*v+|—-1 6 —1]|xg.
L 0 00 00 0

Here, the three-by-three arrays are masks that are em-
ployed in three-by-three local convolutions against the ar-
ray data v and o. The boundaries can be conveniently han-
dled by placing borders one pixel wide around the data
arrays. These border pixels are set so as to satisfy the
chosen boundary conditions. The sign penailty adds a term

A‘sgn (v) - S| ‘v
to V,E.

The minimization by conjugate gradients [40] is imple-
mented as follows. Observe that the equation error E as
formulated above is a quadratic functional of the un-
knowns v and 0. Combining the unknowns v and ¢ into a
single vector, say x, the equation error is thus equivalent
to the quadratic functional

E=x"ax - h'x + E,

for some positive definite matrix 4, vector k, and scalar
constant E,. Adding the penalization terms to E maintains
the same basic form, although the matrix 4 becomes a
function of v. Nonzero values for the quantities 4 and E,
arise from fixed grid values on the boundaries. The
method of conjugate gradients is ordinarily formulated as
the minimization of a functional of exactly this form. The
computation involves forming the inner products of cer-
tain vectors with each other, and products of vectors with
the matrix 4. However, there is no need to find A4, A, and
E, explicitly. Instead, we will make use of the fact that
their products with relevant vectors have known forms.
Observe that

VE = Ax — h.

Hence, if p is an arbitrary vector (e.g., one of the con-
jugate gradients), the product Ap can be computed by
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evaluating the expression of VE, according to the con-
volutions given above, with p substituted for x, which is
the combined v and o data, and A set to zero. Setting 4 to
zero is achieved simply by replacing all constants on the
boundaries by zeros. This also has the effect of setting E,
to zero. The other matrix product of interest, p’Ap, is
computed by evaluating directly the expression for E,

_ again substituting p for x and setting boundary constants

to zero. Note that if reflected boundary conditions are in
effect, then values for p must be reflected in the same way.
Thus, we see that all the matrix products necessary for a
conjugate gradient calculation can be computed without
knowing A explicitly. : A

It is worth noting that this formulation of the conjugate
gradient minimization is readily adapted to heterogeneous
constraints according to which v or o are held fixed at
arbitrary locations in the grid. One simply sets the values
of p to 0 at the corresponding positions. In the iterative
updating, those points are skipped over, although they en-
ter into the calculation of the equation error and the matrix
products. .

2) Two Spatial Dimensions: We now tum to the finite-
difference discretization for the case n = 2. We define the
scale-space grid as vy, , k = 0, and formulate the Heat
Equation as

v = lUi-ni-nk T 20im 0 F Vs
+ 201k + Wiju + 20404
+ Visrjork + 2Wierjk F Vierjerkl
(2-D Discrete Heat Equation)

Reformulation of this equation as a first-order system is
not so straightforward as in the one-dimensional case. A
fairly natural approach proceeds with introduction of

variables a{',-f,,, 6{2,3;‘, and w; j , which ideally satisfy

m Vijk ~ Vi-1jk

ol.],k = ) ’

@ _ Vijk ~ Vij-1k
Oijk = I S

(N (m

_Oisrjk ~ ik

Wijk — Vijk = = 5

2 9,
and |

) )
Oij+i.k — Oijk

2

When these equations hold exactly, the data v are blurred
from level k to level k + 1 by convolution against the two-
dimensional discrete Heat Equation. Analogously to the
n = 1 case, the equations above can be converted to a
quadratic measure of equation error in the unknown
variables v, w, ¢''?, and o‘?’. The sign constraints on v
can again be implemented using quadratic penalty terms.

Uijk+1 — Wijk =
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The resulting error functional can then be minimized by
a conjugate-gradient procedure in the same way as de-
scribed for n = 1. It is worth noting that this approach
results in equations for the gradient of the equation error
which are linear in the unknowns, and that a component
of the gradient with respect to an unknown at (i, j, k)
depends only on values at neighboring grid points. Thus,
this formulation is well suited to a hardware implemen-
tation involving only small-kernel convolutions and (for
the conjugate-gradient method) accumulation of simple
global sums.

