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Abstract

One of the first things we learn in image processing is about matched filtering. The
author learned about matched filtering from Azriel Rosenfeld, and also about convolutions,
Fourier transforms, and many other foundational techniques. One of the goals of computer
vision research, as practiced by the author and legions of students of Rosenfeld, has been to
discover more sophisticated and robust methods for object recognition and image analysis.
We begin by discussing some of that computer vision research and pattern matching, and
the need for robustness. However, we view a large portion of computer vision as matched
filtering, suitably embellished, often disquised. A number of example methods are shown to
be very much related to some form of matched filtering. Typically, matched filtering arises
when problems are formulated as L? optimization problems. We then consider a formulation
of pattern matching as a Bayesian mazimum likelihood computation, as opposed to a least
square norm minimization. In this formulation, we discover that certain weighted functions
that would ordinarily be invoked heuristically in order to account for noise and statistical
variation can be derived and given precise meaning. We argue that the formulas that are
derived have heuristically the right behavior, but will provide better performance than other
heuristic formulas when applied to real applications.

1: Introduction

Computer vision research is beginning to show promise for commercialization. Small
demonstration projects in research labs, particularly in robotics, manufacturing, and parts
inspection, demonstrate capabilities that seemed unlikely a decade ago (and yet were
promised to be around the corner two decades ago). Aerospace contractors are begin-
ning to develop production automatic target recognition systems, and renewed interest in
countering armored threats in regional conflicts has brought an infusion of research funding
to image processing for target recognition. Now, imagery is pervasive in medicine, and
medical image processing applications show great promise for improved health care.

It is now realistic to expect the performance of a vision system to provide practical,
commercializable applications, and that the performance of systems be quantifiably related
to the parameters, scenarios, and inputs (e.g., the sensors) in the system. The demon-
strations must be extensible, and the benefits must be quantifiable. Marketing, support,
modifications, and product life-cycles will be new challenges in computer vision applica-
tions. The success of moving a fundamental research field to this level of accomplishment is
largely a testament to the perseverance of the founders of the field, and new dedication will
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be required by subsequent researchers to respond to the new needs and new environment,
largely influenced by the success of the original developers.

There is good reason to believe that narrowly-defined applications with sizable markets
are finally amenable to computer vision technology. It is not so much that the techniques
developed over the years have reached fruition, although in many cases they have, but rather
that processor speeds, DSP technology, sensors, and reduced prices make the economics
of simple techniques more viable. Further, price reductions have been dramatic. Many
researchers recall using $50,000 to $100,000 attached image processing systems, and now
more typically make use of favor of $5,000 SCSI image digitizers, while others are beginning
to look at the $500 camera systems that can be attached to workstations, with the intention
that demonstration systems use commonly available inexpensive hardware.

Are we prepared for the transition of computer vision research to computer vision market-
ing? Alas, academic researchers have little appreciation of the subtleties of the marketplace,
let alone the range of applications and requirements of the customers. In the new world,
where DSP chips can easily achieve 700+ MIPS, the goal is not sophisticated algorithms
but rather simple systems that work well and fail gracefully and are easily adapted to new
environments.

The methodologies that researchers utilize in order to develop demonstrations will need
to be modified to account for the new goals. In particular, it is critical that the performance
of a system be demonstrated over a range of potential inputs, and that robustness of a
system form a critical component of its evaluation. The results are more important than
the sophistication of the methods.

The remainder of this paper is more technical, but related to these sentiments. Qur focus
is on object recognition. The comments that follow argue generally for the use of Bayesian
methods, in the context of pattern matching, for model-based vision applications. We assert
that Bayesian methods lead to well-justified formulas, and reasonable formulations. The
principle alternative, which has been a mainstay of computer vision algorithm development,
is based on optimization, and generally leads to some form of matched filtering. Our
thesis is that the two are not so different. Our point is that after years of research and
considerable success, we are still filtering (after all these years). But that’s not bad, if we
use representations where the filters are more robust.

