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ABSTRACT

Modern scanning techniques, such as computed tomography,
have begun to produce true three-dimensional imagery of
internal structures. The first stage in finding structure
in these images, like that for standard two-dimensional
images, is to evaluate a local edge operator over the image.

If an edge segment in two-dimensions is modeiled as an

oriented unit line segment that separates unit squares

(i.e., pixels) of different intensities, then a three-dimensional
edge segment is an oriented unit plane that separates unit
volumes (i.e., voxels) of different intensities. In this paper
we derive an operator that finds the best oriented plane

at each point in the image. This operator, which is based
directly on the 3-D problem, complements other approaches

that are either interactive or heuristic extensions of 2-D

techniques.

* This research was supported by MRC grant no. MA-6154






1. Introduction

The development of non-invasive techniques for imaging
the interior structure of three-dimensional objects is currently
revolutionizing many areas of medicine and industry [l1]. One
of the most widely known of these techniques is computed
tomography (CT), which uses either sonar or X-ray energy
sources. In X-ray computed tomography, a number of X-ray
projections are made from different angular positions around
the object. Each of these projections yieldsa one-dimensional
absorption profile. These profiles are then used to reconstruct
a two-dimensional slice through the object [2]. After several
of these reconstructed slices are made sequentially along
the third axis, they can be stacked into a true three-
dimensional image of the object. Sonar-based tomography
yields similar three-dimensional imagery.

The development of systems for processing and display-
ing three-dimensional (3-D) imagery has revealed a number
of new problem areés, such as the need for special hardware
facilities (e.g. [3,4]) and graphical data structures [5].
Another essential problem underlying all of these systems
is the need for algorithms for finding structure in 3-D
images. Success in this area would improve both the
presentation of the image content, and, eventually, the
diagnostic usefulness of these noninvasive techniques.

Since different physical objects usually give rise

to different image intensities, the first stage in finding



structure requires the location of these intensity differ-
ences. In two-dimensions this is essentially the problem of
edge detection, and it can be formulated in the following

way: (1) apply a local operator that responds strongly to
intensity differences, such as a gradieht operator, to every
point in the image, and (2) interpret the response of this op-
erator into assertions about the presence (or absence) of

edge elements.

To understand our notion of a 3-D edge, recall that
edge elements have an orientation associated with them, such
as that shown in Fig. 1. If pixel (i,j) is part of the edge
(on the dark side), then the orientation of the edge element
located at (i,j) is the orientation of the line passing
through the center of pixel (i,j) that best separates the
intensities in the local neighborhood around (i,j). (Note
that, by symmetry, we also could have placed an oppositely
oriented edge element on the light side of the edge. Or, we
could have located the edge element in the interstitial space between
pixels.) Tor an introductory discussion of many of these
issues, together with techniques for grouping edge elememts
into longer curves, see [6].

In a geometric sense, a 3-D edge is a direct extension
of the 2-D edge model just described. Instead of
considering an edge as a line through a unit square of the

image (i.e., through a pixel), we shall consider it as a



plane Passing through the center of a unit Volume (or, as
Liul[7] called it, a voxel). The specific
purpose of this paper is to present a local operator that
defines this plane in an optimal fashion. This operator
is a true generalization of the operators used in two
dimensions. Also, it supplements the other approaches ﬁo
3-D edge detection, which require either interactive assis-
tance [8] or heuristic decomposition of the 3-D surface
detection problem into the maxima of the three underlying
2-D edge detection problems (namely, one along each axis)
[7]. Applying our operator and interpreting

its response should result 'in a smooth surface separating
adjacent volumes in the image, where these volumes (or
sub-images) correspond to different intensities. If this
were an image of the abdomen, for example, one such surface
could delimit the stomach.

Following the maﬁhematical preliminaries in the next
section, in which we formulate the feature detection problem
as one of functional analysis, we derive our optimal opera-
tor. Surprisingly, it turns out to be a rather pleasing
generalization of the (2-D) Sobel operator [9]. And finally,
we present the results of applying the operator to several

3-D images.



