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ABSTRACT

Receptive fields in the retina indi
first measurements taken over the (discrete
image. Why are they circular surround with an
tatory/innhibitory structure? We hypothesize Tl
provide a representation of the vis 1

a form suitable for transmission oV
a rather limited channel. The hypo
by a formal scheme for reconstructin
tion at the cortex. The scheme is
gically plausible, and leads to a numbe
tions about receptive field size, St
acuity that are supported. The exis n a
scheme suggests that the analysis of visual informa-
tion really begins in the cortex, 2 suggestion that
stands in strong opposition to many current peliefs
about "edge detection™.
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We have developed a theory of image reconst-
ruction which explains precisely how it is possible
that detailed visual information can pe made available
to the cortex. The theory provides a single, consis-
tent role for much of the spatial processing along
the X-pathway from the retina through the lateral
geniculate nucleus to the visual cortex. The need
for this information follows, in principle, from the
precision with which we can interact with our visual
environment (l1]. Under the assumption that receptive
fields carry measurements that can be represented by
operator convolutions, the theory accounts for the
following physiological observations: (i) retinal
receptive fields have a center surround organization,
with an excitatory center and inhibitory surround;
as well as (ii) with an inhibitory center and excita-
tory surround {2]. We are using the terms as defined
in [3], to stress the antagonistic manner in which
information is combined within a receptive field.
(iii) At the cortexXx, receptive fields span a range of
sizes [4]. The theory takes into account that (iv)
neurons have a limited capacity to carry information,
and that (v) neurons along the X-pathway have a
rather low spontaneous firing rate [5]1. Finally, for
truly accurate reconstructions the theory requires
(vi) the presence of additional side lcbes in certain
cortical receptive fields [6:7]. Since these facts
summarize most of what is known about the basic X-
pathway, the suggestion that the analysis of visual
information begins in the cortex becomes very much
more plausible.

The reconstruction scheme is based on a resto-
ration of data obtained from receptive field measure-
ments. An essential feature of these measurements 1S
the blurring or diffusion of information, which we
shall model according to the heat equation. While
the formal role of the heat equation will be intro-
duced shortly, the intuition comes from the observa-
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tion that a unit impulse of heat diffuses into incre-

asingly larger Gaussian distributions as time proceeds
(Fig. 1). Such a (temporal) spread will become ana-
lgous to the (spatial) extent of a receptivi :1d.

Mathematically, let £(x) denote the initial
temperature distribution as a function of the spatial

. n . i
variable x € IR . Then a solution to the heat =guation
ulx,t), t > 0, satisiying
u(x,0) = £(x)

can be obtained from the convolution

u(x,t) = J K(x-x',t) f(x') dx’
n

where K(x,t) is the "source" kernel (8]

= iyl
K(x,t) = (27t) w2 NI

/4¢t.

Since the kernel acts as a blurring operator, we can
regard the distributions u(x,t) as representing con-
tinuously coarser representations of the original
data f(x) as t increases. In fact, assuming f(x) is
bounded, u{x,t) as given above is analytic. It is
the unique bounded solution to the heat equation

satisfving u(x,0) = f(x). Other (bounded) solutions
are technically possible, but the function u(x,t)
given by convolution against the Gaussian kernel K i%
the one that naturally occurs in physical systems.

Suppose initial image data were blurred by a
Gaussian kernel. Is it possible to reproduce the
original data? Specifically, given g(x) = u{x,t), for
some fixed T > 0, is it possible to solve the heat
equation backwards to recover u{x,t) for 0 < t < 1?

There are two separate aspects to the answer:
whether recovery is possible in principle and whether
it is possible in practice. 1In principle it can be
shown that necessary and sufficient conditions for the
existence of a solution to the heat equation, u(x,t),

. : n
0 <t < T, satisfying u(x,1) = g(x), x ¢ R , are that
g(x) be analytic, and that the extension of g(x) to an
analytic function of several complex variables g(z),

n : . . . 3
z ¢ C , satisfies certain growth conditions. Botn of
these conditions, analyticity are bounded growth, fit
smoothly into the vision context.