We begin with a discussion of classical matched filtering.

2: Matched Filtering

By matched filtering, we mean simply an inner product. So if f(z,y) is an image, and
m(z,y) is a model or pattern that is being sought, we compute

] f(z,y) - m(=,y)dzdy

in order to determine the degree of match. If multiple patterns are sought, say m;(z,y),
for i = 1,---n, then n inner products are computed, and the largest wins.

Beginning with optical character recognition, and continuing with optical computing
and target recognition, matched filtering holds an important appeal and promise. The
technique is easily implemented, and has mathematical justification. Specifically, if one
wants to find the best match in terms of the L? norm, then the minimum of || f — m;||? is
equivalent to maximizing {f, m;) — (1/2)||m;||2. If all the models have the same norm, then
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we have derived matched filtering, and if the models have different norms, then we have
good justification for a minor modification to matched filtering.

Alas, it is doctrine in computer vision, and to a lesser extent in pattern recognition,
that matched filtering does not work. Unless the number of models is minimal, noise
and variability kills the technique. The doctrine is re-learned by successive generations of
researchers, and is verified empirically and by theoretical analysis.

But, as we will see, variations of matched filtering reappear in many guises. The method-
ology of computer vision research seems to dictate that matched filtering form the key com-
ponent of the matching engine, providing it is sufficiently embellished. The performance of
these systems, as we all well know, is adequate for the examples that are published with the
papers, but falls apart when the method is extended to more models or more complicated
systems. The problem of dealing with noise remains the key difficulty in the application of
computer vision technology. The source of the problem is that matched filtering can’t deal
with noise effectively, which has been known for decades.

At the same time, Bayesian techniques show great promise in alleviating problems with
noise and inadequate matching engines. The difficulty with Bayesian techniques lie in the
representation of the information that is to be analyzed. The representation is cfitical, but is
not dictated by any theory. Accordingly, Bayesian networks or Bayesian reasoning systems
have to be developed for each application, often in ad-hoc ways. A better methodology is
required.

In the sections to follow, we will not solve the problem of formulation the representation
in order to utilize Bayesian reasoning to break the log-jam of matched filtering. However,
we will show how matched filtering itself can be reformulated and modified so as to admit
a Bayesian interpretation, which should assist in providing new methodologies that lead to
more robust performance.

3: Other guises for matched filtering

Matched filtering can be formulated as the task of maximizing a collection of vector dot
products. If &' is a vector representing the ordered pixel values, and {Z;}?; is a collection of
target vectors, then the problem is to find the index that maximizes & - &; over all possible
t. Since the #; will typically contain multiple translates of the same prototype pattern,
many of the vector dot products can be efficiently implemented as convolutions. Since the
Z; are not orthogonal, there can be considerable cross-talk. The vector & of pixel values
may represent the result of an edge detector or other filter of raw sensor data, and may
also incorporate multispectral and multisensor information.

Next, let us consider statistical pattern recognition. Although there are many forms, let
us first consider the K-nearest neighbor classifier, with K equal to one. In this classifier, a
feature vector & locates the prototype that is nearest, i.e., that minimizes ||Z — &;||? over 4.
This is equivalent to maximizing

R
which we may write as (&,1) - (&;,b;), where b; = —(1/2)||%:]|2. Thus we once again get a
vector dot product maximization, but in this case, the vector represents the feature values
of a region of interest with an appended component that is always one, and the matched
filters encode the prototype feature vectors, with an appended bias term.
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What about classifiers with K greater than one? Perhaps there is something essential
in better pattern recognition methods and more sophisticated classifiers that relieve them
from the tyranny of matched filtering. For example, a two-class 5-nearest neighbor classifier
might use a voting scheme among the five nearest neighbors to a test pattern, resulting in
one of the two classes assigned to the test. However, the result of the voting scheme is that
the multiparameter feature space is decomposed into regions that result in assignments to
one class or another, and the resulting decomposition can be closely approximated by a
1-nearest neighbor classifier, providing enough prototypes are inserted. In other words, by
changing the prototypes, a 1-nearest neighbor classifier can be used to approximate just
about any static pattern recognition scheme.