2. Mathematical Background

Feature detection can be characterized as the problem
of locating instances of a set of target patterns in data.
The specific target patterns that we shall consider are
distributions of volume elements separated by a flat plane.
This pléne is oriented so that dark voxels lie on one side
of the plane, and light voxels lie on the other. Mathematically,
these ideal 3-D edge configurations can be described by the
set of functions:

+1 if ax + by + cz > 0

Ea’b'c(x,y,z) = (1)

-1 if ax + by + cz < 0

which are defined on the sphere:

S = {(x,y;z):x2+y2+z2 < 1} .
The vector N = (a,b,c) is the unit normal (at the origin)
to the plane
ax + by + cz = 0 (2)

This plane separatés the dark hemisphere of the edge configuration
(voxels having ideal value +1) from the light hemisphere

(voxels having value -1). Thus the edge target patterns

admit a parameterization through the variables defining the

normal ﬁ, and we can pose our feature-detection problem in

the following way [10]:



Let I(x,y,z) denote an input image defined on the

unit solid sphere S that has been normalized to have zero mean and

unit variance. (This requirement will be relaxed in Sec. 4.) We

seek values for the parameters (a,b,c) so that

It - E I (3)

a,b,c

is minimized. A convenient norm [|.]] is given by the L,-norm:
(
|| £ ||2= q[f2(x,y,z) dxdydz]l/z.
S
However, to obtain a practical solution to this minimization
problem (3), we must consider a finite-dimensional subspace
M of L,(S8). If we let {y;/, Uyr ---y wN} denote an orthogonal

set of basis functions for M, then the orthogonal projection

I' of I onto M is given by:

M2

I'(XIYIZ) = cill)i(XIYIz)

i=1

where

c., = I(x,y,z)wi(x,y,z)dxdydz .

Similarly, let Eébc(x,y,z) denote the projection of the
pattern Eabc(x,y,z) onto M. Then, if M is choseﬁ properly,
this projection will be one-to-one on the class of E-patterns,
and the full minimization problem (3) can be replaced by the

finite-dimensional problem of finding (a,b,c) such that



|| ' - E (4)

a,b,c Il .
is minimized. (This is the approach adopted by Heuckel [11,12],

for example, in formulating a 2-dimensional edge operator.)

More formally, the reason that a solution to (4) also

provides a solution to (3) is based on the inequality:

[z - e'|| < [|T - E[]. (5)

This inequality derives from the fact that the projection
operation on a Hilbert space LZ(S) is linear, continuous,
and does not increase the norm. Its proof follows from a
generalized Pythagorean theorem: Let F be an element in the

llilbert space, and let F' be its orthogonal projection onto M.

Then

2
||

2
| F]] [[F* ]+ |[F-F"

or

| E ]

| A

7]

A special case of the inequality (5), which is of particular

interest to us, is:

min||I' - E' || < min||I-E

.

a,b,c a,b,cI
Thus the parameter values for the finite-dimensional problem
provide a lower bound on the full problem. Furthermore, the

above inequality has three additional consequences [10]:

(i) If min ||I' - E'|| is large, then there is no

pattern E' that matches the image I (i.e., min| | I-E, p o |
’ 14



is large);
(ii) if I matches one of the E-patterns exactly (i.e.,

if min ||I-E = 0) then

a,b,cII

min ||I' - E° =0

a,b,cH
is the minimum for (4), and the selected parameters (a,b,c)
are exactly those which minimize (3);

(iii) the parameters (a,b,c) that minimize (4) are close
to the parameters that minimize (3) whenever I is close to an
Ea,b,c' This continuity assumption is reasonable provided that
the subspace M is chosen properly,and one technique for doing

this is described in the next section.