Given the existence of a packsolution, calcula-
ting it may still be impractical. The difficulty is
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that the backward heat problem is unstable; that is,

a small change in the initial data g(x) can lead to an
arbitrarily large change in u(x,t). No matter how
well g(x) 1is approximated numerically, there will
always exist examples where the resulting calculation
for f(x) is arbitrarily far off.

Nevertheless, John [9] has shown that, if a
non-negative backsolution exists, then stable recon-
struction of u(x,t) is possible for a <t < T, where
a > 0 is fixed. Specifically, suppose that O < g(x)
< u, and that g(x) is sampled so that it can be re-
constructed to within accuracy €. Then an estimate
u(x,t) can be formed using discrete Kernels such that
the error TW(x,t) = u(x,t) , fora <t < 1s bounded

T

by a constant (depending on a) tlmes-ul £ . Here ©
is a number between 0 and 1, which implies that, e.9.,
a twofold increase in the accuracy of reproducing
u(x,t) requires more than a twofold increase in the
representational accuracy. The coefficients of this
kernel are shown in Fig. 2.

In summary, then, the essential restrictions
amount to requiring that g(x) be bounded, that a non-
negative back solution exists, and that a sclution
is sought only back as far as some positive time
t >a>0. Ang, for numerical stability, we must
represent g(x) as accurately as possible.

The physiological interpretation begins with
the earlier points (i) and (ii): that receptive fields
have an antagonistic center/surround organization.
Such local operations are useful in data since
they compress the required dynamic range
[10,11]. They may also exist in primate wvisual
systems for evolutionary reasons. But, since they are
modifying the initial light measurements, they would
seem to make reconstruction more cifficult. Somehow
their effects need to be undone. as we now
show, given the form of these operators, we just need
to add an extra step onto the reconstruction scheme.

codlng,
of a channel

However,

Circular surround receptive e
modeled by kernels given either as the
of two Gaussians [l12, 13], or as the
Gaussian [14]. Although these
we can interpret the former as
the latter. This follows since the
a solution of the heat eguation,

have been
erence
ian of a

Ml
Tk b
W
(8]

AK(x,t) =

which
fore take

as a continuous version
where t parameterizes the ef
tive field. Note that v(x.,t
t > T, where t corresponds to
receptive field.

& e
available
size of the smallest

recep-

£
) for

1
the

Since

vix,t)

v(x,t) can be interpreted either as the Laplacian of
the blurred intensity data, i.e., as bLu(x,t), or as the
bounded solution to the heat eguation using the initial

data Af(x). From the former interpretation and the
fact that u(x,t) satisfies the heat equation, we have
3
that v(x,t) = Au(x,t) = RE u(x,t), so
T
| vix,t)dt = u(x,0) - u(x,T).

Jo
Now, u(x,T) is nearly constant for large T, so the
above integral can be used to recover f(x) modulc an
additive constant. From the other interpretation of
v(x,t), we see that v(x,t) is itself a solution to the
heat eguation. Thus the values of v(x,t), for
0 <t <, will have to be obtained by backsolving the
neat equation using v(x,T) as initial data.

To discuss physiological realizations of these
we must confront problems of discretization
The receptive field measurements vi(x,t)
but rather are given by the

t , with

m

formulas,
and stability.
are not continuous in t,
discrete approximation t = tk, tk+l' i B e

each ti > 1. The data are sampled spatially, and it

is likely that v(x,t) is sampled more coarsely in x for
larger t, reflecting the more uniform variations of the
smoothed data (15]. Values for v(x,ti), t = tl' t2,

e o i tk-l' with O < ti < 1, will be obtained by back-
solving. An examination of John's coefficients for the
backsolution kernel reveals the addition of decreasing
side lobes for higher orders of approximation, as would
be expected from the de-blurring of Gaussiang [16].