4: Model-based vision

Next, let us consider a model-based vision application. Suppose that we are using an
hypothesis-and-test approach, such as the Lowe SCERPO method [1] or successive methods.
As some stage in the processing, there is a 3-D model m that is hypothesized to be present,
and some number of parameters that have been estimated, so as to predict certain features.
The system must determine other parameter values, and/or verify currently established
values, updating parameters according to new features extracted from the image. There
are two phases to this process: (1) matching scene features to model features that can be
predicted in the image, but may be located along a multiparameter transformation orbit;
(2) improving viewpoint parameters based on newly discovered feature matches.

The first of these two phases, matching scene features to model features, can be formu-
lated as follows. We view scene features as vectors §;, which include position information
in the scene, and can also include attribute information. Likewise, the hypothesized model
is composed of a similar collection of features, say Z;. We have a transformation T that
depends on unknown parameter values p; ---p,, we wish to determine parameter values
such that the collection of transformed model features,

{T(py---pn; %)}

best approximates a subset of observed scene features
{7}

A metric is required in order to measure the distance, and a typical measure is a mean square
metric in feature space. This metric is common due to its mathematical tractability—the
parameter search is facilitated when the minimization can be performed assuming an L2
metric. Nonetheless, the problem has many subtleties, which is familiar to researchers
in computer vision as the correspondence problem. In various forms, the problem can be
solved by subgraph isomorphism, relational graph matching, relaxation methods, analytic
optimization, and by many other methods. In general, some of the parameter values may
be fixed, others constrained, and others are completely undetermined, and certain corre-
spondences of features may already be established, and new correspondences are sought.
The metric measuring the degree of match may well be changed as matches are hypothe-
sized. However, in any given iteration, new matches are sought, either along with providing
additional constraints on parameters, or as a verification to already determined parameters,
and the metric to evaluate correspondences is fixed for the iteration. Thus, if all p; are
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free, then we wish to find a subset S of the observed features, a map from the subset S
matching §; € S to a subset of the model features Zj;, such that the minimum

Jmin 3 (|T(pr -+ pai Z) = Gl
A

is small relative to the number of matches in S. One formulation establishes a threshold
fraction for each model, and declares a model to be recognized if there exists a matching of at
least the specified fraction of model features to features in the scene such that the minimum
parameter fit error (above) gives a sufficiently small value. Other ways of formulating
minimization problems with constraints, including penalization methods, are discussed in
[2].

There are many special cases, some of which we discuss later.

The second phase, viewpoint refinement, is formulated as follows. We have a collection of
scene features g;, for ¢ = 1...k, in correspondence with specific features in a hypothesized
model, say Zj,, 1 = 1...k. Using a norm that can take into account the stated correspon-
dences, we wish to find the optimal parameters p; - - -p, in order to minimize the distance
from

{T(pr- - pn; 5"J'.')}:';l
to the set of features {#;}*_,. In a sense, the second phase is the same as the first, except
that the collection of features are now fixed and in correspondence, whereas the matching
phase described above must posit correspondences as part of the solution.

Suppose we fix on L? norm. Then the problem is to find the p; - - - p, minimizing

k
ST (pr- - pas i) — Gl
1=1

The figure depicts the two problems: finding matches and parameter refinement.

Clearly, both phases are optimization problems, and can be solved by many different
approaches to numerical optimization.

Suppose that T is linear in all its variables. This is a special case that is unrealistic,
but nonetheless surprisingly common, and will be approximately true much of the time.
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Clearly, alocal linear approximation is often valid, and since iterative optimization operates
locally, a linear assumption is not totally unuseful.

