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Motion Parameter Estimation
from Global Flow Field Data

Robert Hummel, Member, IEEE, and V. Sundareswaran, Student Member, IEEE

Abstract— We present two methods for the determination of
the parameters of motion of a sensor, given the vector flow
field induced by an imaging system governed by a perspective
transformation of a rigid scene. We assume that the flow field
V' = {(u(x.y). v{x.y)) is given. Both algorithms are new, and
both integrate global data to determine motion parameters. The
first algorithm (the flow circulation algorithm) determines the
rotational parameters. It uses the curl of the flow field (curl
(V')), which under many conditions is approximately a linear
function of the form g(r.y) = ax + by + c. The coefficients
of the linear function, «.b. and ¢, which may be determined
by simple regression, are proportional to the desired rotational
parameters of motion. Circulation values may be used in place
of curl values, resulting in less noise. The second algorithm (the
FOE search algorithm) determines the translational parameters of
the motion independently of the first algorithm. This algorithm
extends a recent method of Heeger and Jepson, giving a method
for searching for the image focus of expansion. For every location
{o. yo) in the image plane, we compute a function v -(—y+yo)+
v-(r—xp). When (2. yo) is located at the focus of expansion, this
function will be a quadratic polynomial (of a special form). We
suggest several methods for determining when the function has
the appropriate form; one method involves filtering the function
by a collection of circular-surround zero-mean receptive fields.
The other methods project the function onto a linear space of
quadratic polynomials and measures the distance between the
two functions. The error function for the first two methods is a
quadratic polynomial of the candidate position, yielding a very
rapid search strategy.

Index Terms— Egomotion, flow field analysis, focus of expan-
sion, motion estimation, rotational velocity.

I. INTRODUCTION

E CONSIDER the problem of determining the pa-

rameters of motion of a sensor moving about a fixed
environment imaging the scene by means of perspective pro-
jection' onto an image plane. We assume the existence of
a collection of image feature sensors that are sensitive to
values that depend on the induced image vector flow field.
In particular, our algorithms will depend on feature values
obtained by measuring the circulation (or vorticity) of the flow
field about collections of closed curves in the image plane or
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Fig. 1. Translation and rotation of the imaging sensor.

by measuring the component of velocity about circular paths
in the image. The desired instantaneous motion parameters
are the translational components of motion v = (v1,v2,v3)
and the instantaneous rotational parameters of motion w =
(w1,w2,w3), as depicted in Fig. 1. The induced vector flow
field on the image will also depend on the depths to the ob-
served surfaces; if the point (X, Y, Z) is observed at the image
location (z,y), then the function Z(z,y) is also unknown
and must be determined from the feature data. Although our
algorithms will yield approximate depth values Z(z,y), our
emphasis is on the determination of the motion parameters v
and w, rather than on the determination of the structure of the
observed scene.

QOur theme is that algorithmic methods for extraction of
values must be based on global data and must integrate,
through regression analysis, values obtained throughout the
image. Local image intensity values, local flow field values,
and especially derivatives of these values are pointwise mean-
ingless due to noise and inaccuracies. Therefore, for example,
the only hope we have of obtaining structural information from
the flow field is to first extract the motion parameters, which
can be obtained from global integrative processing.

The algorithms that we will present are extremely simple
and qualify as connectionist approaches in that the motion
parameters are obtained through linear and simple nonlinear
operations on the feature data without sophisticated algorith-
mic processing. More importantly, they use global informa-
tion, i.e., vector flow field information wherever it is available
throughout the image, to determine the motion parameters.
Ideally, they would operate on large field-of-view images.

We present two algorithms: one is useful for determining
rotational parameters of motion, and the other is useful for
determining the location of the focus of expansion, which
in turn is related to the translational parameters of motion.
Once one has the rotational parameters, it is a relatively
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simple matter to determine the focus of expansion; conversely,
given the focus of expansion, the rotational parameters and
inverse depths may be obtained as the solution to a linear
set of equations, given flow velocities. However, our two
algorithms operate independently, supplying complementary
ways of deriving all unknowns from the flow field.

We begin by presenting summaries of the two algorithms
(the first called the flow circulation algorithm) used to deter-
mine rotational parameters and the second (the FOE search
algorithm) to determine the focus of expansion. In the next
section, we briefly discuss the history of treatments of the
problem. Section III presents the formulation and notation, and
Section IV gives the derivations of the algorithms. Section
V provides a synopsis and commentary on the algorithms,
discussing their applicability. The next two sections present
analytical and experimental analyses of the methods. Section
VIII provides some conclusions.

