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Abstract

The zero-crossings of Laplacian-of-Gaussian filtered image data
bave been used for edge detection and segmentation of digital
images. Under certain conditions, the set of all zero-crossings
repr ted at all scales of resolution completely determines the
image data, up to a multiplicative constant. Reconstruction
methods are desired in order to study the applicability of these
theories when the conditions do not hold, and to study the stabil-
ity of the representation. We apply a method of solving ill-
conditioned inverse problems, called “minimization of equation
error,” to this problem, in order to produce a signal with zero-
crossings at all scales that are nearly equivalent to zero-crossings
of natural data. Our results suggest that representation using
zero-crossing data alone is quite unstable.

1. Zero-crossings

The zero-crossings of the Laplacian of a Gaussian-filtered
image form closed contours that have been suggested as a
representation of the edges of a digital image [1]. Even though
some of the zero-crossings can occur at locations that do not
correspond to physical edges in the image, the existence of a
zero-crossing at some location, for a specific Gaussian, can-be
used as a feature signifying information about the image. Thus
zero-crossings have been used for motion analysis, object extrac-
tion, texture analysis, and many other image processing tasks.

By definition, a zero-crossing is the border between a region
where the data is positive and a region where the data is negative.
If f(x,y) denotes a gray level image defined on the two-
dimensional domain IR2, then the zero-crossings of interest are
those pertaining to the data AG+f, where G is a Gaussian,

G(x,y) = 1 3 e~2+ydna?
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By varying o, we obtain zero-crossings at different scales, and it
is suggested that combining information about zero-crossings at
multiple scales can lead to better identification of physical edges
[2]. If we think of o as a continuous parameter, then the result-
ing domain (x,y,0)€IR2XIR* is called scale-space as introduced
by Witkin [3]. We will consider zero-crossings in this domain. In
fact, we will reparameterize scale-space, for convenience, using
the variable ¢ = (1/2)02. Throughout this paper, ‘‘zero-
crossings” will refer to the zero-crossings of the filtered data. The
filtered data will be denoted by the function v (x,y,r), defined by

V(X,),t) = fx(x-‘l”_’l!‘)«f(x't")“",lv
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We use here the function X to represent a parameterized set of
Gaussians that approaches the delta function as ¢ - 0, and diffuses
as ¢ increases. For any given fixed ¢,, the zero-crossings of
v(x,y,to) form the contours as defined by the Marr-Hildreth
zero-crossing edge detector for the scale corresponding to 7p. As ¢
varies, the zero-crossings of v(x,y,t) form surfaces that evolve
and disappear as ¢ increases.

The function v(x,y,t) and its zero-crossings enjoy many spe-
cial properties. For example, v is a solution to the Heat Equation:

Av = —,
at
If the initial image data f(x,y) is sufficiently smooth, v satisfies
the initial conditions:

v(x,y,0) = Af(x,y).

Using the fact that v satisfies the Heat Equation, one can prove
that the zero-crossings satisfy the *“‘evolution property” [4], which
states roughly that zero-crossing surfaces cannot be created at
intermediate values of ¢, but instead evolve and can only disap-
pear as ¢ increases. This property, noted by Witkin [3], is poten-
tially useful if the image data is to be represented by a simplified
description of the zero-crossings, as opposed to analytical or bit-
map sampled representations of the locations of the zero-
crossings. Using this property, zero-crossing surfaces form tubes
that emanate from the bottom plane {r=0}, and might be
described in terms of a containment tree of surfaces, approximate
shapes, and locations of top points.

It is also possible to define a scale-space formulation for
images f (x,y) defined on a bounded domain: (x,y)€ DCIR?. This
can be done by solving a boundary-value Heat Equation problem,
where cither Dirichlet or Neumann conditions are applied on the
boundary of the resulting scale-space cylinder. More details are
given in [5], and we will make use of such a formulation for our
experiments later in this paper.

The information of the zero-crossings of v(x,y,r) is
equivalent to complete knowledge of the sign of v, i.c.,
sgn(v (x,y,t)), except for a possible global change in sign. Here,
the signum function is defined by:

-1if x<0

0if x=0
+1if x>0

sga(x) =

We do not specify how the zero-crossing information should be
represented, and will assume that the information can be obtained
in cither form. In our reconstruction method, we will make use
of the data sgn(v (x,y,?)).