In that case, the solution to both phases, for a fixed model and fixed matching, is a linear
minimization problem, of the form

minimize ||Az — b||?> over z

whose solution is given by the solution to the “normal equation,” and can be solved by a
simple iterative procedures; equivalently the minimum value can be obtained by evaluating
[[A(A'A)"1A! — I)b]|%. Since b alone depends on the extracted scene features {§;}, and A
depends on the current parameter values and the model features {Z;}, the minimization
is implementable as a vector dot product (i.e., a matched filter operation), such that the
minimum value can be formulated as a vector product Z - &;, where Z depends on the Xalues
in the matrix A, and hence on the model features Z;, and &; depends on the vector b, and
hence on the #;’s, although the functional relation may not necessarily be simple.

Of course, for the first phase, the model parameters, the subset of model features, and
the match to scene features are not fixed. Thus many innovative search strategies can be
developed to perform the minimization in an efficient manner. However, here’s a brute
force method. We begin by enumerating all possible matches, over all possible subsets of
model features, over all possible models, which we index by a. Further, for each a, some of
the model parameters are fixed, and the others are free. For each such «, the minimization
is a linear problem, as describe above, and leads to a vector product & - ¥, to obtain the
value to be minimized (or maximized). If we find extrema over the many «, the result is
posited recognitions.

For the second phase, no maximization is required over multiple a. Instead, a simple
optimization is required. This can be solved by matched filtering, or some related technique,
depending on the metric norms. In the case of the first problem, since the parameter values
are unknown, the set of available parameters might have to be discretized, which can lead
to errors. Indeed, the correspondence problem is interesting precisely because one wants to
find a search strategy that is better than exhaustive search.

We see that at least one form of the hypothesis-and-test approach to model-based vision
can be implemented as a sequence of matched filtering decisions. Of course, this formulation
made a linear assumption, or at least a local linear assumption, of the transformation of
features T', and the approach that has been outlined is brute-force, and likely to be improved
in actual implementation. Nonetheless, our formulation shows the pervasiveness of matched
filtering.

5: Unstable problems and unstable methods

At this point, we have said that:

o Matched filtering won’t work; and
e All methods lead to matched filtering, perhaps in disguise.

This theme will continue, even as we discuss geometric hashing.

There is a seeming dilemma. If we really believe the points, then we should give up hope.
Either, matched filtering is not so bad after all, as long as we get the representation right,
or matched filtering is the wrong approach, and we must make sure that the methods that
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are used to solve the problems are different than matched filtering. After all, we have only
shown that standard vision problems have formulations amenable to solution by matched
filtering. We have not said that matched filtering is the only approach to solving vision
problems.

The point is that problems, particularly optimization problems, can be unstable or stable,
and if they are stable, it is still possible to fail to solve them due to the fact that the methods
are unstable.

The computer vision community hopes that the following is true:

1. The computer vision problems as formulated above are stable problems;

2. The decades of failure of matched filtering approaches means that matched filtering
is an unstable method for solving most of these problems; and

3. Stable approaches will soon be found, or have been found, and are yet to be fully
promulgated.

But it could also be that the problems as formulated are unstable, and that a better
formulation is required. At this point, it is customary to point to biological vision systems
as an existence proof, and thus support for the proposition that the recognition problem
must be stable. Thus, the implication is that the fault lies in the methods, although it
could be that the fault lies in the formulation. In particular, the optimization formulation
is not necessarily the only way to describe the matching problem.

6: Geometric Hashing

Geometric hashing [3] is a method for organizing pattern matching, and is related to
the object matching formulation given in the previous section. However, by discretizing
the space of parameter values for the transformations in a clever way, the enumeration
of possible matches becomes more manageable. Geometric hashing as a search method is
particularly attractive because (1) it is parallelizable, (2) efficient especially when dealing
with large databases, and (3) permits easy adaptation.

Using independent features with attributes, an image scene is represented using a col-
lection of vectors, {#;}, as before. Likewise, each model is represented as a collection of
features, say for model my, the features are {Z;};;. The recognition should be indepen-
dent to some class of transformations that can be applied to the models, such as translation,
rotation, and perhaps skew transformations.