The flow circulation algorithm, which determines the
parameters of rotation, is an approximate method and requires
that one of a number of conditions holds true. For example, if
the translational velocity v is zero, then the algorithm becomes
an exact method. Alternatively, the method works if there is
an identifiable visible surface whose depth is constant from the
sensor (planar frontal). Other conditions lead to exact results.
In any case, the method is approximately correct, providing
that the preponderance of visible image points arise from
surface elements distant from the sensor and are oriented so
that the normal is mostly toward the sensor or if the tilts of
surfaces in the scene are evenly distributed. We will later
specify all alternative conditions and analyze the effects of
violations. The algorithm assumes that measurements of the
circulation of the flow field are given around a number of
cycles in the image. The circulation of the flow field is a
contour integral of the vector field about a closed curve and
measures the amount of ‘‘swirling’ of the field about the
circuit. It is equivalent to the average vorticity of the field
in the region enclosed by the closed curve. Each circulation
measurement is associated with a location in the image, which
is the centroid of the region enclosed by the corresponding
closed curve. The circulation data is used by a regression
algorithm to fit a linear function of the image coordinates of
the form g(z,y) = az + by + c; we note that the coefficients
a,b, and ¢ will simply be weighted sums of the available
circulation data. The desired rotational parameters wi, wp, and
w3 will be directly proportional to the coefficients a, b, and c,
respectively.

For the FOE search algorithm, we define the focus of
expansion to be the point (v; /v3,v2/v3) in the image domain
(assuming the focal length f = 1) if v; is nonzero and a
direction toward infinity (in the direction (vq,v2)) if v3 is
zero. Each location in the image domain and every candidate
point outside of the image domain independently attempts to
determine if it is located at the focus of expansion. It does
this by first computing a scalar function, which is obtained
from the component of flow in a circular direction about
the point within the image domain. We call this the circular-
component flow velocity function. It turns out that this function
is always precisely a quadratic polynomial when the candidate

point is at the focus of expansion. There are several ways
by which the algorithm may determine whether the function
is a quadratic polynomial. One method observes that certain
center-surround receptive fields always yield zero results when
the scalar function is of the desired form. Another method fits a
quadratic polynomial to the observed data and then computes
the error. At the focus of expansion, the error will be zero.
A third method computes the distance between the observed
data and the 3-D linear space of quadratic polynomials that
can arise as a circular-component flow velocity function at
the candidate point. All three methods can be formulated as a
quadratic functional of the observed circular-component data.
Once again, the focus of expansion is located at the point
where the functional gives a zero result.

In each of the methods, a value measures the quality of
the proposed focus of expansion based on the distance of the
circular component function from an ideal function. In the
case of the first two methods, this error value, which should
be zero at the focus of expansion, varies quadratically with
the position of the candidate point, that is, the error function
is itself a quadratic function of position and is zero at the focus
of expansion. Thus, only a few points need to independently
determine whether they are located at the focus of expansion,
rather than requiring an exhaustive search. After obtaining
values of the error surface at a handful of points, the true
location can be easily determined by fitting a quadratic surface
to the error values.

II. HISTORY

There is a large body of literature on the motion parameter
estimation problem. We can only begin to summarize aspects
of approaches to this problem. A more complete and excellent
summary is provided by Heeger and Jepson [1]. The emphasis
of much prior work on motion parameter estimation has been
to recover the structure of surfaces as opposed to accurate
calculation of the motion parameters. An exception is the
recently introduced Heeger/Jepson algorithm [2], for which
the FOE search algorithm is a straightforward extension but
is formulated for continuous domains and flow fields defined
over a range of image points rather than for five image
points. The Heeger/Jepson algorithm, in turn, extends and
simplifies aspects of an earlier algorithm by Adiv [3]. The FOE
search algorithm given here introduces the notion of locating
the focus of expansion by determining whether the circular-
component flow data is well approximated by a quadratic
polynomial, which provides more insight into the workings
of the Heeger/Jepson algorithm.

Each algorithm is typically driven by some fundamental
calculation or observation. The Heeger/Jepson algorithm, for
example, uses the fact that once the focus of expansion is
fixed, the equations become linear in all other unknowns.
The flow circulation algorithm, which will be given here, is
based on the observation that the curl of the flow field is
approximately a linear function. The FOE search algorithm
uses the Heeger/Jepson observation but is more fundamentally
based on the fact that the circular-component flow function
about the focus of expansion is a quadratic polynomial. None
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of these facts are totally new observations. However, the
observations have not been exploited to give simple algorithms
heretofore.

There are two stages to the motion parameter determination.
In the first stage, the image sequence is analyzed, and the
image flow field is determined, that is, the temporally varying
image sequence is converted to a time-dependent image vector
field, where the vector field at any instant indicates the
velocity of motion of each point on the image plane at that
time. Typically, the degree of uncertainty in the derived flow
velocity will vary from point to point—accurate information
often requires texture or edge features in order to perform
matching. In the second stage, the vector fields are used to
determine the motion parameters, through a process of solving
an inverse problem, where the depths to the imaged points ‘are

typically unknown parameters that must also be determined.

We are concerned with the second stage.

An alternate formulation of the motion parameter estimation
problem uses pairs or sets of images in sequence, but does
not attempt to establish instantaneous motion fields, but rather
attempts to determine correspondences and then relative 3-
D rotations and transformations between the viewpoints. This
approach, which is akin to stereopsis, is the approach taken
by, for example, Ullman [4], Tsai and Huang [5], and more re-
cently, Faugeras et al. [6]. Our attention is on the instantaneous
velocity field formulation.

Both stages of the first formulation are well-studied prob-
lems. For the first stage, numerous methods have been sug-
gested for determining the vector flow field from an image
sequence, including the methods of Hormm and Schunk [7],
Barnard and Thompson (8], Hildreth [9], and the more recent
methods of Anandan [10] and Heeger [11], which is based
on fundamental work by Adelson and Bergen [12]. These
methods have varying degrees of success, and it is customary
to unrealistically assume that flow-field determination is a
solved problem.

