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Abstract — Receptive ficlds in the retina indicate the first measnrements

1aken over the (discrete) visual image. Why are they circular surround with an
excitatory/inhibitory structure’ We hypothesize that they provide a represen-
gation of the visual information in a form suitable for transmission over the
optic perve, 8 rather limited channel, that ean then be extended into a variety
of representations at the cortex. These cortical representutions span a range ol
sizes, both larger and “smaller”™ than those in the retina, precisely as is required
for further processing. The scheme is both physiologically and psychophysically
plausible, and leads to a number of predictions about receptive feld size, struc-
ture, and hyperacuity that are supported. The hypothesis is supported by a
formal scheme for reconstructing visual information at the cortex which proves
that no information is lost. The existence of such a scheme suggests that the
analysis of visual information really begins in the cortex, a suggestion that
stands in strong opposition to many current beliefs about “edge detection”.
Introduction

The structure of receptive fields constrains two aspects of early visual
information processing: which measurements are taken over the raw retinal
image. and how transformations of these measurements provide a representation
of visual information rich enough to efficently support subsecuent processing.
We shall concentrate on the X-pathway (1], along which retinal receptive fields
exhibit a circular surround organization with excitatory /inhibitory interactions,
while cortical (V-I) receptive fields are elongated [2]. Since this implies that
the first stages of image analysis. such as orientation selection. actually take
place in the cortex, the problem of how precise visual information can be
communicated from the retina to the cortex arises [3]. We propose a formal
solution to this problem based on a diffusion equation. Actual limits on the
precision are available from the pumerical analysis of the solution. and they
agree with hyperacuity data. The remaining critical portions of the model are
consistent with receptive field physiology. It requires, in particular, that cortical
receptive fields span a wide range of sizes, and predicts, among other points. that
the smealler ones will have extra side lobes [4].

The key idea behind the model is that receptive fields are composed of
operators that can be modeled as convolutions with Gaussians, and that these
Gaussians can be interpreted as “blurring” the image data. (Actually, receptive
fields are composed of differences of Gaussians. a technical point that we shall
deal with shortly.) There are then three basic questions to consider: (1) bow is
it possible in principle to undo this blurring [5]: (2) how good can such schemes
be in practice [6]; and (3) how might such schenies be reduced to pbysiological
terms® Our result leads to a representation of visual information distributed
across receptive tields spanning » range of sizes, which is exactly the form in
which subsequent processes require it {7.8]. Finally, to prove in principle that no
information has been lost by this representation. we offer a scheme by which a
precise visual image can be reconstructed from a combination of these multiple-
size representations.

Our scheme, which supports the position that image analysis begins in the
cortex, differs in basic technical ways from other schemes proposed to account for
the communication gap and hyperacuity. One such class of schemes is based on
(sin z)/z reconstruction filters [3:9]. The oumerical analysis of such filters shows
that they require too much spatial support {i.e.. several lobes on eitber side) to
function properly with the limited support apparently available. Our scheme
is based on local (Hermite) polynomials [5]. A completely different theoretical
position is tha! the receptive field operators are participating in “edge detection”
[10], but both computational experiments and mathematical analysis provide
evidence that this position is untenable [3].

Blurring and De-blurring

Qur scheme is derived from a diffusion in which (temporal) spread will
becomes analgous to (spatial) extent of receptive fields. It is formally based on
the heat equation. the simplest such diffusion which has all of the pecessary
mathematical properties. The basic assumption carried by the heat equation
is that. for a class of functions, certain spatial derivatives (laplacians) will be
formally equivalent to certain (ie., the first) temporal derivatives. We shall
begin by arguing intuitively for this assumption. Observe that. for 2 long
conducting wire, a unit impulse of heat diffuses into increasingly larger Gaussian
distrubutions as time proceeds. Mathematically, let [(x) denote the initial
temperature distribution as a function of the spatial variable 1 € R, (Clearly
we are interested in the special case when n =,2.) Then a solution to the heat
equation u(z,t) giving the temperature level as a function of position r and
positive time ¢, satisfying
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u(z,0) = J(1)

can be obtained from the convolution

u(z,t) = fRn K(z — z',t) (') dr’

where K (z,t) is the “source” kernel [11]

K(z,t) = ——e—lzl2/4t,
Vort

Note that this source kernel is just a Gaussian. Since it acts as a blurring
operator, we can regard the distributions u(z,t) as representing coutinuously
coarser representations of the original data f(z) as ¢ increases (Fig. 1). In fact.
assuming f(z) is bounded, u(z,t) as given above is entire apalytic. It is the
unique bounded solution to the heat equation

u = Ju

satisfying u(z,0) = f(z), where A denotes that spatial laplacian and u; denotes
Ou/dt. Other unbounded solutions are technically possible, buth the function
u(z,t) given by convolution against the Gaussian kernal A is the one that
paturally occurs in physical systems.