The third order approximation agrees nicely with
physiological observation (vi); see [6, fig. 9b]. The
integral for recovering f(x) can be approximated by a
weighted sum

g Byt TEEED

requiring the different size operators (physio-
logical observation (iii)). It is especially interes-
ting to note, with regard to this sum, that it is only
the data for t near O that needs to be reconstructed,
and it is precisely these smaller operators (receptive
fields) that have been observed to have the extra side
[6]; see also [17] for psvchophysical support.

thereby

lobes

. John's

The last remaining issue 1is stability
results regquire that the backsolution be non-negative,
but v(x,t) can be botn positive and negative. There-
fore we shall split the manner in which v(x,t) 1is
represented, separating the positive and negative parts.
Recalling physiological (v), that X-pathway
neurons have a low spontaneous firing rate, we intro-
duce a smooth approximation to the "positive part"

opservation

function:
¢ (x) = max [x, 0]
+
for x < A, a saturation level; see Fig. 3. Similarly.
set ¢ (x) = ¢, (-x), and note that
b (x) - ¢_(x) =x for |[x| <&

since 4 is linear in the range in which it is used.
can then separate the receptive-field convolution data
nto
v {x,t.) = |K{x-x', t. ) ¢ (Af{x')) dx'
+ i ' i +




o

v (x,t.) = K(x-x',t.) (af(x')) dx'

Note that this functional form implies that it 1s only
the small convolutions that are sent back from the
retina, which is in agreement with the physiology

{5; 18]. This formulation also suggests that there
should only be a limited rangeé over which X-cells
behave linearly, which is also well known. Patterns
qualitatively matching these receptive fields are,

it is further interesting to note, the ones to which
our visual systems are the most sensitive [19]. Sinc
v, and v_ are both solutions to .the heat equation

with (essentially) non-negative data, both can be

backsolved from t = T to t = L. with t, > 0, in a
1 1

stable fashion. The desired data v(x,t.), as used

before, can then be recovered from the difference

vix,t) = v _(x,t) -V (x,t) .

In summary, the reconstruction method involves
sampling and transmitting the receptive field con-
volutions v (x,t.) and V_(x,t )y for small ti > Ty,

+ i = i -

backsolution of v+(x,ti) and v_(x,tl) for £, < T, and

(weighted) summing of all these measurements with the
larger, smcothed convolutions. Note that these larger
convolutions are obtained just by Gaussian blurring

of small center surround receptive fields. The back-
solution is stable for both v, and v_ provided recon-

struction is attempted 6nly as far as some resolution
level t >0, as would be expected from hyperacuity
data.

Our proposal differs fundamentally from those
that implicate the different size operators with
notions of "edge detection” {14]. OQualitatively,
this other approach asserts that physical events such
as reflectance, depth, or illumination changes take
place over different spatial "scales”, so that
different size operators are necessary to capture
them. However, this approach suffers from several
problems. First, from photometric observations, it
can be shown that the physical processes responsible
for generating the intensity changes operate over
many scales simultaneously [20] and non-linearly.
second, there is the problem of how to combine the
information at the different scales. Finally, there
is increasingly more psychophysical and computational
evidence that early vision in general, and anything
ilike edge detection in particular, requires very
precise information [1; 21; 22]. Nevertheless,
attempts have been made within this approach to use
the zero-crossings of the different size operators
as "edge" locations, and diffusion eguations have been
used to study their migration across scales [20; 23].

wWhile our method has some gqualitative simila-
rity to others based on the Shannon sampling theorem
(e.g., [24], and references cited therein), there are
. fundamental differences. The spatial support required
for sin x/x reconstruction is larger than the local
polynomials that we incorporated, raising serious
questions about accuracy [25]. Also, the idea of
backsolving to obtain the highest frequency data is
not there. Finally, one of the principle advantages
of that scheme - - noise averaging in the larger
receptive fields -- is present in our scheme as well.

Wwhile our reconstruction method demonstrates
the possibility of precise image reconstruction in

ple, it does not imply that it is necessaril
clace in practice. Perhaps only part of t

scheme is utilized, such as just step (1) above,

sarly in vision, from recep

this also amounts to an effective Gaussian

i
de-blurring strategy. Many sources of such blur exist

ive field convolutions to

t
motion smear (26] to physiological variation in
rneuronal conduction velocities. Or perhaps the recon-
struction takes place only implicitly, within a sub-
sequent level of processing such as orientation

selection [21}. Ultimately, the physioclogy will
decide.
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