In the second stage, the flow parameters must be determined
from the optical field. Analysis of the field, which is also called
the motion parallax field, has received considerable research
attention. In 1950, Gibson discussed the motion parallax field
and defined and discussed the importance of the focus of
expansion [13]. Even earlier, Helmholtz had noted that the
image flow field contained information about the depths to the
objects [14]. Subsequent work by Gibson considered further
the extraction of structural information of the scene from the
flow field; for example, for the case of a pilot landing a plane,
there is essentially no rotational component, and therefore, the
extraction of structure from the flow field due to translation
is possible [15]. In a series of papers, Koenderink and van
Doorn study properties of the image flow field [16], [17].
Their work begins the practice of analyzing the flow field
induced on imaged surfaces of particular form, such as planar
surfaces or Gaussian protuberances. The goal is to produce
local measurements that are invariantly related to properties
of the surface shape.

In a famous paper, Longuet-Higgins and Prazdny [18] show
that in principle, the motion parameters and local surface
structure of an imaged surface may be determined from the

local flow field values and values of the spatial derivatives
of the local flow field up to second order. The unknown
parameters are the translation and rotation velocities and the
surface normal at any given point. The focus of expansion
is located using the residual flow field after subtracting the
flow field due to rotation. There are special difficulties with
the solution method when the imaged surface is planar, and
it is clear that measurements of the second-order derivative,
in particular, will be noisy. However, since the computations
at each point should yield the same motion parameters (and
varying surface normals), the computations are redundant, and
thus, one can hope that stabilized algorithms are possible.

In a series of subsequent papers, Prazdny offered a variety of
other algorithms for motion determination. In [19], a precursor
to the FOE search algorithm given here is presented. In
this algorithm, the best rotation parameters are sought such
that the flow field that remains after subtracting the vector
field corresponding to the rotation parameters yields a pure
expansion or pure contraction field, as will occur for the
flow field due to translation only. The algorithm then simply
involves a nonlinear minimization. More recent work by
Burger and Bhanu [20] extends the Prazdny search algorithm
to search for a focus of expansion ‘‘fuzzy’’ region. In [21],
Prazdny shows how the computation of the translational and
rotational velocities can be obtained from the flow velocities
at a collection of distinct points (five of them are required) by
solving a system of three cubic polynomial equations in three
unknowns. An iterative method is used, and a good initial
guess is required. The intention is that the processing should
be local, although the equations hold for any distinct set of five
points. A good survey and history of results until that point is
provided in a separate paper by Prazdny [22].

The idea of searching over the possible focus of expansion
points, instead of searching over the rotation parameters,
as in our FOE search algorithm, was introduced by Adiv
[3]- Using the same error function, Heeger and Jepson have
recently introduced a related algorithm for locating the focus
of expansion [1], [2], [23], [24]. Since this method is directly
related to our FOE search algorithm, we discuss its workings
in more detail in Section IIL

Nearly all researchers in motion parameter estimation real-
ize that once one has some information, such as the location of
the focus of expansion or the value of the rotation parameters,
all other parameters are easily obtained. Hence, there is
considerable motivation for separating the flow field due to
rotational parameters from the flow field due to translational
parameters. The idea of making use of either depth disconti-
nuities or motion parallax of a translucent surface (such as a
dusty window) has already been noted by Helmholtz [14] and
mentioned by Longuet-Higgins/Prazdny [18]. In these cases,
the difference or jump in the flow velocities cancels the flow
component due to the rotational parameters, leaving a flow
dependent only on translational parameters. Provided that there
are enough such points, then the focus of expansion, and hence
all other parameters, may be determined. Lawton and Rieger
exploit this idea to build a system based on differences of
neighboring flow velocities [25]. Unfortunately, noise tends
to make this method rather unreliable. Lawton built another
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system that assumes that the rotational parameters are nearly
zero and, thus, finds the focus of expansion by means of a
““Hough transform”’ technique [26]. A solution method that
assumes that the translational parameters are zero would be
quite easy; our flow circulation method provides an exact
method, for example, in this case, and other methods are
straightforward.

In a series of papers, Waxman and collaborators revisited
the problem of motion parameter estimation and local surface
structure determination from local flow parameters (i.e., values
of the flow velocities and derivatives of the flow velocities
through second order). A solution method is presented for the
case of planar surface patches and quadratic flow velocity
fields [27], together with an analysis of the ambiguities,
followed by a new method for quadric surfaces and quadratic
velocity fields [28] that improves on an earlier method of
Waxman and Ullman [29]. More details and extensions to
binocular image flows are given in [30]. In all of these works,
the structure of the surface and the motion parameters are
considered to be the unknowns relative to a single image point,
that is, the analysis is local. Measurements of derivatives of
flow velocity values through second order must be given, in
which case, it is possible to solve for local surface structure
up to a second-order Taylor expansion. The curl of the flow
field is one of the 12 “‘deformation parameters’’ (Dg to be
exact), and the ‘‘kinematic relation’” for this parameter is
precisely the equation that we require for the flow circulation
algorithm. However, since the problem that Waxman addresses
is the exact computation of motion parameters coupled with
surface parameters based on local data (deformation data at
a single point), the approximations and the global method
leading to the *“flow circulation algorithm’’ is missed. Using
instead correspondences of curves, the local quadratic nature
of the velocity field can be obtained, provided that a sufficient
number of curves are matched, as studied by Wohn [31],
[32] (who also makes use of some temporal smoothing) and
more recently studied by Faugeras [33]. Solution methods
based on the use of a sufficient number of correspondences of
points, without involving explicit derivatives of the flow field
and without explicit representation of surface parameters, are
provided by Jerian and Jain [34]; their work, like that of Tsai
and Huang [5], is directed for the case of determining rotation
and translation parameters from correspondences, as opposed
to rotation and translation velocities from an image velocity
flow field.

