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ABSTRACT

Modern scanning techniques, such as computed
tomography, have begun to produce true three-dimen~—
sional imagery of internal structures. The first
stage in finding structure in these images, like
that for standard two-dimensional images, is to
evaluate a local edge operator over the image. If
an edge segment in two~dimensions is modelled as an
oriented unit line segment that separates unit
squares (i.e., pixels) of different intensities,
then a three-dimensional edge segment is an orien-
ted unit plane that separates unit volumes (i.e.,
voxels) of different intensities. In this paper
we derive an operator that finds the best oriented
plane at each point in the image. This operator,
which is based directly on the 3-D problem,
complements other approaches that are either inter-
active or heuristic extensions of 2-D techniques.

1. INTRODUCTION

The development of non-invasive techniques
for imaging the interior structure of three-dimen-
sional objects is currently revolutionizing many
areas of medicine and industry [l1}. One of the
most widely known of these techniques is computed
tomography (CT), which uses either sonar or X-ray
energy sources. In X-ray computed tomography,

a number of X-ray projections are made from diff-
erent angular positions around the object. Each of
these projections yields a one-dimensional absor-
ption profile. These profiles are thén used to
reconstruct a two-dimensional slice through the
-object [2]. After several of these reconstructed
slices are made sequentially along the third axis,
they can be stacked into a true three-dimensional
image of the object. Sonar-based tomography vields
similar three~dimensional imagery.

The development of systems for processing
and displaying three-dimensional (3-D) imagery has
revealed a number of new prcblem areas, such as the
need for special hardware facilities (e.g. [3,41)
and graphical data structures [5]. Another
essential problem underlying all of these systems
15 the need for algorithms for finding structure
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in 3-D images. Success in this area would

improve both the presentation of the image content,
and, eventually, the diagnostic usefulness of these
neoninvasive techniques.

Since different physical objects usually give
rise to different image intensities, the first
stage in finding structure requires the location
of these intensity differences. In two-dimensions
this is essentially the problem of edge detection,
and it can be formulated in the following way:

(1) apply a local operator that responds strongly
to intensity differences, such as a gradient opera-
tor, to every point in the image and (2) interpret
the response of this operator into assertions about
the presence (or absence) of edge elements.

To understand our notion of a 3-D edge, recall
that edge elements have an orientation associated
with them, such as that shown in Fig. 1. If pixel
(i,3) is part of the edge (on the dark side), then
the orientation of the edge element located at
(i,3) is the orientation of the line passing through
the center of pixel (i,j) that best separates the
intensities in the local neighborhood around (i,j).
(Note that, by symmetry, we also could have placed
an oppositely oriented edge element on the light
side of the edge. Or, we could have located the
edge element in the interstitial space between
pixels.) For an introductory discussion of many of
these issues, together with techniques for grouping
edge elements into longer curves, see [6].

In a geometric sense, a 3-D edge is a direct
extension of the 2-D edge model just described.
Instead of cons“dering an edge as a line through
a unit square of the image (i.e., through a pixel),
we shall consider it as a plane passing through the
center of a unit volume (or, as Liu[7] called it,

a voxel). The specific purpose of this paper is

to present a local operator that defines this plane
in an optimal fashion. This operator is a true
generalization of the operators used in two dimen-
sions. Also, it supplements the other approaches
to 3-D edge detection, which require either inter-
active assistance [8] or heuristic decomposition

of the 3-D surface detection problem into the
maxima of the three underlying 2-D edge detection
problems {(namely, one along each axis) [7].
Applying our operator and interpreting its response
should result in a smooth surface separating
adjacent volumes in the image, where these volumes
{or sub-images) correspond to different intensities.



If this were an image of the abdomen, for example,
one such surface could delimit the stomach.

Following the mathematical preliminaries in
the next section, in which we formulate the feature
detection problem as one of functional analysis,
we derive our optimal operator. Surprisingly, it
turns out to be a rather pleasing generalization
of the (2-D) Sobel Operator {9}. And finally, we
present the results of applying the operator to
several 3-D images.

2. MATHEMATICAL BACKGROUND

Feature detection can be characterized as
the problem of locating instances of a set of
target patterns in data. The specific target
patterns that we shall consider are distributions
of volume elements separated by a flat plane. This
plane is oriented so that dark voxels lie on one
side of the plane, and light voxels lie on the
other. Mathematically, these ideal 3-D edge
configurations can be described by the set of
functions:

+1 if ax+by+cz > O

E b’c(X.y.z) = (1)

ar -1 if ax+by+cz < 0

which are defined on the sphere:

2
S = {(x,y,z):xziy2+z <1}
The vector N = (a,b,c) is the unit normal (at the
origin) to the plane

ax + by + cz = 0, (2)

This plane separates the dark hemisphere of the
edge configuration (voxels having ideal value +1)
from the light hemisphere (voxels having value-1).
Thus the edge target patterns admit a parameteri-
zation through the variables defining the normal

ﬁ, and we can pose our feature-detection problem in
the following way [10]:

Let I(x,y,z) denote an input image defined
on the unit solid sphere S that has been normalized
to have zero mean and unit variance. (This requi-
rement will be relaxed in Sec. 4.) We seek values
for the parameters (a,b,c) so that

.