Accordingly, we define a basis set to be a minimal collection of features such that placing
a basis set in one-to-one correspondence with another basis set (such as a basis set in the
scene) determines a transformation in the class of transformations under which recognition
must be invariant. For example, if the features are points in 2, and if recognition is to
be similarity (translation, rotation, and scale) invariant, then a pair of points establishes a
basis.

For any particular basis, remaining features may be normalized with respect to the basis.
So, if we choose a basis B in a model my, then all features Z;; in my may be transformed
in such a way as to move the basis to some pre-determined configuration. Likewise, given
a basis B’ in the scene, then all features ¢; may be transformed so as to move the basis B’
to the same pre-determined configuration. If model my occurs in the scene with basis B
in the model in correspondence with the features B’ in the scene, then after normalization,
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the normalized model features should occur within the normalized scene features in the
same configuration.

Accordingly, rather than searching for transformation parameters by a numerical scheme,
in conformance with the idea of enumerating over all possible matches indexed by a (as
formulated in the previous section), we begin by expanding the model base, considering
each model mj and every basis B within mj to be a prototype pattern. Thus the new
collection of models, now called patterns, are pairs (mg, B), subject to the condition that
the basis B is a basis set of features in the model my.

To perform the search, we choose a basis B’ in the scene, and normalize the features
¥; with respect to the basis B’. The goal is to determine if any of the model/basis pairs
(mk, B) match the normalized scene. The question is the same as asking whether any of
the models are embedded in the scene in such a way that the scene basis B’ matches to any
basis in the models. If all bases have been included in the enumeration, then it suffices that
B’ simply lies within an embedded model. The match problem is depicted in the figure.

For any particular model/basis (mg, B), the question is very simple. We have a collection
of normalized model features, which we call {Z;}. We have a collection of normalized scene
features {#;}. We want to find an embedding of i — j; for a subset of the possible ¢ such
that each &; lies “near” ;.

This problem can be formulated as an optimization problem, but let us consider a heuris-
tic matched filtering approach directly. After all, we are attempting to find a match of the
pattern {Z;} within {@;}. We now revert to a continuous formulation.

Let
(@) =326 - &),

and let

9(&) = 3 6(3 - T,).

(Note that f is dependent on the model/basis pair (mg, B), and so we might denote it as
f(my,B)- Nominally, the problem is to determine whether delta peaks in f match a subset
of peaks in g. Heuristically, this can be determined by considering (f, g}, although clearly
some “smearing” of the peaks is required in order to account for normal noise and possible
minor displacements. One way of doing this is to “blur” f by a gaussian,

f=f+Gc,

where G¢ is a gaussian distribution with mean zero and covariance C. We then compute

(f.9)-
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A better approach modifies f according to expected variations of the normalized features.
Let us suppose that the normalized features &; have expected covariance variations of C;
respectively, when found embedded in the typical (normalized) scene. Then, we redefine f

f@) = ¥ 6o (@ - ),

where Gg; is a Gaussian with covariance C;. Then the inner product ( f ,g) measures not
only the number of features represented by peaks in f that have matches in the scene
represented by peaks in g, but also takes into account how closely the matches line up.

Clearly, we are back to matched filtering. Worse, the justification is heuristic. And it
is not clear if the scheme will not work because it is matched filtering, or it won’t work
because the problem is still formulated poorly, or perhaps it will work if the features are
robust, stable, and discriminative.

7: Bayesian Pattern Matching

This section shows that the fundamental pattern matching problem, formulated in the
previous section, can be given a Bayesian formulation, leading to both a justification and
a modification of the heuristically derived formula for matched-filtering -type recognition.
Our optimistic conclusion is that matched filtering is probably okay after all, but that a
non-optimization formula is needed for stability. Moreover, the right formula is critical,
and the features and representation of the features is even more critical. This formulation
is based on the thesis work of Isidore Rigoutsos [4]. See also [6] for more details.