Clearly, the surface parameters, to the extent that they can
be recovered, must be based on local measurements. The
motion parameters, however, are global. Most researchers have
noted that their methods provide redundant computation of
motion parameters, providing a test for the rigidity assumption.
Unfortunately, many of the algorithms forgo the stability that
can be obtained by deriving the motion parameters from an
integrative approach—i.e., by making use of the constancy
over the image. Of course, if one’s focus is on surface
parameter reconstruction, then local processing is essential.
However, if one first derives the motion parameters and then
uses knowledge of the motion parameters to assist in surface
depth estimates, then global methods may be used for motion

parameter estimation. Methods that can potentially make use
of distributed information include Prazdny’s [21], Adiv’s [3],
and Heeger/Jepson’s [2].

The curl of the flow field, which is the basis of our
flow circulation algorithm, has long been recognized as an
important property of the motion field. However, the obser-
vation that the curl of the field is approximated by a linear
function, and the use of that approximation to determine
the rotational parameters, appears to be new. Koenderink
and Van Doorn [16] calculate explicitly the curl (and other
functionals). We begin with their computation of the curl
(converted to planar image coordinates as opposed to polar
coordinates) but make use of the function to solve for the
rotational parameters. They instead studied the properties of
these elementary fields in the case of an observer moving
with respect to a plane [17], [35]. The existence of receptive
fields sensitive to the curl (and also to the divergence) was
hypothesised by Koenderink and Van Doorn [16] and Longuet-
Higgins and Prazdny [18], but the motivation is for surface
structure determination and not for global synthesis of motion
parameters. Regan and Beverly [36] followed up on the
hypothesis of Longuet-Higgins and Prazdny by conducting
psychophysical experiments and concluded that the existence
of vorticity receptors is plausible. Cell recordings in the dorsal
part of the MST of macaque monkeys suggest cells that are
tuned to expansion/contraction and other cells that are sensitive
to rotation [37]. More recently, Werkhoven and Koenderink
[38] have considered methods for directly computing flow
field invariants, including the curl, from time-varying image
irradiance data. The considerable interest and evidence for
the importance of the curl of the flow field (or, equivalently,
the circulation values) lend credence to the flow circulation
algorithm presented here.

III. FORMULATION

In this section, we recall the equations governing the optical
flow field on an image and establish notation.

A. Optic Flow Equations

For the case of perspective projection of a scene on a
planar imaging sensor, the optical flow equations are well
known and understood. We assume that the sensor is moving
with translational velocity v = (v, v2,v3) and with rotational
(angular) velocity w = (w;,ws,ws) in a fixed environment. A
point X in three space attached to the coordinate frame of the
sensor but measured in the coordinates of the fixed coordinate
frame of the sensor at a particular instant (say, time ¢ = 0)
satisfies dX /dt = v + w x X at time ¢ = 0. (This formalizes
the notation of Fig. 1.) We assume that the camera system has
a focal length of f; therefore, the transformation from spatial
coordinates to image coordinates is governed by the equations

z=fX/Z,y=fY/Z

where (X,Y, Z) = (X(z,y),Y(z,y), Z(z,y)) is the position
in three space of the surface element imaged at the point (z, y).
We assume that the objects in the scene are fixed and rigid.
Derivations of the induced vector flow field may be found,
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for example, in {2], [18], and [39] and yield the image optical
flow (u,v) at the image point (z,y) as

u(.’l?,y) Z(; y)[ fvl +z- 1)3]

2
(3 (1) o

v(z,y) = m["fvz +y-v3)

2
ral1+) ) o

As is common, we note that the flow equations may be
grouped into the sum of two terms: the first term gives a flow
field due to the translational components and is modulated by
the inverse depths, and the second term is a flow field due to
the rotational components and is independent of the depths:

Ve = (Ser) = hen + e 62

with (fOl’ the case V3 # 0)
V T, = mp T, )

(3.1)

=L y- f-f
p(z.) = 5(2,9)
and
{2y o () (1)

Note that the flow due to the translational components has
a radial structure, expanding or contracting about a ‘‘focus of
expansion’’ at location (7, 7) and with a magnitude modulated
by the distance from the focus of expansion, the component
of translation in the viewing direction (v3), and the inverse
depth to each pixel p(z,y) = 1/Z(z,y). In the case vz = 0,
the situation is nearly the same, except that Vy is a parallel
vector field:

V(o) = ~fo(a)- (1)

in the direction of the translational velocity, modulated again
by the inverse depths. In both cases, the flow due to the rota-
tional components is the linear sum of three fixed vector fields,
with the coefficient of each field taken from the respective
angular velocity components.