H1 -k (3)

a,b,cH

is minimized. A convenient norm l]-!] is given by

the L,-norm:

2
Hoell, = [JJ £2 (x,y,2) dxdydz] >/ 2.
S

However, to obtain a practical solution to this
minimization problem (3), we must consider a
finite-dimensional subspace M of L_(S). If we let
{wl. Yor wens WN } denote an orthogonal set of

basis functions for M, then the orthogonal proje-
ction I' of I onto M is given by:

I'(x,y,2) = ey, (x,y,2)

z
i=1
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where

I(X'Y:Z)Wi(x,y,z)dxdydz.

Similarly, let E'abc(x,y,z) denote the projection
of the pattern Eabc(x,y,z) onto M. Then, if M is

chosen properly, this projection will be one-to-one

on the class of E-patterns, and the full minimization
problem (3) can be replaced by the finite-dimensional

problem of finding (a,b,c) such that
L [

Hr -2 oo (4)

is minimized. {(This is the approach adopted by
Heuckel [11,12], for example, in formulating a

2-dimensional edge operator.)

More finally, the reason that a solution to
(4) also provides a solution to (3) is based on
the inequality:

[zr - || < [z -&l]. )
This inequality derives from the fact that the
projection operation on a Hilbert Space L2(S) is

linear, continuocus, and does not increase the
norm. Its proof follows from a generalized
Pythogoreon theorem: Let F be an element in the
Hilbert Space, and let F' be its orthogonal proje-
ction onto M. Then

2 2

Hoe [ = 1w 1]+ fe-re

Herll < 1l
A special case of the inequality (5), which is of
particular interest to us, is:

min{|{I' -~ E [} < min|{1I-E

' H
a,b,c a,b,c :

Thus the parameter values for the finite-dimen-
sional problem provide a lower bound on the full
problem. Furthermore, the above inequality has
three additional consequences [10]:
T
(i) If min {]I' - E'}l is large, then there
is no pattern E' that matches the image I (i.e.,

min |1 - Ea,b,ciE is large);

(i1) If I matches one of the E-patterns
exactly (i.e., if min ~E =
y @ Q]I a,b,cll 0) then
: Ty ‘' -
in jiX' - E =
m I a,b,c‘i 0
is the minimum for (4), and the selected parameters
{(a,b,c) are exactly those which minimize (3);

(iii) the parameters (a,b,c) that minimize
(4) are close to the parameters that minimize (3)

whenever I is close to an Ea b.c This c¢ontinuity
r ’

is reasonable provided that the sub-
chosen properly, and one technique for
is described in the next section.

assumption
space M is
doing this



3. THE OPTIMAL OPERATOR

In order to apply the theory of feature
detection outlined in Sec. 2, we must select the
finite~dimensional space M such that the patterns
E' are a good approximation to E. In other words,
we must find the best orthogonal basis functions
{wl, ceny wN} so that the difference between E and

E' is minimal. If we assume that all patterns E
have zero mean and unit norm (this can be assumed
without loss of generality, since the patterns

can be normalized), then a formal selection
criterion for M can be obtained by requiring that
the expected value of IIE - E'[| be minimal.

This expectation is taken over the- full set of
target patterns E, and is weighted by the proba-
bility density of occurrence of the patterns.
Since the set of target patterns is parameterized
by (a,b,c), we can regard each of them as the events
comprising a random field with probability density
pla,b,c). Thus the problem of minimizing the
approximation error between E and E' can now be
posed as one of finding the basis functions

'wl’ wz, ey wN such that:

N
Elle-efl= &lle- = ay]| (5)
i-1

is minimal, where & is the expectation operator
and where:

a, = E(x,y,2) wi(x,y,z)dxdydz .
S
The solution to this minimization problem

is given by the Karhunen-lLoeve basis functions
[13,14]; i.e., the wi are solutions to the integral

eigenvalue problem:

f
J R{x,y,2,x' ¥',zt) wi(x' A :2')dX'dY'dZ'=

Ki¢i(xpy,z) (7)
where the autocorrelation function is

&{E(x,y,2) E(x',y" ,2")}

L}

R{x,y,z,x",y",2")

(8)