Suppose we take the temperature distribution as representing the image
data, but blurred by the Gaussian kernel. Is it possible to reproduce the original
data? Specifically, given g(z) = u(z,7), for some fixed 7 > 0, is it possible to
solve the heat equation backwards to recover u(z,t) for 0 < ¢t < r? Can
f(z) = u(z,0) be recovered? This is the problem of deblurring Gaussian blur.

There are two separate aspects to the answer: whether recovery is possible
in principle and whether it is possible in practice. In principle it can be shown
that necessary and sufficent conditions for the existence of a solution to the heat
equation, u(z,t),0 < t < 7, satisfying u(z,7) = g(z),z € R", are that ¢(r)
be analytic, and that the extension of g(z) to an analytic function of several
complex variables g(z), z € C", satisly certain growth conditions. Both of
these conditions, analyticity and bounded growth, fit smoothly into the vision
context. ’

Given the existence of a backsolution. ealculating it may still be imprac-
tical. The difficulty is that the backward heat problem is unstable: that is. a
small change in the initial data g(z) can lead to an arbitrarily large change in
u(7,t). No matter how well g(r} is approximated numerically, there will always
exist examples where the resulting calculation for f(x) is arbitrarily far off.

Nevertheless. John {6] has shown that, i a non-negative backsolution exists.
then slable reconstruction of u(z.t) is possible for a < ¢ < 7, where a > 0
is fixed. Specifically, suppose that 0 < g(r) < g, and that g(r) is sampled so
that it can be reconstructed to within accuracy €. Then an estimate a{r. t) can
be formed using discrete. local kernels such that the error |i{z,t) — u{z.t)], for
a < t < 7, is bounded by a constant {depending on a) times p(l — 60 Here
8 is a pumber between 0 and 1, which implies that, e.g., a twolold increasc ip
the accuracy of reproducing u(z, t) requires more than a twofold increasc in the
representational accuracy €. The coeficents of this kernel are shown in Fig. 2.
This bound on the pumerical stability of the backsolution is essential. because
it dictates how far the process can in fact be made to work. It is the practical
limit on the deblurring process.

[n summary. then. the essential restrictions amount to requiring that g(r)
be bounded both from above and below. that a non-pegative solution exists
back to time ¢ = 0, and that a solution is sought only back as far as some
positive time t > a > 0. And. for numerical stability, we must represcnt g(r)
as accurately as possible.

Physiological Interpretation

The physiological interpretation begins with the observation that retinal
receptive fields consist of an excitatory center with an inhibitory surround. (The
fact that they also consist of inhibitory centers with excitatory surrounds will be
dealt with shortly.) Such local operations are useful in data coding, since they
compress the required dynamic range of a channel {12, 13]. They may also exist
in primate visual systems for evolutionary reasons. But, since they are modifying
the ipitial light measurements, they would seem to make reconstruction more
difficult. Somehow their effects need to be undone to recover actual image
information. However, as we now show, given the form of these operators. such
recovery is straigtforward.



Circular surround receptive fields have been modeled by kernels given either
as the difference of two Gaussians (L, 15], or as the Laplacian of a Gaussian [10)].
Although these kerncls are distinet. we can interpret the former as a discrete
analog of the latter. This follows since the heat kernel Kz, ¢), a solution of the
heat equation, satisfics

AK(r 1) = ')/\_ﬁtl'_’)
[

which is the difference of two Gaussians. We therefore take

= [K(z,t)) — K(z. 02)l/(t) — ta),

vl t) = fpn AK(z — 2',0)/(2) dr’

as a coatinuous version of (he initial measurements, where ¢ parameterizes the
effective size of the roceptive field. Note that v(z,t) is only available for t > 7.
the smallest receptive field (Fig. 3). Since

v(z.t) = A ngn K(r — 1’ t)f(z') dz’
= iga Kz — £ 0 ) d

v(r,t) can be interpreted either as the Laplacian of the blurred intensity data.
i.e., as Aulz.t), or as the bounded solution to the heat equation using the initial
data A f(z). From the former intepretation and the fact that u{x, t) satisfies the
heat equation, we have that 1(z,¢) = Au(z, t) = du(z, £)/0t, so

- ,'T
0
Now. u(z, T} is neatly constant for large T, so the above integral can be used
to recover f(r) modulo an additive constant. From the alternate interpretation
of u(z,t), we see that v(r.1) is itself a solution to the heat equation. Thus the
values of u(z,t), for 0 < ¢ < 7, will have to be obtained by backsolving the
heat equation using r(r, 7) as initial data.

vz t)dt = u(z,0) — u(z.T).