3. The Optimal Operator

In order to apply the theory of feature detection
outlined in Sec. 2, we must select the finite-dimensional
space M such that the patterns E' are a good approximation
to E. In other words, we must find the best orthogonal
basis functions {wl,...,wN} so that the difference between
E and E' is minimal. If we assume that all patterns E
have zero mean and unit norm (this can be assumed without
loss of generality, since the patterns can be normalized),
then a formal selection criterion for M can be obtained by
requiring that the expected value of || E - E'|| be minimal.
This expectation is taken over the full set of target patterns
E, and is weighted by the probability density of occurrence of the
patterns. Since the set of target patterns is parameterized
by (a,b,c), we can regard each of them as the events comprising
a random field with probability density p(a,b,c). Thus the
problem of minimizing the approximation error between E and
E' can now be posed as one of finding the basis functions

$17 Wr ---r Yy such that:



. N
e - e =8 [|E- X a;e.]] ' (5)
i-1

is minimal, where & is the expectation operator and where:

a, = E(x,y,z)wi(x,y,z)dxdydz

S
The solution to this minimization problem is given
by the Karhunen-Loeve basis functiorms [13,14]; i.e., the wi are

solutions to the integral eigenvalue problem:

R(x,y,z,x',y',z')wi(x',y',z')dx'dy‘dz' = Ai wi(x,y,z)

(7)

where the autocorrelation function is

R(x,y,z,x",y",2") & {E(x,y,z)-E(x',y',2")} (@)

E b,c(XrYrZ)'E (x',y',2")

a, a,b,c

a’b’c
‘p(a,b,c)-dadbdc
The autocorrelation in (7) forms the kernel of a symmetric, positive
definite,compact operator, which implies that there will be
a countable number of positive, real eigenvalues Ki[15]° These
can be ordered from the largest to the smallest, xl > X2 >y
and the finite dimensional space M is formed: from the eigen-

functions corresponding to the largest eigenvalues. These

eigenfunctions minimize the truncation error introduced by



a finite value for N in(6). Ciearly as more eigenfunctions
are used, the approximation becomes better.

The mathematical computation of the autocorrelation
function (8) is technically complicated, however a few georntric
considerations allow us to describe R more clearly. To
begin with, note that R(x,y,z,x',y',2') = 1 when (x,y,2)
and (x',y',z') are vectors in the same direction, and
R(x,y,z,x",y',2') = -1 when the two vectors point in opposite
directions. Between these extreme points, R(x,y,z,x',y',z')
drops off linearly as the angle between the vectors (x,y,z)
and (x',y',z') increases from 0 to m. (Recall that the dot
product of two unit vectors is just the cosine of the angle

between then.) Thus:

arccos (xx'+yy'+zz')

AN

R(x,y,z,x',y',2") = 1-

Using the notation u = (x,y,z) and v = (x',y',z'), observe
that R(u,v) depends only on u-v. We can also translate the

eigenvalue problem (7) into this notation:

R(E,G)wi(G)ds; = Aiwi(ﬁ) ()

Now the integration is taken with respect to v over the surface
of the unit sphere, and dS; denotes surface measuré; We can
now formulate the

Theorem 1: Let

¢l(x.y,2) = X//;2+y2+22
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¢y (x,y,2) = y//f;72+y2+z2
¢3(x,y,Z) = Z//X2+Y2+Z2

The functions ¢l’ ¢2, ¢3 are eigenfunctions of (9), with
eigenyalues all equal to m. Furthermore, these are the onlv eigen-
functions corresponding to this eigenvalue. 0O

The proof of Theorem 1 is given as an Appendix, along with
a description of the full class of eigenfunctions for eq. (?).
Furthermore, a full class of eigenvalues has been computed
numerically (see the details in the Appendix, Table 1) . %4liis
computation reveals not only that mis the largest eigenvaluz, but
that all of the others are smaller than ) =0.25. Thus the
approximation introduced by using only the first three basis

functions to define the operatcr should be a good one.

The three basis functions are radially constant, and

can be written in the simpler form:

¢l = x/r

¢2 = Y/r

¢3 = z/r
where

r =/X2+y2+22 .

It is these basis functions, or, more exactly, a discréte
approximation to them, which define our local operator. Two
approximations are shown, the first in which the unit sphere

is partitioned into a 3x3x3 unit cube (Fig. 2), and the second
into a 5x5x5 cube (Fig. 3). Since the three operators are simnle

rotations of one another along the differeht axes, only the

approximation to ¢l (oriented along the X-axis)
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is shown. ¢2 looks the same but is oriented along the y-axis,

and ¢3 is oriented along the z-axis.