"
=

Ea b c(x',y‘,z')- pfa,b,c) - dadbdc.
’ r

The autocorrelation in (7) forms the kernel of a
symmetric, positive definite, compact operator,
which implies that there will be a countable

number of positive, real eigenvalues Ai[lSJ. These

can be ordered from the largest to the smallest,

LN Z A, > ..., and the finite dimensional space M

3¢ formed from the eigenfunctions corresponding
to the largest eigenvalues. These eigenfunctions

minimize the truncation error introduced by a finite

value for N oin (6). Clearly as more eigenfunctions
are used, the approximation becomes better.
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The mathematical computation of the auto~
correlation function (8) is technically compli-
cated, however a few geometric considerations allow
us to describe R more clearly. To begin with, note

that R(x,y,z,x',y',2') = 1 when (x,v,2) and
(x',y',2') are vectors in the same direction, and
R(x,y,z,x', v',2') = -1 when the two vectors point

in opposite directions. Between these extreme
points, R(x,y,z,x',y',z") drops off linearly as the
angle between the vectors (x,y,2z) and (x',y',z")
increases from O to . (Recall that the dot
product of two unit vectors is just the cosine

of the angle between then.) Thus:

R(x,y,2,x',y',2")= l-%-arccos(xx'+yy'+zz')
Using the notatipg_ﬁl = (x,y,z) and z = (x',y',z"),
observe that R(u,v) depends only on u-v. We

can also translate the eigenvalue problem (7) into
this notation:

”R(G,V) wi(J)ds;]- = Aizpi(E) (8)

Now the integration is taken with respect to v
over the surface of the unit sphere, and ds;

denotes surface measure. We can now formulate the
Theorem 1: Let

¢, (x,y,2) = TG 22

- ST
b, (x,y,2) = y/ x2 + y2 + g2

z/V 2

b3 (x,y,2) <2+ y2 4 g2

The functions ¢l, ¢2, ¢3 are eigenfunctions of

(9), with eigenvalues all equal to 7. Furthermore
these are the only eigenfunctions corresponding to
this eigenvalue. [J

The proof of Theorem 1 is given in [19] along
with a description of the full class of eigen-
functions for eq. (9). Furthermore, a full class
of eigenvalues has been computed numerically
(see [19]). This computation reveals not only
that 7 is the largest eigenvalue, but that all
of the others are smaller than X = 0.25. Thus the
approximation introduced by using only the first
three basis functions to define the operator shcould
be a good one.

The three basis functions are radially
constant, and can be written in the simpler form:

¢l = x/x

b, = y/r

by = z/x
where

r =

2
x + y2 + 22 .




It is these basis functions, or, more exactly, a
discrete approximation to them, which define our
local operator. Two approximations are shown,
the first in which the unit sphere is partitioned
into a 3x3x3 unit cube (Fig. 2}, and the second
into a 5x5x5 cube (Fig. 3). Since the three
operators are simple rotations of one another
along the different axes, only the approximation
to ¢l (oriented along the X-axis) is shown. ¢2

looks the same but is oriented along the y-axis,
and ¢3 is oriented along the z-axis.

4. APPLYING THE OPERATOR

There are two stages in the application of
the operator shown in Fig. 2 or 3: (1) the unit
surface normal (a,b,c) defining the best edge
through each voxel (a,B,y) must be determined; and
(ii) the gquality of the match in (i) must be
evaluated.

The surface normal for the best edge at
(¢, B,y) is obtained by convolving the ¢i with the

(not necessarily normalized) input image; i.e.,

a=<4é, 17> ¢1(x,y,2)I(x-a,y—s,z-Y)dxdydz,

S
b =< ¢2, >,
c = < ¢3, I>.

The result of this convolution is the surface
normal (a,b,c) at (a,B8,Y). If the input image

had first been normalized, then the surface normal
would be a unit vector pointing in the same
direction. Thus the effect of the image normali-
zation is to normalize the length of the computed
surface normal, i.e. to multiply the vector by a
scalar. It is this unit normal that provides a
precise minimum for inequality (4).

once (a,b,c) have been computed, the quality
of the edge that they define must be evaluated.
The fastest measure is the norm of (a,b,c): a large
value usually indicates a strong match (i.e., a high
contrast edge), while a small value indicates a
poor match. More precisely,

|t(a'b’c)1‘Evclideant llIl(X'Y'Z)HL‘Z(S)
where I' is the projection of the (normalized) image
1 onto M. Thus, the length of (a,b,c) is a coarse
measure of the image contrast after projection.
Fig. 4 contains a printout of the magnitude of
(a,b,c) for a slice through a 3-D image of a cube
using the 3x3x3 operator. Note the typical response
gradient across the edge, with the maximal response
directly on (the dark side of ) the edge. Thus a
threshold can be used to select the maximal edge
responses for this example, and the unit planes
(eg. 2) through each voxel can then be displayed
(Fig. 5). Note also that, since each unit surface
passes through the center of a voxel, the borders
of these unit planes may not coincide even though
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orientation is varying smoothly. (This artifact
of the display process could be reduced by simply
smoothing the edges of these unit surfaces.)