To discuss physiological realizations of these formulas, we must confront
problems of dicretization and stability. The receptive field measurements v(z,t)
are not continuous in £, but rather are given by the dicrete approximation t =
Lo by -0ty with each ¢ > 7. The data are sampled spatially, and it
is likely that ofz.t,) is sampled more coarsely in £ for larger t,. rellecting the
more uniform variations of the smoothed data [11]. Values for o(z.t )0 = L 2
o k— 1, with 0 < tl < 1, will be obtained by backsolving. An examination
of these de-blurring operators reveals the introduction of extra side lobes in a
fashion strongly reminiscent of the small cortical receptive fields: see Fig. 2.

We now show that all of the original image information is available by
providing a reconstruction scheme consistent with the physiological representa-
tion of the information. The integral for recovering f{z) can be approximated
by a weighted sum

13

(¢, —t,__ izt

1

thereby requiring the different size operators {or cortical receptive fields). [t is
especially interesting to note, with regard to this sum, that it is only the data for
¢ near () that needs to be de-blurred, and it is precisely these smaller operators
(receptive fields) that have been observed to have the extra side lobes [4; 16].

The last remaining issue is stability. Recall from John's results that the
error is bounded, and that the accuracy is controHable, if the backsolution is
non-negative. However, ¢(z.t) can be hoth positive and negative. and can have
a large dynamic range. But the physiology constrains neurons to only carry
information within a limited range. Both of these problems can be solved by
taking the measurements ot as v(z.t), but by splitting them in such a way
that the positive and negative parts of \ f(r) are carried separatelv. One way
to accomplish this split is based on the observation that X-pathway neurons
have a low spontaneous firing rate. \We interpret this to imply that these neurons
encode positive information relatively well, but negative information poorly. \We
accomplish this decomposition by introducing the functions

T —
—/0 L(I,t)d!-—‘,

I

e, () = max(f(2),0]

and

¢—(/(z)) = — min[/(z),0]

Actually these functions are only approximatioas; they should really be analytic
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and have a small negative excursion: see Fig. . We can then separate the
ioto

v+(z,t‘) =Kz — ) ¢+ (Af(z))de

>
¢

and

v—(z,t;) = | K(z— ) ¢ — (Af(r) de

Note that this functional form implies that it is only the small convolutiegg: -
that are sent back from the retina, which is in agreement with the physiclogy~
[t; 17). Furthermore, patterns matching these receptive fields are the ones tg
which our visual systems are the most sensitive [18]. Since vy and v— are both

sotutions to the heat equation with (essentially) non-negative data, both cag be
backsolved from t = rtot = ty, with ¢ > 0, in a stable fashion. The desired
data v(r, ti)' as used belore. can then be recovered from the difference

vz t) = v (L.t} —v—(z,t)

Summary and Conclusions

[n summary, the reconstruction method takes as given a number of copies
of the image filtered through increasiagly larger Laplacian of a Caussian masky
It is these masks that have been observed as receptive fields. The basic steps are
then: (1) backsolve the data from the smallest masks to estimate data for eves
“smaller” masks. Again. this amounts to filtering with masks that have bees
observed as receptive fields, but which differ from the previous ones in that they
possess additional side lobes. (2) Add the given filtered data to the backsotved
data to obtain the most precise image data. Finally, for mathematical aod
numerical stability reasons. we proposed that the above steps are essentially
carried out separately for the positive and negative parts of the filtered data
with the results recombined at the end. Physiologically this is necessary gives
the limited aumerical range of neural coding, and gives rise to the complimentarn
excitatory/inhibitory organizations that have been oberved.

While our reconstruction method demonstrates the possibility of precise
image reconstruction in principle, it does not imply that it is necessarily taking
place in practice. Perhaps only part of the scheme is utilized. <uch as just tep
(1) above. since this also amounts to an elfective Gaussian de-blurring strategy-
Many sources of such blur exist early in vision. from receptive field couvnimw
to motion smear to physiological variation in neuronal conduction velocities.
Others have argues that it is only special features of the convolutions, such &
zero crossings, that matter 21.22]. Ultimately, the physiology will decide.
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Fig.1. The Gaussian kerpel for increasing time; pote how. as time proceeds,
the kernel spreads out, so that time here becomes analagous with the spatial
coefficent (or “scale”) of the Gaussian.

by optic tract Beurons. It resembles

Fig. 4. A model for pumerical encoding
is analytic with a small negative
B

the “positive part” [unction, but actually
excursion.
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Fig. 2. The strucure of & (6“1 order) Gaussian deblurring fiiter. Note the

presence of the side lobes.
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Fig. 3. The circular surround
ing scale. Note that the smallest one is pot infinitesimal. but is
the retinal “wiring™.

(Laplacian of a Gaussian) filters for increas-
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