From a given image f (x,y), we can thus easily form the data
v(x,y,t), and represent the zero-crossings of v. The zero-crossing
descriptions might be simplified by making use of the evolution
property. An alternate form of simplification arises if the loca-



tions of the zero-crossings are represented by a bit-map at a quan-
tized set of levels, and if the quantization resolution of the bit-
maps decrease as the scale parameter ¢ increases. In this case, a
scale-space pyramid is formed, and the locations of the zero-
crossings can be recorded within the pyramid. The rationale for
subsampling as the scale increases is that the data v(x,y,r)
becomes smoother as ¢ increases, and the corresponding structure
of the zero-crossings also tends to become smoother. A sampled
version of the v(x,y,f) data, with decreasing resolution as ¢
increases, is closely related to the Laplacian pyramid data struc-
ture [6].

In this paper, we are concerned with the amount and quality
of information that is retained in the zero-crossing representation.
We will thus assume that littie simplification of the zero-crossings
of v(x,y,1) data takes place. Instead, we will assume that the data
is represeated at the same resolution at all levels of «. Typically,
the image data f (x,y) is sampled on & grid of points, and similarly
v(x,y,t) is represented on a three-dimensional grid of points. We
can thus speak of values f(i,/) and data v(i,j,k), where the vari-
ables take on integer values (and the scale-space parameter k is a
nonnegative integer. We propose to call the data v(i,j,k) the
““Laplacian monolith,”” which seems especially appropriate when
the domain of f(i,j) is a rectangular array of points, as is usually
the case. The zero-crossings can then be recorded ecither as
border pixels in (i,/,k) space where v is positive, or by simply
recording the sgn(v (i,,k)) values at each pixel.

2. Completeness

The collection of all zero-crossings, at all scales of resolu-
tion, cam, under certain restrictions, determine the initial data.
Thus givea the zero-crossings in scale-space of the Laplacian-of-
Gaussian convolved against an initial function f (x,y), one should
be able in principle to reconstruct f(x,y) up to a multiplicative
constaat, and an additive harmonic function, providing f satisfics
certain conditions. The ambiguity arises because ¢f+ A will clearly
have exactly the same zero-crossings as f, where ¢ is a scalar mul-
tiplicative constant, and 4 is a harmonic function (Ak = 0). How-
ever, if we assume that f approaches zero at locations distant in its
domain, then the ambiguity with respect to A disappears. The
multiplicative ambiguity is considered unimportant.

The conditions required for completeness can be quite techn-
ical. For example, if f is a polynomial in x and y, then the zero-
crossings are the real analytic varicties of the polynomial v, and it
can be shown that in most cases (for example, if v is irreducible)
the real analytic varicties determine the polynomial. In fact, the
analytic structure of the zero-crossing surfaces is required at just
two points, under most circumstances [7]. Alternatively, if f is
band limited, then again in most cases f is determined by the
zero-crossings of v; see [8]. A celebrated result by Logan [9]
assers that a one octave bandpass one-dimensional signal is
reconstructible from its zero-crossings provided that the signal and
its Hilbert transform share no common simple zeros. Although
the stices of the Laplacian pyramid and Laplacian monolith do not
provide precisely bandpass signals, and despite the problems in
extending the result to higher dimensions, there have nonectheless
been alternative formulations of the zero-crossing data structure
that have been suggested that would ensure completeness, based
on this theorem, provided the Hilbert transform condition holds
on s sufficient number of scanlines. In particular, Zeevi and
Rotem {10] use a bandpass decomposition of an image by tiling
the digital Fourier domain with rectangles of sufficiently small
size, noting that a digital image that is bandpass in two dimen-
sions bas rows that are bandpass in one dimension.