4. Applying the Operator

There are two stages in the application of the operator
shown in Fig. 2 or 3: (i) the unit surface normal (a,b,c)
defining the best edge through each voxel (a,B,Y) must be
deterhined; and (ii) the quality of the match in (i) must be
evaluated.

The surface normal for the best edge at (o,B,Yy) is obtained
by convolving the ¢i with the (not necessarily normalized)input

image; i.e.,

Il

a <9y, I > = JJ ¢1(X,Y,Z)I(x—a, y-B8, z-y)dxdydz,

b =<¢,, I>,

c = < ¢3, I>.

The result of this convolution is the surface normal (a,b,c) at
(a,B,Y). If the input image had first been normalized, then the
surface normal would be a unit vector pointing in the same
direction. Thus the effect of the image normalization is to
normalize the length of the computed surface normal, i.e. to
multiply the vector by a scalar. It is this unit normal that

provides a precise minimum for inequality (4).

Once (a,b,c) have been computed, the quality of the edge
that they define must be evaluated. The fastest measure is the
norm of (a,b,c): a large value usually indicates a strong match

(i.e., a high-contrast edge), while a small value indicates a



et
\S]

poor match. More precisely,

|| (a;b,c) ]| - = |1 (x,y,2) ||
Evclidean LZ(S)

where I' is the projection of the (unnormalized) image I onto

M. Thus, the length of (a,b,c) is a coarse measure of the image
contrast after projection. Fig. 4 contains a printout of the
magnitude of (a,b,c) for a slice through a 3-D image of a cube
using the 3x3x3 operator. Note the typical response gradient
across the edge, with the maximal response directly on (the dark
side of) the edge. Thus a threshold can be used to select the
maximal edge responses for this example, and the unit planes

(eg. 2) through each voxel can then be displayed (Fig. 5). Note also
that, since each unit surface passes through the center of a voxel,
the bordefs of these unit planes may not coincideveven though
orientation is varying smoothly. (This artifact of the display
process could be reduced by simply smoothing the edges of these

unit surfaces.)

The resolution of the 3-D object boundaries that are
eventually built out of these local surface elements is directly
dependent on the sampling density. Fig. 6 contains a higher
resolution image of the surface of a torus that was also made
by thresholding the detector's responses. This display gives
a much closer description of the object in the image than the

coarsely-sampled cube in Fig. 5.

Our model for edges has two possibly restrictive features.

First, it was derived using continuous mathematics, but is
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applied in a discrete approximation to sampled imagery. The
previous examples demonstrate that this approximation does not
introduce any serious problems. The second restriction is that
the model is based on a 3-dimensional step edge. However,
practical experience with 2-dimensional imagery has shown that
other edge configurations, such as roofsand peaks, also occur
[16]. Thus it is necessary to evaluate the operator over a
more realistic image, and Fig. 7 contains an example from
computerized tomography. Note that both the overall magnitude
and the directional components of the operator's response
(Fig. 8) are in apparent agreement with the original intensity

distribution.

Because of the weighted combinations of intensities
within our operator, it is theoretically possible for them to
combine in a way such that the norm of (a,b,c) is large, but the
edge quality is poor. Such situations can be detected by
computing an edge quality measure after the putative edge normal
(a,b,c) has been determined. A very simple quality measure,
the length of (a,b,c) has already been described. A slightly

more elaborate quality measure Q is given by:

Q {Ea,b,c(“'B’Y)} = Ea’b,c(x,y,z)I(x—a, y-8, z-v)dxdydz

where



+1 if ax+by+cz > 0

E (x,y,2) =
a,b,c -1 if ax+by+cz < 0

Another quality measure could be the mean square difference
between the normalized input image centered at (o,B,Y) and the
ideal edge Ea b.c* However, in the experiments that we have

’ 14

conducted up to this point, the simplest quality measure,

|| (a,b,c) ||, has proved satisfactory.