(v3 =0)

B. Problem Statement

In the motion parameter determmatlon problem, we are
given a collection of points {(z,,y,)}l_l, where the flow
velocities (u(z;,¥:), v(z:i,y;)) are known. It is desired to
determine the motion parameters v and w and the inverse
depths to the points p(z;, ;). It can easily be seen that there
are certain ambiguities and that it suffices to determine the
focus of expansion (7,7), the rotational parameters w, and
proportional inverse depths ¢ - p(z;,y;). Without additional

information, this is all that can be derived. It can happen
that the focus of expansion lies at infinity, in which case, its
direction (toward infinity) can be determined.

C. The Heeger/Jepson algorithm

We briefly outline the method suggested by Heeger and
Jepson [1]. They observe that for fixed (7,7), the equa-
tions are linear in the remaining collection of unknowns w,
{vs - p(z, yi)}?_’__ 1- We thus have 2N linear equations in N +3
unknowns in the case when (7,7) is fixed. As long as N > 4,
these are easily solved to give the least mean square error, and
that error is also easily determined. The residual error in the
least mean square solution can be used as a measure of the
quality of the estimate (7,7) for the focus of expansion—in
noise-free circumstances, there should be zero residual error
if 7 and 7 are the correct values Equivalently, we see that the
data {(u(z;,y:), v(z:, y,))}l_l, which is regarded as a vector
in 2N space, should lie on an (N + 3)-D hyperplane defined
by the fixed (7,7n); the extent that the vector lies off this
hyperplane measures the noise in the data and the inexactness
of the (7,7n) estimate. Heeger and Jepson then simply check
a large array of possible (7,7) values, computing the error
at each such position. Where the error is minimized, they
declare the correct (7, 7) to be found and the least mean square
solution to the other variables to give the solution.

Our FOE search algorithm is the same algorithm, but it
is derived under the assumption that the data is given on
a continuum of points, rather than at N distinct points. In
a certain sense, the Heeger/Jepson assumption, of a discrete
collection of data, is more realistic in image processing ap-
plications. However, the projection method is then dependent
on the locations of the distinct points and would have to be
computed for each new collection of points. The FOE search
algorithm presented here makes clearer the analytical structure
of the problem and provides a method that is independent of
the sampling locations, assuming a sufficient density of values
are obtained. When there are only a few discrete sampling
locations, the FOE search algorithm may still be used, in
a modified form, and will essentially be equivalent to the
Heeger/Jepson algorithm. Specifically, the circular-component
functions may still be computed, but they will be defined
only at the collection of sample points. The test to determine
the FOE then checks whether the discrete collection of data
located at the sample points corresponds to point evaluates of
a quadratic polynomial.

D. The Curl and Circulation Values

It is usual to decompose the gradient of the flow field VV
(which is a two-by-two matrix) [17]. We will not need to
make use of this decomposition; however, one of the usual
coefficients in that decomposition is the curl of the flow field,
which is defined by

311 du

dy’

The curl of V is also denoted V x V. The curl is a scalar
function (or, in the case of the flow field induced on a spherical

cur(V) =
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retina, the curl is a vector field lying normal to the sphere) and
is easily computed. Applying the curl to (3.2) yields

dp dp
VxV(z,y)=vs- [—-(y—n)——-(z—r)]

18 ’ % (3.3)
- ?[xwl + ywa + 2fws).

An important property of the .curl of a vector field is
provided by Stoke’s theorem:

// cur{(V)dzdy =f V.-ds
D aD

where the right-hand side, which we will call the circulation of
the flow about the circuit 9D, denotes the contour integral of
the vector field about the boundary of D. The theorem is quite
general, requiring only certain differentiability conditions on
V and the boundary of the domain D. We note that the contour
integral is independent of the parameterization of the contour.
For example, when D is a disk of radius r about an image
point (zo, yo), the circulation may be calculated from

2
V.ds= V(zo +rcosf,yp + rsinf
£, o 10 prrsnd) (34

-(—rsin@,rcos6)db.

Mitiche et al. [40] provide a discrete version of Stoke’s
theorem and discuss its use for smoothing flow field data given
time-varying intensity image data; our needs are only for the
continuous version and for smoothing the curl of the flow
field information.

Interestingly, by using Stoke’s theorem, we will not lose
any precision, nor do we require any approximations, in order
to take advantage of the smoothing. Although the circulation
feature values are obtained more stably than would be curl
(vorticity) values of the flow field, they are just as useful to
the flow circulation algorithm.

IV. DERIVATIONS

In this section, we provide the technical derivations of the
algorithms.