The theoretical results that indicate completeness of the
represestation by zero-crossings are typically non-constructive.
Thus, reconstruction methods are based on methods distinct from
the proofs of completeness. Both the Zeoevi work [10] and the
Sanz reconstruction experiments [8] are based on iterative algo-
rithmes. Convergence is not guaranteed in either method, and one

can at best assert that if convergence happens, then the solution
will have the correct zero-crossings. Based on the theoretical
results, one can then expect that if the technical conditions hold
for the original imagery, then the reconstruction will be the same
as the original image. Zeevi and Rotem report good results,
using the discrete bandpass filtered images, and Sanz and Huang
report disappointing results using zero-crossings of Laplacian-of-
Gaussian filtered images. Two difficulties can lead to poor recon-
structions (with any iterative method). First, it can easily happen
that the iterations fail to converge. Second, instability can lead to
reconstructions that are significantly different from the original
image, even though the represcntation has been proven to be
complete.

Let us amplify the instability issue. Reconstruction from
zero-crossings is an example of an ill-conditioned inverse prob-
lem. A similar situation arises in deblurring images: representa-
tion of image data by a blurred version of the image is complete,
and reconstruction from blurred data is theoretically possible [11].
However, in practice, there are many images that when blurred
give essentially the same data as the given blurred image, so that
the problem becomes one of choosing the best deblurring. Simi-
larly, we expect there to be many images that have very nearly
the same zero-crossings, at all levels, as a given image. A recon-
struction method must be able to deal with inaccuracies in the
representation of the zero-crossings, and thus needs to choose the
appropriate reconstructed image based on assumptions about
natural images.

Why is reconstruction of any interest? If the information in
the zero-crossings is complete, then all further image analysis can
take place using the zero-crossing information, and reconstruction
becomes irrelevant. Our interest in studying methods of recon-
struction is to study the stability issue mentioned above. At the
worst, we will find instances of signals that have nearly the same
zero-crossings as a given signal, and thus be able to assess the
ambiguity in the representation by zero-crossings. If the two sig-
nals are significantly (i.c., perceptually) different, then this puts
into doubt the viability of the zero-crossings as a method of
representation, in the absence of other information. Of course,
there may exist different methods of reconstruction. Some recon-
struction methods may implicitly use assumptions about natural
images in order to yield better results. In this paper, we concen-
trate on a method that we call “minimizing equation error.” We
have reason to believe that if stable reconstruction of natural
images from zero-crossings is possible, then the method of minim-
izing equation error should work well.

3. A network approach

Our network approach to reconstructions from zero-
crossings is based on the method of minimizing equation error.
We previously reported this method, and demonstrated good
results in applications involving image deblurring [12]. The
method reconstructs the function v in scale-space, and makes nse
of the fact that v satisfies the Heat Equation. The data v;;; can
be viewed as a multilevel grid of units communicating locally.
The essence of the idea is that the units should achieve values v, ;
satisfying the given zero-crossing constraints, and satisfying, to
the extent possible, a discrete version of the Heat Equation. As
in a network, the values are updated iteratively using information
from local values to minimize a measure of error.

We first sketch the formulation of the approach in a continu-
ous domain. Consider the initial image fo(x,y) and its scale-space
Laplacian-of-Gaussian filtered data vo(x,y,7). We assume that the
zero-crossings in scale space of v are given, s0 we assume
knowledge of so(x,y,t) = sgn(vo(x,y,t)). We then pose the prob-

lem:
v 2
Find v minimizing ||Av- 7" ,

subject to sgn(v (x,,f)) = s0(x,y,¢).



Here, the norm ||-|| is the L2 norm over the scale-space IR2xXIR*.
This is a different formulation from minimizing the data error,
which would amount to minimizing a measure of the error in the
locations of the zero-crossings.

In a discrete formulation, we assume the existence of vari-

ables at all nodes, v, k20, and formulate the Heat Equation
as:

1
Vijk+r = ‘g[w-u-l,r" - 1gatvicigern
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We can then formulate equation error as a sum of square differ-
ence of the left and right sides of this discretized Heat Equatioa
over all nodes, and seck to minimize the resulting quadratic func-
tional.

In practice, things are complicated by the need to define
boundary conditions, choose an appropriate constrained minimiza-
tion procedure, and to ensure numerical stability and reasonable
convergence rates.