The resolution of the 3-D object boundaries
that are eventually built out of these local
surface elements is directly dependent on the
sampling density. Fig. 6 contains a higher reso-
lution image of the surface of a torus that was
also made by thresholding the detector's responses.
This display gives a much closer description of the
object in the image than the coarsely-sampled cube
in Fig. 5.

Our model for edges has two possibly restri-
ctive features. First, it was derived using
continuous mathematics, but is applied in a discrete
approximation to sampled imagery. The previous
examples demonstrate that this approximation does
not introduce any serious problems. The second
yestriction is that the model is based on a 3-
dimensional step edge. However, practical
experience with 2-dimensional imagery has shown
that other edge configurations, such as roofs and
peaks, also occur [16]. Thus it is necessary to
evaluate the operator over a more realistic image,
and Fig. 7 contains an example from computerized
tomography. Note that the operator's responses
(Fig. 8) are in apparent agreement with the original
intensity distribution.

Because of the weighted combinations of
intensities within our operator, it is theoretically
possible for them to combine in a way such that
the norm of (a,b,c) is large, but the edge quality
is poor. Such situations can be detected by
computing an edge quality measure after the
putative edge normal (a,b,c) has been determined.

A very simple gquality measure, a length of (a,b,c%
has already been described. A slightly more
elaborate quality measure P is given by

Q {Ea’blc(a,B,Y) = J Ea,b'c(x,y,z)l(x—a,y-ﬂr
S

z=y)dxdydz

where
+1 if ax+byt+cz > O

i

E (x,Y,2)
a;b,c -1 if axtbyt+cz < 0

Another quality measure could be the mean square
difference between the normalized input image

centered at (a,B,y) and the ideal edge E .
a,b,c

However, in the experiments that we have conducted
up to this point, the simplest quality measure,
{E(a,b,c)]l, has proved satisfactory.

It is of course, well known that the inter-
pretations of the responses obtained from edge
operators evaluated over local portions of images
are not unique, and that other kinds of processing
are necessary to disambiguate them. One such
possibility is to use a relaxation process analogous
to that in [7]1, in which case these various' quality
measures could be used in computirg the initial



certainty of each possible interpretation. Or,

one could evaluate a sequence of operators at
different sizes, and attempt to parse the coarse
through fine responses into various edge assertions
[18].

5. CONCLUSIONS

The introduction of true three-dimensional
images by modern scanning devices has created the
need for appropriate image processing and .analysis
techniques. While it may be possible to extend
existing 2~D techniques in certain circumstances,
in others the 3-D structure may change the problem
requirements. In this paper we began with a pro-
blem formulation in three dimensions, and derived
a surface edge operator. Although this operator
can.be viewed as a generalization of a two-dimen-
sional (Sobel) operator in retrospect, the optimal
properties of its 3-D counterpart would have been
much harder to predict.

The design of an operator that responds to
intensity differences is only the first stage in
computing descriptions of surfaces in 3-dimen-
sional images. Resource limitations in processing
these images demand that the operator be evaluated
over fairly small sub-images, and thus subsequent
processing must be responsible for achieving
appropriate consistencies between descriptions
in neighboring sub-images. The operator described
in this paper should be useful for providing input
to these more global processes.
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Fig. 1 A 2-D edge segment modeled as a unit line passing
through the center of a square pixel (on the dark
side).
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0. 0 0. 0. 8. 0. 0. 0. 0. e. 8. 0.
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0. 2% 43, 2S. 0 0. 0. 25, 49, z2S. 0. 6,
0. - 21 42, 29 2% 25, 25. 2%, 43, zZi, 0. Q.
9. 14 35, 43 4a 49, 43, 43, 349, 14, 9. a,
0. S 14 21 25 25, 25, zi. 14, 9. g. e,
Fig. 4 Cross section of grixdicnt vector magnitudes.,

MIDDLE-SLICE BOTTOM-SLICE

Figure 7: Three consecutive CT images of a human head
through the eyes.

2

H Ay .

Figure 5: Dispiay of the unit planes comprising the surface of a coarsely
sarnled cube.

Figure 8: The response of the 3x3x3 operator over the image
in Fig. 7: the magnitude x-, y-, and z-projections
of the surface normals are shown.

Figqure 6: Display of the unit plancs comprising the surface of a torus.
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