A. The Flow Circulation Algorithm

The basic idea is to show that the first term on the right-
hand side of (3.3) can be neglected, and thus, the curl values
lie on a linear surface defined by the function g{(z,y) =
—(zw1 + ywa + 2fws)/f. We begin by computing the curl
that results at a point where an analytic surface element is
imaged. Suppose that at the point (zg, yo), the surface element
(X0, Yo, Zo) is imaged, and suppose that the surface is analytic
and described (implicitly) by the equation

n1(X — Xo) + na(Y = Yo) + n3(Z — Zp)
+ Z Ca(X - /Yo)o‘l (Y - Yo)""(Z - ZO)Ota =0.

a2

Here, a is a multi-index with integer components «;, and |a|
is the order of the multi-index, i.e., the sum of the components.
Any analytic surface can be described locally in this way. The

Viewing direction
Surtace A

Tangent planes

Surface B

R
’

Fig. 2. Tangent planes to points on imaged surfaces.

tangent plane to this surface has normal n = (ni,n2,n3),
which we may assume is a unit normal. We set

R=n1Xo+ n2Ys+n3Zp

which is the distance, at the point of closest approach, between
the tangent plane to the surface and the focal point of the
imaging system (see Fig. 2).

Then, using the imaging equations and the definition that
o(z,y) = 1/Z(z,y), it is not hard to show that

8p _mn1 9p _ng
ax (1'0,310) - fR’ ay(‘TanO) - fR
After substitution into (3.3), we obtain

n1(yo — n) — n2(To = T))
@4.1)

VXV(.’Bo,yo)='U3-( fR

1
- ?(mom + yows + 2fws).

After regrouping terms and using the definitions of 7 and 7,
we see that this is the same as

V x V(zg,30) = _71[-'1"0(‘411 + %) + yo(wz _ n_};’ﬂ)

nivz — N1
+ (wa;; + —R——)jl .

4.2)
If we now allow (¢, yg) to vary and denote the point by (z,y),
regarding (n1,n2,n3) as a function of (z,y), we conclude
from (4.1) and the equivalent (4.2) that the curl

VxV({z,y) = —TI(xwl + yws + 2fws) “.3)

whenever any of the following conditions holds true:

1. If v; = vs = v3 = 0, then (4.3) holds with equality
everywhere.

2. At any point (z,y) such that n; = ny = 0, (4.1)
clearly becomes (4.3), with equality. The condition that
ny; = ny = 0 is equivalent to saying that the tangent
plane to the surface imaged at (z,y) lies normal to the
viewing direction. In particular, the condition holds true
on any frontal planar surface.

3. At any point where the vector to the focus of expansion
(t — z,n —y) is proportional to the tilt of the tangent
plane to the surface imaged at (z, y) (the tilt is defined as
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(n1,n2) ), then clearly, the first term on the right-hand
side of (4.1) vanishes, and (4.3) holds with equality.

4. If the distance R from the tangent plane to the focal point
is large relative to the translational velocity ||v||, then
(4.3) holds approximately. Note that the components of
n satisfy |n;] < 1 since n is a unit normal.

5. If the rotational components of velocity w are quite
large compared with the translational components v and
assuming that the R value is bounded below, then (4.3)
will hold approximately.

It is interesting to note that the R value becomes small
whenever a surface lies nearby, as well as whenever a surface
is oriented so that the tangent plane passes close to the focal
point. However, the second situation occurs precisely when
a surface element is appreciably foreshortened and will thus
occupy relatively little area in the image domain.

Even when the errors are such that (4.3) does not hold
approximately pointwise, it is still possible that (4.3) holds in
a globally approximate sense. This will happen, for example,
if the surface tilts n, and ny are random and well distributed.
Because the algorithm is global, the global approximation
condition suffices.

The algorithm will use feature data to fit a linear function
of the form g(z,y) = az + by + ¢ to the data, and then,
w1, wy, and w3 may be determined directly from a, b, and c,
respectively. However, using Stoke’s theorem, we show that
we do not have to rely on samples of the curl of the flow field;
we may instead use circulation values.

Consider a region of the image domain D (not necessarily
circular) such that at most of the points (z,y) in D, one of
the above conditions holds true. We do not require that D be
a small region, we do not require that the same condition hold
true over all of D, nor are we concerned about substantial
violations—as long as the average of the violations are small.
We will average the values of the curl over D:

1 1 -1
D] /l;:url(V)dxdy ~ -I-D—I//D—f—(zwl +ywr+2fwy)dzdy

= Tl(xowi + yowz + 2fws)

(4.4)
where (z9,yo) is now the centroid in the image plane of the
region D. Here, |D| refers to the measure of the area of D
(in the image domain). Applying Stoke’s theorem to the left
side of (4.4), we see that the circulation value of V' about the
boundary of D satisfies

1 -1
V.-ds= —(xow1 + Yows + 2fw3). (45)

ID| Jap f

We now state the algorithm. Suppose we have a collec-

tion of image domains D;, i = 1,...N. Suppose that we

have normalized circulation values measured for each such a
domain:

1

Vi = — V - ds.
1D:| Jap,

Let us suppose that the centroid of each region D; is known
and is denoted by (z;, ;). (See Fig. 3.) From (4.5), we know

Fig. 3. Collections of cycles and their centroids, where data for the flow
circulation algorithm is collected. The algorithm will simply fit a linear
function to the circulation values given at each centroid.

that the data (z;, yi,v:) for¢ = 1,... N approximately satisfies
¥ =az; + by +c

where ¢ = —w/f, b = —wa/f, and ¢ = —2w3. We
can determine the coefficients a, b, ¢ by fitting a linear
function to the available data. Qutliers, of course, can be
discarded by standard regression methods so that violations
of the conditions are not consequential. Clearly, the rotational
parameters are determined from a, b, and c.