We will briefly discuss some of these concerns in the case of
one space dimension. In this case, we are given initial data f (i),
and construct the scale-space function v;;. This function is com-
puted recursively from the formulas:

¥i0 = f(i)’
Uik = %['l-l.t+2'i.k+'i+l.k]'

Vik = Wik+1— Wik

For the border points, let us assume that f(i) is defined for
—N=isN. Then we replace in the above formulas, for i = =N,
the formulas:

1 3
UNE+] = ;‘lm-n.z*‘ 2N

U_Nk+1 = ll‘—mu"’ll—nt'
kel = R .

and otherwise things are the same.

For our numerical experiments (Section 4), we in fact refor-
mulate the Heat Equation as a first order differential system:
Vv =g,
- v
Vg = —.
T o
When discretized, we then use the the set of variables v;; and o,
(for the one-dimensional space variable case), and formulate the
equation error using the quadratic functional:

2
E=33 [Vu 2Vn~1.k '“i.k]

k20 i

2
+ Oi+1,k~ ik
Vik+1~Vik~ ——2_ .

We wish to minimize E using the constraints

V;'kzo when Jo(‘,k) =1
vixS0 whep so(i,k) = —1.

Here 3, is the given sign data which encodes the information
about the zero-crossings. A further constraint is needed to ensure
that the solution v=0 is not obtained. This can be done, for
example, by specifying a single value for v at some node. We
chose instead to specify v at the maximum level k=T, where the
specified data is ordinarily quite smooth. One way to impose the
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inequality cosstraints is by employing an iterative algorithm, and
projecting the values of v, to zero after each iteration, whenever
a constraint is violated. We instead used a penalization method,
adding to E a term that grows quadratically in the variable when-
ever s constraint is violated. By placing a large weight on the
penalization term, we obtain a functional suitable for minimizing
that will ensure, upon convergence, that the constraints generally
hold. Specifically, we use a penalization term of the form:

19 (l-sn(v)-:o I-V’]-

Other details of the finite difference formulation and an
alternate finite element formulation may be found in [12]. Once
the functiomal is specified, any of many different optimization
procedures may be used to perform the minimization. A simple
method would be to employ gradient descent. This has the advan-
tage of requiring only local interactions between the clements.
We in fact used a conjugate gradient approach, which improves
computation speed, and requires only very simple global computa-
tions.

We could imagine something similar to a neural network to
implement the minimization procedure. For a gradient descent
procedure, the computation is especially simple. We discretize
scale-space with a network of nodes, with each node associated
with some position and scale parameter. Each node in the net-
work stores a current value, or activation level, representing the
scale-space value for the filtered data at that location. Each node
attempts to adjust its value so that the values in the level below
average to give the value at the given scale, as prescribed by the
Heat Equation, which the filtered data is known to satisfy. This
adjustment is mediated by local connections. Specifically, the gra-
dient of the quadratic equation error is a function yiclding a value
at cach node, and can be computed at cach site by a local linear
sum, involving values at nodes in neighboring positions and
neighboring scales. By adjusting a node’s value by subtracting a
portion of the component of the gradient at that site, the total
equation error will be reduced. The zero-crossing information, or
signum of v;, imposes constraints on the nodes which are not
violated. These constraints can be imposed by pegging the values
at nodes to lic in some range. Perhaps, for example, values of
nodes lying along the zero-crossings are clamped to zero. Alter-
natively, some nodes might be enforced to remain positive, and
other nodes forced negative. In any case, the network achieves
some relaxation point based on these conditions, using the
minimization process, thereby constructing a reconstruction of the
scale-space function v.

The network viewpoint suggests that an analog implementa-
tion of this computation would be feasible. Such an implementa-
tion could potentially be stable and much faster than a digital
implementation.

How can the original function f(x,y) be obtained from the
reconstructed function v? One method would be to solve the
Poisson equation:

Af(x,y) = V(I,y,o).

The lack of boundary conditions reflects the additive harmonic
function ambiguity. We can alternatively make use of the fact
that

f(xy) = - { v(x,y,t)dt.

In a discrete setting, this means that the layers of the Laplacian
monolith are summed. In practice, there are only a finite number
of levels that have been computed in the equation error minimiza-
tion procedure. Thus the data that can be reconstructed by sum-
ming these levels is

T
ry == vija-
k=0




Then the r;; data can be seen to equal f—-Gr+*f, where fis the
original image, and G+, is a Gaussian obtained by T+1 levels of
digital blurring, as described above. One way to recover the f
data from the r data is to form the sum

%
Y Gur+ntrtp
k=0

where p is the mean value of the f data. The sum converges
fairly rapidly. This was the procedure used to reconstruct an
image f.