3) A Finite Element Approach: The discretization of
the Heat Equation can alternatively proceed by a finite-
element approach [41]. For the case n = 1, we assume a
regular rectangular discrete grid, (i - h, k - 5),i = 0,
***N-1landk =0,1, - - . Here h and s specify the
scaling of the two axes relative to each other. (In the fi-
nite-difference method, we implicitly set h = 1/2, s =
1.) The simplest elements can be formed by splitting each
grid square into two triangular regions, along one of the
two chosen diagonals (standard triangular elements); see
Fig. 3. The unknown functions, v and o, can be repre-
sented as continuous piecewise linear functions, linear
within each triangular region, by simply specifying the
value of the functions at each grid point. Accordingly, the
unknowns are the values of v (ih, ks) and o(ih, ks), for
all i and k, and will be denoted by v; ; and g; ;. The simple
piecewise linear elements suffice since the equation was
converted to a first-order system. It is then a simple (albeit
tedious) matter to compute the equation error for such
functions in terms of the unknowns. Like the finite-dif-
ference formulation, it turns out that the equation error is
a quadratic function in the unknowns, and that there is
locality of dependence.

The case h = 1/2, s = 1 is very common, and so we
will give the gradient equations for this case. As was done
for the finite-difference case, the result can be represented
as a sum of discrete convolutions, with the data v and o
considered as image arrays. Once again, except near bor-

- der pixels, these gradient values 3E/dv; , and 0E/do; ;
can be viewed as images obtained by convolutions against
the grid arrays v; ; and o; ;. The formulas are

0 -4 0} -4 4 0
1

V.E=|-1 10 -1 *v+§ 1 -6 51 *a,

0 -4 0 0o 2 =2
and

-2 2 0 1 1 0
V,E=-;- 5 -6 1 *v+% -2 12 -2 |*o.

0 4 -4 0 1 1

Separate equations are needed for k = 0 (3E/dv;  and
dE/do; o) and on the borders. Note that a certain amount
of asymmetry results simply from choosing triangular ele-
ments based on one of two possible diagonal cuts through
each rectangular grid. The sign penalty adds the same term
to V,.E as for the finite-difference formulation.
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C. Image Reconstruction from Scale-Space Data

Once the approximate scale-space function & has been
reconstructed by the above minimization process, there
remains the problem of obtaining the image fto which it
corresponds. First, the discrete reconstructed data are
summed over the scale dimension to give .

T

F= - 2 ﬁk.

k=0
The 7 data can be seen to be the discrete approximation
to f — ur,,, where the u data are defined in terms of
convolution of f against a discrete Gaussian kemel, X ,,
as defined in Section II-B-2. The problem of computing
the approximation f to f thus reduces to inverting I —
G4y, where Gr, | is the operator yielding T + 1 levels
of Gaussian blur. That is, (I — Gr+,)f = 7. The sim-
plest and cheapest method is simply to incorporate the
ur,, data into the representation, so that an approxima-
tion to the original f can be obtained by computing 7 and
adding ur, ;. Since the ur, , data are quite blurry, includ-
ing them does not add much information to the represen-
tation.

However, since the operator I — G, is well behaved,
it is possible to reconstruct f modulo an additive constant
and a multiplicative constant, without inclusion of the
ur,, data in the representation, by computing the pseu-
doinverse of I — G, using a singular-value decompo-
sition (SVD). The resulting falways has an average value
of zero; therefore, the average value of the original image
is added to f to complete the reconstruction. Unfortu-

- nately, computing the SVD can be prohibitively expen-

sive for images larger than about 16 by 16.