If the collection of centroids of regions {(z;,y:)} is suffi-
ciently dense and symmetrically distributed about the image
plane origin, then the determination of the rotational parame-
ters from the circulation data becomes especially simple since
then, the parameters are coefficients of mutually orthogonal
functions. Specifically, a will be proportional to Avg,_, ;-
i, b will be proportional to Avg;_; n¥i i, and ¢ will be
equal to Avg,_; N7 Then w; = —fa, wp = —fb, and
w3 = —c/2. Once again, outliers may be discarded from the
averages to improve the quality of the estimates.

B. The FOE Search Algorithm

For each point (zp, yo), we consider the circular component
flow field about (zg, 7o) (see Fig. 4) defined by

Ulzowo)(#:4) = V(2,4) - (~y + Y0,z — Z0).  (4.6)
Since V = Vy + Vi, we further define
U(‘;o,y,,) = Vv(.’t,y) : (_y + Y0,T — -'L'()),
Uzo o) = Yw(z,y) - (—y + y0, T — o)
so that
Utso o) (@ ¥) = UG, 10y (%) + UL, 40 (2, 9)-
We calculate the second term first:
z
Ulzowo) (@ 9) = w1 (—70.1/2 + yfgxy + fz - fxo)
T
+ wy (—"qumz + —fgxy + fy - fyo)
+ w3 (~y? - 22 + 7oz + yoy).
4.7
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O A
\

Fig. 4. Circular-component velocity function at a point (.r. y) is obtained
from the vector dot product of the velocity flow field and the circular vector
field, as depicted, centered on (.rg. yo), where the magnitude of the vector
field increases with the radius.

The important thing to note is that for fixed w and (x9, yo),
this function is a quadratic polynomial in z and y. As for the
first term, we have

U(t;o.yo)(m’ y) = v3p(z,y)-((yo — Mz + (—zo + 7)y

4.8)
+nTo — TY0).

Equation (4.8) is not, in general, a quadratic polynomial since
the inverse depth function p(z,y) is not restricted. However,
at the FOE, when (zo,y0) = (7,7),

x—T) (-y+mz—7)=0

U('io,yo)(m’?/) = ugp(z,y) - (y iy

so that Up,,y) = UE, Ly for (zo,50) = (7,7), that is,
U(zo,yo) Will be a quadratic polynomial when (zo,yo) is at
the FOE (7, 7). At other points, U, ,) is composed of the
sum of a quadratic polynomial (see (4.7)) and the function
Ugco,yo), which is generally not a quadratic polynomial.

The definition of the circular-component flow field function
can be extended to the case where the candidate FOE is a point
at infinity (corresponding to forward velocity v3 equal to zero).
In this case, the candidate FOE is a direction (v;,v2), and the
constant vector field (—vg,v1) may replace the circular field
(—y + yo,® — x0) in the definition of the circular component
function.

The algorithm is thus the following: Every point (zg,y0)
and potentially every direction toward infinity computes the
circular component function U, ,.) and then determines
whether the resulting function is a quadratic polynomial of
the form (4.7). We suggest three methods for determining if
U(zo,yo) 1S a quadratic polynomial of the appropriate form.
The methods increase in order of discriminability of the
correct FOE but lead to successively decreasing simplicity
and efficiency.

1) Center-Surround Kernel Method: We first note that the
Laplacian of (4.7) is a constant:

(lo»yo)(m’y) ~ \ 92 + dy? (-‘L‘o,zlo)(x’y)
-2z 2
= —fq(dl - —%wz - 4(4.)3.

T T T
] 0 5

Fig. 5. Slice of the kernel v, as defined by (4.9), used in the center-surround
kernel method. The 2-D kernel is a rotationally symmetric version of the
displayed function. The 2-D kernel is convolved with the circular-component
flow field function and yields a zero resulting function when the candidate
position is located at the focus of expansion.

Thus, any derivative of the Laplacian of U,,,,) will give
zero when (zo, yo) = (7, 7). Rather than taking derivatives, we
advocate filtering U, ,,) by a convolution kernel. We suggest
three possibilities. The first suggested kernel is (8/0r)AG,,
where G, is a Gaussian kernel with standard deviation o, and
r is a radial variable (we may regard G, as defined in polar
coordinates). For fixed ¢ in (z,y) coordinates, this kernel is
proportional to

2 2
K(a) = (2 +57) *(4- Z5L) ool

o2
4.9)
A cross section of this kernel is shown in Fig. 5.

Another possibility is (8/3z)AG,. This kernel will not be
circularly symmetric but can be implemented by differencing
two horizontally displaced center-surround receptive fields, as
might be found in a stereo imaging system. Convolution by
this kernel is reminiscent of the receptive fields proposed by
Nakayama and Loomis [41]. For this kernel, we have the
(proportional) formula

7'2 _,',2 262
K(z,y) =x(4— ;) ceTT /2,

A third possibility is to filter U{zg,yo) by AG,, without
any derivatives. This kernel is given by

7.2 —r? /242
K(z,y) = (2—— ‘—7—2-> e/

which is the well-known Mexican-hat function. In this case, we
search for a location (o, ¥0), where the result of the filtering
operation is a constant function.