4. Results

We present in this section results of using the network
approach to reconstructions from zero-crossings. We first con-
ducted experiments using one-dimensional data obtained from a
scanline of a digitized image. Figure 1 shows a plot of this data.
We construct the scale-space filtered function vo(i,k) as described
in the previous section, and compute the sign of the result. We
used 41 layers, so that 0sk=40. In Figure 2, we display the sign
of the function vy, using a dark color for negative regions, white
for positive regions, and a gray color for pixels whose values lie
near zero. This is the zero-crossing information that forms the
representation of the data in Figure 1.

Reconstruction proceeds by minimizing equation error, using
the sign of v, as the data shown in Figure 2. The initial estimate
for v is the same as the given sign data, i.c., one in the positive

1
0.5 -
0
T I 1 I I
1 32 64 96 128

Figure 1. A scanline taken from a digitized natural image.
There are 128 pixels in the scanline.
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Figure. .

Figure 2. The sign of the scale-space filtered data shown in
Figure 1. Positive regions are shown in white, negative in
black, and values very near zero are in gray. The zero-crossing
occur on the borders between black and white regions and
within gray areas.

regions, negative one in the negative regions, and zero within the
‘‘gray” regions. A penalization method was employed to coerce

the inequality constraints. A conjugate gradient approach was
used, instead of gradient descent, so as to speed computation.
The computations were done on a Convex computer. Conver-
gence was reached with a total equation error plus penalty of less
than 107!°. At this point, 77 points in the scale-space, out of
5120 points, violated the sign constraint, and the magnitudes of
the violations were quite small. Using the data obtained in this
manner, a reconstructed function is obtained from the sum of lev-
els as described in the previous section. In Figure 3, we show this
reconstructed funcdon, and Figure 4 shows its sign of Laplacian-
of-Gaussian filtered data. Clearly, the zero-crossing information
is nearly identical, but the signals have some differences. On the
other hand, the reconstructed function is qualitatively similar to
the original, so that the zero-crossing information has captured
some of the essential information about the signal.
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Figure 3. A reconstruction f of a signal from the reconstructed
Laplacian-of-Gaussian filtered data v. This function should be

the same as Figure 1 if stable reconstruction from zero-
crossings were possible._
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Figure. .4

Figure 4. The sign of the scale-space filtered data shown in
Figure 3. The data is ncarly identical to that of Figure 2, show-
ing that the signals in Figures 1 and 3 have virtually the same
zero-crossings for their Laplacian-of-Gaussian filtered data at
all scales of resolution.

We next applied the reconstruction procedure to digitized
two-dimensional images. Figure 5 shows an initial 64 by 64
image. The filtered data was computed, and the signum of the
result was used as input to the reconstruction procedure. Twenty
levels of scale were used, and the signum of levels 0, 3, 6, 9, 12,
15, and 18 are shown in the leftmost column of Figure 7. (The
finest resolution level, i.e. smallest scale, is at the top.) The
reconstructed v was produced, and the resulting monolith has the
same sign as the original in nearly all of the points in the three-
dimensional grid. Using the v function, the column sum r was
computed, and a reconstructed f produced according to the




obtains a closer approximation to the original image, by making
assumptions about images. However, we believe that the equa-
tion error minimization procedure is a good reconstruction

Figure..5

Figure $. Original 64 by 64 digital image.
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method, based on its excellent performance with deblurring. In
any case, the existence of the two distinct images with nearly
identical zero-crossings at all levels suggests a serious lack of sta-
bility with the representation.

We have also performed some experiments in which, in
addition to specifying the sign of v, the gradient of v was specified
along the zero-crossings. In these experiments, convergence was
very rapid, and the reconstruction of the image was virtually flaw-
less. This supports the notion that the zero-crossings together
with gradient data along the zero-crossings forms a complete
representation and permits stable reconstruction. However, it
should be noted that as implemented, the amount of information
in the latter representation exceeds the amount of data in the ori-

ginal image.
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