Providing the operator / — Gr., can be viewed as a
convolution, the singular-value decomposition can be
computed efficiently, even for large images, using the dis-
crete Fourier transform of I — G, or, equivalently, the
inversion may be done by means of the discrete convo-
lution theorem. Depending upon the method of handling
borders, I — G, , may or may not be a convolution. If
a Fourier method is applied when the borders are handled
in such a way that the operator is not a convolution, then
even though border effects are confined to a neighborhood
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of a few pixels from the border, the inversion yields poor
results. However, some important border methods can be
viewed as convolutions. In particular, for the Neumann
boundary conditions model, as discussed in the previous
section, the operator is equivalent to a convolution oper-
ation against a doubly periodic image that is twice the size
of the original in each dimension, obtained by reflecting
the image in each dimension. When the Fourier method
is used to invert the operator I — Gr,, computed using
the doubly reflected periodic image, the results are excel-
lent.

The inversion is complicated by the singularity that
arises out of the additive-constant ambiguity: the ‘‘DC-
component’’ of I — Gr,, has zero amplitude. Further,
the Fourier coefficients belonging to low frequencies will
be small in value. A cutoff must be chosen judiciously in
order to avoid amplifying low-frequency errors in the in-
version process.

Whether the operator I — G is a convolution or not,
provided it is linear, and provided all eigenvalues of G
are strictly less than one, the inversion may be obtained
from the series expansion

(I - Gr+|)—l = m§0 (Gr+|)m,

which can usually be computed quite easily, if somewhat
intensively.

The results obtained by using the appropriate method
for the given boundary conditions are, in all cases, very
similar to those obtained using the simpler method by
adding ur, , to 7 as described earlier, assuming that uy,
is part of the representation. Consequently, the recon-
structions shown below were performed by the latter
method.

V. REesuLTs
A. One-Dimensional Experiments

Our first experiments were done with one-dimensional
data taken from a scanline of a digitized image. Fig. 4
shows a plot of the original data. The Laplacian monolith
vp of the original image was computed, as described in
Section IV-B-1, to a depth of 40 levels of blurring by the
‘1 2 1”* mask. Fig. 5 shows the sign of the function v,,
using black for negative regions, white for positive re-
gions, and gray for pixels whose values lie within ma-
chine-precision zero. Reconstruction proceeded by min-
imization of equation error, using conjugate gradients with
a penalty term for values of v which differ in sign from
the corresponding points of vy, and holding the topmost
(most blurred) level fixed equal to the corresponding level
of vo. The methods for the calculation of the gradients and
of the construction were described in Sections [V-B-1 and
IV-C. The initial estimate for v was sgn (v,), and the
initial estimate for o was the gradient of this initial v.

The computation was run for over 40 000 iterations,
achieving an equation error plus penalty of less than 10~'°
with only 77 sign violations out of 5120 grid points. (It

T ——

2125

1+

0

I U | |

1 2 o e m
Fig. 4. A scanline taken from a digitized natural image. There are 128
pixels in the scanline.

Fig. 5. The sign of the scale-space filtered data shown in Fig. 4. Positive
regions are shown in white, negative in black, and values very near zero
are in gray. The zero crossings occur on the borders between black and
white regions, and along contours within the gray regions.

1 I 1 ]
1 2 64 % 128
Fig. 6. A reconstruction fof a signal from the reconstructed Laplacian-of-
Gaussian filtered data v. This function should be the same as Fig. 4 if
stable reconstruction from zero crossings were possible.

ILLANLSL

Fig. 7. The sign of the scale-space filtered data shown in Fig. 4. The data
are nearly identical to those of Fig. 5, showing that the signals in Figs.
4 and 6 have virtually the same zero crossings for their Laplacian-of-
Gaussian filtered data at all scales of resolution.

should be noted that the sign violations are small: the rms
average value of the violations is only 10~ of the rms
average value of v.) The sum of levels was used to obtain
the reconstructed function, by the pseudoinverse method
described in Section IV-C. This reconstructed function is
shown in Fig. 6; and Fig. 7 shows its sign of Laplacian
monolith.