The event that we hypothesize is that model my is present in the scene with basis B
in my matching scene basis B’. We may denote this binary event as E(mg,B,B’). A
maximum likelihood formulation asks us to compute and maximize

Pr(E(mu, B, B'){;}),

where the #; are the unnormalized scene features. Note that this formulation is slightly
nonstandard, in that if the model m; appears in the scene, then there may well be multiple
pairs (B, B") for which the event is true, and which “discovers” the model. We only need
find one such pair, if the model is present.

If the features are conditionally independent, then the above expression can be decom-
posed. The conditional independence assumption is a strong one, and imposes a large
constraint on the kinds of features with which we can operate. The condition means that
under the assumption that a particular model is present in a particular location, knowledge
of a feature at one location (or with one set of parameters) has no influence on the proba-
bility density distribution of another feature. The condition is not at all true, for example,
when dealing with edge elements (edgels), which tend to line up in lines, and are thus very
much dependent.

Using various Bayesian manipulations, and using the independence assumption, one can

derive
Pr(E(my, B, B)){a@;}\ _
IOg ( PI'(E(mk)B’ Bl)) ) -

. Pr(@;|E(my, B, B'))
log K +Elog ( 2 Pe(a,)
J
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where the probability terms in the sum should be interpreted as density function evalua-
tions. See [5] for details of these manipulations. If we assume that all prior probabilities of
the events E(mg, B, B') are uniform, then we can simply strive to maximize the right hand
side. The log(K) term will be independent of (my, B, B'), and so can be ignored.

Accordingly, let us examine carefully the summand terms on the right hand side of the
equation above in light of the patterns {Z;} and {;}.

The denominator Pr(#;) is very simple. This is simply the prior probability of a feature
occurring with values i;, where the features are chosen randomly in a random scene. We
will assume that the number of features extracted is fixed and known (although modeling
the density using a non-homogeneous Poisson process might be more realistic). There is
a background density distribution, say p(Z) on the feature space, and this probability is
simply an evaluation of this density function. This function can be derived from a modeling
of the image space and of the feature extraction process, or could be developed empirically.

The numerator is a more complicated story. This density function is different, because
it is conditioned on the knowledge that event E(my, B, B') is true. This means that we
know that the normalized scene contains the features {Z;}, for ¢ = 1...nt, where there
are ny features in the model my. Let us suppose that we have s observed features. Let
us further suppose that of the ny features in the model my, it is reasonable to expect on
average a certain amount of obscuration, and thus only 3-ny features will be observed from
the model, and the remaining will be background clutter features. Finally, let us assume
that each of the expected features &; has an expected variation with covariance matrix C;.
Then the expected density distribution is given by

3@ = =2 @)+ 8.5 G- 5.

i=1
Note that the function has total density one (assuming p has total density one), and that
the delta masses at the locations of the pattern of the normalized model my have become
Gaussian “bumps,” as heuristically considered in the previous section. Accordingly, each
summand has the form

log (1 _B ‘S" - (z) ZGC‘(z z,)) .

Plugging into the Bayesian formulation above, we see that the maximization of the likeli-
hood is tantamount to computing, for each collection of {Z;} based on the model m; and
basis B, given the normalized scene features {;} based on the scene basis B’,

Z log ( ﬂnk Z Ge,(@; — m,))

Jj=1

SP(

This can be rewritten as

—slo <;)+
S s—ﬂnk

Zlog (1 + L= ﬁ/p(ﬂ) zk:Gc,-(ﬁj - fz)) .

J=1

And now for some magic. For any given @; value, at most one of the values of Z; will lie
close. Let’s call the closest one 7;. Then in the second term, the Gaussian terms will all
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be essentially zero, except possibly for the term GC,.J_ (#;; — i;). Thus we may replace the
sum over ¢ with the single term 7;! This analysis, incidentally, is using a greedy approach
to finding an association between predicted and extracted features; a different analysis is
possible if we are interested in maximizing over all possible associations.