It is of course, well known that the interpretations of
the responses obtained from edge operators evaluated over local
portions of images are not unique, and that other kinds of
processing are necessary to disambiguate them. One such
possibility is to use a relaxation process analogous to that
in [17], in which case these various quality measures could be

used in computing the initial certainty of each possible
interpretation. Or, one could evaluate a secuence of omerators at
different sizes, and attempt toparse the coarse through fine
responses into various edge assertions [18].

5. Conclusions

The introduction of true three-dimensional images by
modern scanning devices has created the need for appropriate
image processing and analysis techniques. While it may be
possible to extend existing 2-D techniques in certain circumstances,
in others the 3-D structure may change the problem requirements.
In this paper we began with a problem formulation in three
dimensions, and derived a surface edge operator. Although
this operator can be viewed as a generalization of a two-

dimensional (Sobel) operator in retrospect, the optimal
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properties of its 3-D counterpart would have been much harder to
predict.

The design of an operator that responds to intensity
differences is only the first stage in computing descriptions
of surfaces in 3-dimensional images. Resource limitations
in processing these images demand that the operator be evaluated
over fairly small sub-images, and thus subsequent processing
must be responsible for achieving appropriate consistencies
between descriptions in neighboring sub-images. The operator
described in this paper should be useful for providing input to

these more global processes.
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Appendix: Proof of Theorem 1.

In this appendix we prove that (i) the ¢i given in
Sec. 3 are the eigenfunctions corresponding to the three
eigenvalues equal to m in eq. (9); and (ii) that these are
the largest three eigenvalues. Thus these functions define
the best approximation, in the Karhounen-Loeve sense, on which
to base the edge operator. We further identify all of the
eigenfunctions of the integral equation as the spherical

harmonic polynomials of odd degree restricted to the unit circle.

The proof of (i) begins with the

Lemma: Let El = (1,0,0). Then
JJR (el, v) ¢i(V)dSV = ﬂsl,i ’ i=1,2,3 (al)
1 if i=1
where 6, . =
1,1 .

0 otherwise

Proof: To evaluate the integral in eq. (al), we must first
specify the surface measure in appropriate coordinates. Let
(x,0), -1 <x <1, -m <0 < m,be a coordinatization of the
surface of the unit sphere in which a point (x,0) on the sphere
corresponds to a point (X,y,z) in 3-space according to the

following relations (see Fig. (9)):



X = X
y = (l-xz)l/zcose
z = (1-x2)Y2gino

a2

Note that the point (x,y,z) is necessarily on the unit sphere;

i.e.,

is simply d@dx. Thus the integral in eq. (al) becomes:

and

v = 1.

f
JR (El,V) ¢1(V)ds
v

1w
[

[1 - 2 arccos(x)]-x dodx
™

-1 -7
1
(2mx - 4x arccosx)dx
-1
1
-4 X arccosx dx = -4(-%) =7,
-1
f
R(ey,v) ¢,(v)ds_
v
4 m .
(1- 2 arccosx) (l-xz)l/zcosededx
T

-1 7

In terms of the (x,0) coordinates,

surface measure



a3

1 m

J (1 - % arccosx) (l—xz)l/2 J cos0dodx

-1 -m

Similarly using ¢3($) yields a sin® instead of cos©® in the

inner integral, with the same result. O

Using this Lemma, we can now prove that the ¢i' i=1,2,3,
are eigenfunctions corresponding to eigenvalues equal to 7. We

first show that ¢l is such an eigenfunction.

Proposition 1.

[
’ R (u,v) ¢;(v)ds_ = m¢; (u).
v

Proof. Fix u =(x0, Yor zo)t and let 0 be any orthogonal
transformation (i.e., a rotation) taking El to u . (There

are an infinite number of them.) The 3x3 matrix representation

211 %312 %13

21 22 23

32 33

has determinate 1, which implies that the Jacobean of the

transformation v = 0v is 1. Further, since 051 = u,



a4

a31
Now, since R depends only on u -V, and

-1

u-v =e, -V
1

a - 0v=20

we have, by change of coordinates, that

f
JJR(G,V> 6, (V) ds_
v

v

JJR(G, Ov) ¢, (Ov)ds_

”R(El, v ) ¢, (0v)ds_ (a2)