It is evident that the zero crossings of the original and
reconstructed functions are essentially identical. Also,
major features of the signal are reproduced, although there
are significant differences in the small-scale details. We
conclude that while the reconstruction from zero cross-
ings preserves some of the essential information about the
signal, it is unstable with respect to high-frequency com-
ponents.

Next, the reconstruction process was applied to the
same data, but this time holding fixed the values of ¢ along
the zero crossings of 1, and leaving free the values of ¢
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at maximum blur. In this way, we have specified the zero
crossings and the gradient information at the zero cross-
ings through 40 levels in scale space. After approximately
6000 iterations, the equation error plus penalty fell below
107", The reconstructed function is not shown because
it is visually indistinguishable from the original signal.
The reconstruction function differed from the original by
less than 107° at all points (on an intensity scale of 0 to
1). This result can be taken as empirical evidence that the
representation based on zero crossings plus gradient data
for one-dimensional images is complete and stable.

B. Two-Dimensional Experiments

We next turn our attention to two-dimensional images.
The original images are 64 X 64 pixels with 8-bit inten-
sity resolution. Because of computing constraints, only 20
levels of scale were used in the reconstructions. Each suc-
cessive level is obtained from the previous by means of
the 2-D discrete Heat Equation, given in Section IV-B-2.
Fig. 8 shows an original image of a pagoda and the result
of reconstruction from zero crossings. The equation-error
minimization was run for approximately 2000 iterations.
The reconstruction was computed by subtracting the sum
of levels of the reconstructed Laplacian monolith from the
blurred original image, as described in Section IV-C. As
can be seen, the two images are perceptually different.
Mainly, the high-frequency content is not well recon-
structed, so that the reconstruction appears as a slightly
blurred version of the original. Despite the evident differ-
ences between the two images, however, the zero cross-
ings of the two images are nearly identical. There are sign
differences at less than 2 percent of the points in the
20-layer monolith, concentrated in the bottom (high-fre-
quency) layers. Virtually all of these sign differences are
adjacent to zero crossings, causing at most a one-pixel
shift in the location of the zero crossing.

The reconstruction by equation error minimization is
sensitive to the initial guess used to start the conjugate-
gradient iteration. For the reconstruction in Fig. 8(b), the
initial Laplacian monolith contained values of +1 every-
where, with the sign matching the required sign at each
point. The input image magnitude was in the range [O,
255]. Fig. 9 shows the results obtained using initial val-
ues of +256 instead. Even after running for nearly 20 000
iterations, this reconstruction shows considerable noise
and artifacts. These artifacts take the form of strong pos-
itive values side-by-side with strong negative values,
which largely cancel each other out in the blurring pro-
cess. Once again, the zero crossings of the reconstructed
image in Fig. 9 are nearly the same as those of the original
image. The differences between the reconstructed images
(Figs. 8(b) and 9) and the original [Fig. 8(a)] can be taken
as an empirical demonstration of the lack of stability of
the representation based on zero crossings alone.

To show the similarities of the zero-crossing represen-
tations, we show the sign of the Laplacian-of-Gaussian
for the original image and the reconstructed images. in
Fig. 10. ut a sampling of levels. The zero crossings are
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Fig. 8. An original image, of a Japanese pagoda, and a reconstruction from
the zero crossings in scale space.

Fig. 9. Another reconstruction of the pagoda image of Fig. 8(a), using a
different initialization.

consequently at the borders between black and white re-
gions. As can be seen, there are some differences between
the zero crossings, especially at the bottom levels. How-
ever, as noted before, the differences consist almost ex-
clusively of a one-pixel displacement in the location of
the zero crossings. This is more easily seen when one dis-
plays the zero crossings as curves, and flickers between
the two images.