So we obtain the following formula. We fix B’ in the scene, and obtain the collection
{'1—[]'};___1. We have many prestored model/basis patterns, each one consisting of a collection
of the form {Z;}7%,. The support level for a particular model/basis depends on finding the
nearest model normalized feature &;; to each normalized scene feature ;. The support for
the particular model/basis is then

—slo, (—8——)+
g s—ﬂnk

> B/p(i;) o )
j;llog (1 + Py ﬂnch‘J(uJ Zi))-

The bias term —slog(s/(s — Bnx)), which we will denote by ¢, depends only on the model
my, and not on the basis B chosen within model my. Accordingly, the support may be
rewritten as

¢k + <f(mk,B)ag>a

where ¢ is a sum of delta functions at the locations {%;}3_,, as before, and f(mk,B) is again
redefined, and discussed briefly below.

But, at this point, we may note that the pattern matching problem has once again
been formulated at matched filtering! The collection of biased inner products should be
maximized over all (my, B), and then separate collections may be evaluated and maximized
for different B’ (which effects the function g, i.e., g = gp’). Accordingly, if Bayesian pattern
matching provides a more stable performance than optimization methodologies, it is not
because matched filtering is inherently inappropriate. Rather, there is still hope that the
Bayesian approach is better because the change in formulation provides different formulas
and different representations.

Finally, we define the Bayesian pattern-based matched filter f(m x,B)- For a feature vector
Z, and (&) defined as the index of the nearest normalized vector among {Z;}, i.e., the
collection of feature vectors in my normalized according to the basis B, we then have

- z L
f(&) = log (1 + %Gcim(m - zi(,;))> .

By using fancy data structures, such as hash tables and k-D trees, or self-balancing trees,
the computation of the multiple inner products can be made quite efficient. This is what
we refer to as “geometric hashing.” But it is not our purpose here to argue for indexing
and/or hashing methods here. Instead, our point is that a Bayesian formulation leads to
yet another matched filtering formula, but where the filter operates in a domain equivalent
to the range space of a feature value (which we have viewed as a vector, because there can
be multiple attributes to a single feature), and with a formula that is non-obvious and only
somewhat intuitive. Indeed, the formula for f above can be closely approximated by a sum
of log terms (since if Z is distant from a particular Z;, then the Gaussian will essentially
evaluate to zero, and the log term is thus also nearly zero), but this is slightly different
than a sum of Gaussians, which was our heuristic formula from the previous section.
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8: Comments

At this point, it would be typical and desirable to state that the revised formula derived
in the previous section for Bayesian pattern matching yields much better results, which we
can document with examples. However, if we did this, we would be guilty of exactly the
kind of article criticized in the first section, where the results are given in a summary in
the penultimate section. Moreover, the jury is still out. We believe that Bayesian pattern
matching will work much better than traditional object recognition systems, given the same
features, but this is simply an intuition.

But from the standpoint of methodologies, we have two points: (1) There are alternative
formulations; (2) we still haven’t gotten rid of matched filtering, although it is considerably
transformed and disguised.

9: Summary and Conclusions

For many years, people have worked on feature extraction, with the conviction that
stable, robust features are important. We now state here that stable, robust features are
essential. Viewing recognition as a pattern matching problem, the patterns have to be
representative of the objects, and the patterns are composed of extracted features. Our
discussion above has been mostly about the matching engine. Although we have shown
alternative methodologies and developed new matching formulas, because we always come
back to matched filtering, it is entirely possible that the precise matching engine does not
matter. We believe that it does matter, and that the Bayesian approach should lead to more
robust performance. However, in no way does the alternative approach obviate the need
for stable features. Indeed, if anything, since our Bayesian approach is based on matching
patterns of extracted features, we have emphasized the need for stable features.
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