<

To evaluate the integral (a2), we need to calculate ¢l(OV).
Recalling that ¢l(x,y,z) = x/r, and noting that Ov is a unit

vector, we obtain

1 1 1
aj ¥ +aj vy o+ a;3%

¢, (0%) —
1 |0V |

I

a1191 (V) + apy 9, (V) + 2y 03(9)

Substituting this into the integral (a2) yields three terms:



ab

all[JR (El, v) ¢l(§)dsv +a, JJR(EI, V) ¢2(€)dsv

+al3J[R(€i, v) ¢3(V)ds_
v
which become using the lemma,

ajqm + 0 + 0 = wx, = n¢l(3),

and the Proposition is proven. [

The proof that ¢2 and ¢3 are also eigenfunctions follows
directly from the observation that if ¢(v) is an eigenfunction,
then Y (v) = ¢(05) is also an eigenfunction. This completes the
first part of the proof of Theorem 1; namely, that ¢l’ ¢2, and

¢3 are the eigenfunctions corresponding to the eigenvalue 7.

By using techniques similar to those just described, it
can be shown that the full class of eigenfunctions for the
integral equation (9) are the spherical harmonic polynomials

of odd degree, restricted to the unit circle. More precisely,

we have
Proposition 2. Let
AE cosk® Pt(cose) ’ k >0
I Z
Y, (0 ¢)
k . k
A2 sink® Pg(cosO) ’ k <0
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where Yt is the kth sperical harmonic of order %,

-4 < k<&, & > 0, and for which AE

Pt(x) is the associated Legendre polynomial of degree %, and

are normalizing constants,

X = rcos0Osin®
y = ¥YsinOsinO
Z = YcosO

Then there exist constants {Azz 2 odd} such that

k.2 - 4
vohee oo = loghoy

are 2% + 1 distinct eigenfunctions of (9), with eigenvalues

all equal to AQ. Furthermore, the collection of eigenfunctions

k .
{¢£}k,£ is complete. O

We will only remark briefly about the proof of Proposition
2, because of its similarity to the proof of Proposition 1. We
have already observed that an orthogonal transformation of
coordinates carries an eigenfunction to an eigenfunction belonging
to the same eigenvalue. Furthermore, the spherical harmonics
transform into one another, with constant degree £, under
orthogonal coordinate changes, since the class of harmonic
homogeneous polynomials is preserved under rotations. Thus,
as was the case in the proof of Proposition 1, it suffices té

check the integral equation for the 2% + 1 functions at a
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single point. All but one of these integrals turn out to be

zero.

The particular correspondence between the three eigen-
functions given in Theorem 1 and the spherical harmonics

is given by the following equations:
0
Yl(O,Q) = z/r
-1
Yl (6,9) = x/r

¥1(6,0) = y/r.

Now that we have determined the eigenfunctions of
eq. (8), the proof of Theorem 1 requires a proof that 7 is
the largest eigenvalue. This can be done by using an analytic
expression for the spherical harmonics and actually performing
the integration, or by using the known sequency properties
of the spherical harmonics to conclude that eigenvalues
decrease as the sequency increases. Then the above result
follows from the known eigenvalue of 7 for the lowest harmonic.
However, it is much more illuminating to numerically compute
the eigenvalues for a discrete approximation to the kernel
R(u,v), and the results of one such experiment are shown in
Table 1. 1In this example R(U,V) has been represented by a

90x90 matrix,which is sufficiently fine for the largest



a8

three eigenvalues to approximate m to within 1%. Furthermore,
all other eigenvalues are less than A = .25, which indicates
that the approximation introduced by using only the first three

eigenfunctions is a good one.
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Fig. 1 A 2-D edge segment modeled as a unit line passing
through the center of a square pixel (on the dark
side).
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Figure 7: Three consecutive CT images of a human head
through the eyes.



Figure 8: The response of the 3x3x3 operator over the image
in Fig. 7; the magnitude x-, y-, and z-projections
of the surface normals are shown.
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Figure 6: Displayﬁof the unit planes comprising the surface of a torus.
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