It is worth emphasizing that the sign of Laplacian-of-
Gaussian in Fig. 10(b) was computed from the recon-
structed image, and is not the sign of the reconstructed
monolith. The solution method involves the reconstruc-
tion of a function in scale space, #, which approximately
satisfies the heat equation, subject to a penalty term which
tends to make sgn () agree with the given sgn (vp). The
resulting &, summed over scale space, is used to recon-
struct an approximation f to the original image f. The La-
placian-of-Gaussian computed from f, call it v7, should
approximate g, the Laplacian-of-Gaussian of the original
image f. However, each of the scale-space functions vy,
o, and vy, is different. It is the sign of v7 which is shown
in Fig. 10, representing the true locations of the zero
crossings of f. Accordingly, Figs. 8(a) and (b) and 9 rep-
resent three images whose zero crossings are nearly the
same at all levels, and yet have substantially different nu-
merical and perceptual values. Thus, similarly to the one-
dimensional case described earlier, these results empiri-
cally establish the instability of the zero-crossing repre-
sentation, when zero crossings are used alone. Of course,
one should modify this broad statement with the note that
a particular method of handling borders has been speci-
fied, and the image comes from a particular class of im-
ages.

The image in Fig. 8(a) contains a large number of sharp
edges. and thus high-frequency components. It is known
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subpg pago-pegu subpg-pegu
Fig. 10. Levels 0, 3. 6.9, 12, 15, and 18 of the sign of the Laplacian-of-
Gaussian *‘monolith’* of (left column) the original image, (middle col-

umn) the reconstructed image Fig. 8(b), and (right column) the recon-
structed image Fig. 9.

Fig. 11. An original image, and the reconstruction using the zero cross-

ings. The original image is relatively free of high-frequency compo-
nents. .

that in the conjugate-gradient method of minimizing
equation error, the low-fequency components will con-
verge before the high trequencies. In Fig. 11. we show a

standard test image. The image has significantly smaller
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girl—pegu'64
Fig. 12. Levels 0, 3, 6, 9, 12, 15, and 18 of the sign of the Laplacian

monolith of (left column) the original image, (second column) the re-
constructed image of Fig. 11.

girl.64

Fourier components (nearly a factor of 10, on average) at
the higher fequencies as compared to the image of the
pagoda, in Fig. 8. The reconstruction from zero crossings
of this image works quite well, as shown in Fig. 11(b).
Again there are in fact some significant numerical differ-
ences between the original and reconstruction in Fig. 11,
but the reconstructed image is perceptually similar to the
original, except for fine details. The signs of the Lapla-
cian-of-Gaussians of the images are shown in Fig. 12, and
are essentially the same, as in Fig. 10. Once again, there
are minor differences at the low levels (high frequencies).

In another experiment, not shown, using an even softer
original image in which fine detail was relatively lacking,
the reconstructed image was perceptually almost identical
to the original. Further, the iterative process for recon-
structing ¢ converged somewhat more quickly to a low
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Fig. 13. A reconstruction of the pagoda image [Fig. 8(a)] using Zero cross-
ings and gradient data along the zero crossings.

Fig. 14. A reconstruction of the pagoda image [Fig. 8(a)] using zero cross-
ings and gradient data along zero crossings, with the gradient contami-
nated by noise of relative magnitude 1/256 as described in the text.

equation error with this image than with the image of the
pagoda.

In Fig. 13, we show the result of a reconstruction of
Fig. 8(a), where the representation by zero crossings has
been enhanced with the value of the gradients along the
zero crossing. The reconstruction is now stable, accurate,
and fast. There are minor numerical differences, but no
major perceptual differences between the original and the
reconstruction. Of course, the amount of data in the entire
representation exceeds the information content in the
original image, since at every zero-crossing point on every
level, a value of the magnitude of the gradient of the fil-
tered image must be stored. Since these values are stored
as floating-point numbers, the entire data structure is in
no way a compaction of the original image. However, a
compact code is not the objective of the representation by
zero crossings, so that at this junction, we can conclude
that a representation that includes, with the zero cross-
ings, the gradient data along the zero crossings is empir-
ically complete and stable.

In other experiments using gradient data, we have found
that reconstruction is stable for all kinds of images. Noise
can be added to the gradient data, and stable reconstruc-
tion is still not difficult. For Fig. 14, multiplicative noise
in the range of 1 + 1/256 was applied to the gradient

-values along the zero crossings before reconstruction. The
noise simulates storing the gradient values with 8-bit pre-
cision, and still yields a good representation. However,
even with 8-bit values for the gradients, the total amount
of data in the typical representation exceeds the data con-
tent of the original image.

In Fig. 15, we show the same image reconstructed from
a representation using the zero crossings together with 10
percent of the gradient values. The locations of the gra-
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Fig. 15. A-reconstruction of the pagoda image [Fig. 8(a)] using zero cross-

ings and approximately 10 percent of the gradient data along the zero
crossings. )

Fig. 16. A reconstruction of the pagoda image [Fig. 8(a)) using zero cross-

ings together with data along zero crossings in the bottom two levels
only.

dient values were chosen at random from the set of all
zero-crossing pixels. Reconstruction is much improved

from the zero crossings alone. However, using only 10

percent of the gradient values, some noise is present in
the reconstruction. If the percentage of gradient values
retained is increased, then the reconstruction is improved.
Indeed, with 50 percent of the gradient values, recon-
struction is approximately as good as in Fig. 13, where
100 percent of the gradient values were retained. Good
reconstructions can also be obtained by concentrating the
gradient data in the higher-frequency levels. Fig. 16
shows a reconstruction for which gradients were specified
on all zero crossings in the bottom two levels, and no-
where else. The number of zero crossings at which gra-
dients were specified came to about 22 percent of the to-
tal. The reconstruction is nearly as good as that for which
gradients were completely specified at all levels. This re-
sult shows how the instability is greatest for the high fre-
quencies: when these are suitably controlled, the recon-
struction proceeds stably.

VI. CONCLUSIONS

Despite the enthusiasm for zero crossings in multi-
resolution representations that was prevalent in the com-
puter vision research community in the early 1980’s, their

‘use has declined considerably, in favor of other edge de-

tection and feature detection techniques. Where zero
crossings are still used, the system generally incorporates
some measure of the gradient along the zero crossings.
such as a thresholding operation to eliminate zero cross-
ings with low gradients.

The analyses and results in this paper tend to corrobor-
ate the wisdom of this trend. Specifically, we have seen
that there exist distinct images with quite similar zero-
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crossing surfaces (at least through a large range of scale
space), giving an empirical example of the instability of
zero crossings alone as an intermediate representation. We
have also demonstrated, again empirically, that recon-
struction from zero crossings together with gradient val-
ues along the zero crossings is possible and stable. The
chief disadvantage of this representation is that there is
much redundancy in the bulk of data included in the rep-
resentation.

The many mathematical results showing that the zero
crossings form a complete representation under analytical
assumptions, we have seen, are primarily based on ana-
lytic continuation results, and thus suggest an unstable
representation. The likely situation is that the zero cross-
ings alone are enough to be complete, in most cases, but
insufficient to provide stability. One might hope that the
inclusion of a little additional information will make the
entire representation stable, but short of adding all the
gradient information along the zero crossings, this re-
mains to be seen. Preliminary experiments are not en-
couraging.

The mathematical analysis of a representation fre-
quently will occur after the technique has been proven in-
the-field, or has been largely discarded. Such is probably
the case with the analysis of zero crossings for computer
vision applications. We could hope to establish a mathe-
matical analysis of the stability of these representations,
rather than merely the empirical results cited here, but for
vision applications these theorems would be largely irrel-
evant.

The technique of minimizing equation error for solving
the inverse problem of reconstruction from a representa-
tion, however, seems to yield far better results than meth-
ods involving the minimization of data error, at least for
the applications studied here. We expect that the tech-
nique will be useful for other inverse problems, and pre-
sumably some in the computer vision field. The general
methodology of studying a representation in terms of its
mathematical properties, and developing reconstruction
methods to evaluate the stability and variations in the fi-
bers, in analogy with the study undertaken here, is highly
recommended.

APPENDIX

We show that if two irreducible polynomials with real
coefficients in n real variables share in common the same
(n — 1-dimensional) zero crossing (even for just an open
patch), then the two polynomials are the same. This proof
was supplied by Mumford. We first prove an analog of
the decomposition theorem for real algebraic varieties.

Proposition 1: Let ™ C R[xy, X3, - = -, x,] be a prime
ideal and let # = the height of 7 (i.e., the length of a
maximal chain of prime ideals: :

0 =mMGEmEMmE "~ & m=m

Then if V () is the locus of zeros in " shared by all
polynomials in the ideal = (the real variety of the ideal
7), then ¥ () is the union of real submanifolds of " of
dimension n — h and less.
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Proof: By the standard decomposition theorem, the
complex variety V() € C", which is the locus of com-
plex zeros of the polynomials in 7 viewed as polynomials
of n complex variables, breaks up into a smooth part,
which is always an n — h-dimensional complex subman-
ifold of C", and a singular part, which is a finite union of
subsets of the form V(x’'), with =’ being a prime ideal
satisfying * & =’ (and thus 7' is of greater height). The
smooth part intersects R" in an n — h-dimensional real
submanifold of R", and so the proposition follows by de-
creasing induction on the height of the prime ideal. The
main result is Proposition 2.

Proposition 2: Letp € R[x,, x;, - * * , x,] be an irre-
ducible polynomial. Thus, the ideal 7 = (p) generated
by p has height one. Let x € V (p) be a smooth point
(i.e., a point where V. (p) is an n — 1-dimensional sub-
manifold ), and let U be an open neighborhood of x in ®".
Then for any real polynomial g of n variables, if

g=0 on UNV (x),

then p divides q.

Proof: Let I be the ideal of all polynomials in & [x,,
Xy, *** , X,] that vanish on U N V. (7), i.e., the ideal
defined by this subset. The radical of 1, denoted ﬁ, con-
sists of all polynomials such that some power of the poly-
nomial lies in /. A standard theorem in algebraic geome-
try, used in the proof of a strong form of the
Nullstellensatz, shows that the radical of I is the finite
intersection of prime ideals containing /, so that

Ji= mNmmN -+ N m, w; prime ideals.

Now, the patch U N V () is contained in V. (¥1), by
the definition of I. So,

Unv.(x)cv (V1) =V (x)

UV (m)U - - UV (m).

Further,pel C ~ﬁ, so that p € =; for all i. Suppose that
(p) & m; for every i. Then the height of each ; is at least
two, and thus by proposition 1, the variety of each V' (;)
consists of submanifolds of dimension n — 2 and less.
Thus, the union of the ¥ (m;)’s cannot contain ann — 1-
dimensional patch, which is a contradiction. So for some
i, we must have (p) = 7;, and so

(p)clcmN:---NmCm=(p)

Recalling that q is in I, we have therefore that g € (p),
i.e., that p divides g, as required. n

As a result of the proposition, we have a uniqueness
theorem. Suppose that p and g are two polynomials with
domain R". Suppose furthermore that Ap and Ag are ir-
reducible polynomials. The corresponding scale-space
functions v, and v, will also be polynomials (of n + 1
variables) and must be irreducible, for otherwise a fac-
torization of either would induce (at ¢ = 0) a factorization
of the Laplacian of the initial polynomial. Suppose that
v, and v, share in common an open patch of some zero
crossing. Recall that the zero crossings are defined in
terms of the boundaries of the regions of negativity and
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positivity, and thus will be submanifolds of codimension
one. Applying the proposition leads to the conclusion that
v, and v, divide one another, or equivalently, are equal.
Consequently, p and q are equal.

In fact, all that is necessary for uniqueness is that the
scale-space functions v, and v, should be irreducible. To
extend the results, it would be interesting to characterize
all factorable polynomials that satisfy the Heat Equation.
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