By filtering, we mean that a convolution is desired:

(4.10)

(4.11)

(p(zo»yo)(x’y) =K« U(Io,yo)(x’y)
= [[ K@V Weananr(a = 2"y - v)ady.

We are assured that when (zo,%0) = (7,7), D(z0,y0)(2, ) is
identically zero (the zero function) for the kemels (4.9) and
(4.10) discussed above and is constant for the kernel (4.11).
For kernels (4.9) and (4.10), we are assured that when
(zo,50) = (TyM), P(z0,40)(Z,Yy) is identically zero (the zero
function) no matter what value of o has been chosen. For
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Ill,

T
////
!!{{'[,"" 0, o o.

Fig. 6. Autoconvolution kernel K I that may be used as the quadratic
functional kernel in the center-surround kernel method to detect whether
U( z0.50) 1S @ quadratic polynomial and, thus, if (ro, yo) is the FOE.

kernel (4.11), @z, 40) Will be constant at (zo,y0) = (7,7)
and thus has zero variance at this location.

Therefore, the center-surround kernel method asserts that
a candidate FOE is found at a location (zg,yo) where the
function ®(,, ., is identically zero for the first two candidate
kernels, or has zero variance, in the case of the third candidate
kernel. A reasonable criterion would be to search for (¢, yo)
such that

E(zo,y0) = / 1B 20,40 (@) Pddzdy

is zero in the case of kernels (4.9) and (4.10) and where

E(z0,y0) = Var(®(zo,y0))

is zero in the case of kernel (4.11).

In all cases, the error surface E(zo,y0) can be rewritten
as a quadratic functional of the function Uiz, y0)(2,¥). The
quadratic functional has form

B@ow) = [[[[R@9.29) - Viawswr(@9)

 Utzoryo) (& ¥ )dzdyda'dy’.
4.12)
Formulas may be derived for R in each of the three cases.
For example, for the kernel (3/02)AG,, (kernel (4.10), it can
be shown that

R(z,y,2',y) =Sz -2,y -V)

where

1

S(z,y) = m(—19206+1920 — 39724242

+(z? ~ 20%)r* + 485%r?) - e /4”
for r = /22 + y2. In fact, in this case, S is simply K * K,
which is the autoconvolution of our kernel K. In turn, K *
K equals (82/0r%)A%G /3, More manipulations show that
(4.12) may be rewritten in this case as

E(-’L'ano) =/ U(.‘Eo,yo)(x7y)'
(K * K % U(zy o)) (z, y)dzdy.

A plot of the K * K kernel is shown in Fig. 6.
Of utmost importance is the fact that E(zq, yo) is a quadratic
polynomial in (xq, yo) for all three kernels for any o. In fact,

(4.13)

the result is true for any K for both the norm and variance
definitions of E. A proof of this may be found in [42]. As a
consequence, it suffices to compute E(zo, yo) for six different
potential FOE points, whence the entire structure of E will be
known, and the true FOE can then be determined immediately
without a search.

Although this provides a-particularly attractive test for the
FOE, the problem with the center-surround kernel is that
many functions other than quadratic polynomials will pass the
test. For example, if p is such that Uz, 4,) happens to be a
harmonic function for some (zp, yo) other than (7,7), then E
will be identically zero. Although it is not likely that p will
yield a harmonic U(g, 4, for general surface shapes, the test
using the center-surround kernel is not specific to the form of
quadratic polynomial that arises at the FOE and, thus, can be
considerably improved.

2) The Quadratic Polynomial Projection Method: The fol-
lowing are the Hermite polynomials in two variables up to
degree two:

1 T Y
x, = 7= z, = =, x, = =,
y -1
2\/_ 2y
These polynomials have unit norm and are mutually orthogo-
nal with respect to the Hermite inner product

¢4(zay) jz—ﬂ ¢5(Z’ y ’ ¢6($’y)=

(f9) = / f@ g, y)e~= V) 2dzdy.  (4.14)

The function Uiy, 4,) Will thus be a quadratic polynomial if
and only if the following function vanishes identically:

6

U(xo»yo)(za y) s Z(U(zo,yo)’ ¢i)¢i($y y)

i=1

For the quadratic polynomial projection method, we will use
the norm of this function as our error measure E(zq, yo). The
(Hermite) norm, which will be zero if and only if U, ,) is a
quadratic polynomial, may be written as a quadratic functional
of Uzy,ye) in the form

E(z0,y0) =//// R(z,y,7',y')

: U(IO 1y0) (m’ y)U(IO »Yo ) (:L‘I’ y’)
e~ @+ 2 gy da’ dy

(4.15)

In this case, R is the ‘‘quadratic polynomial projection
kernel”” and will equal

6
R(z,y,2",y) = 8(z,4,7,¥) = ), $i(z, )iz, ¥)-

i=1

Here, 6(z,y,7’,y’) is a delta distribution whose mass lies
entirely on the slice (z,y) = (z’,y’). We thus see that the
test for (zg,yo0) depends on a quadratic functional applied to
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U(zo,yo) and that the kernel of the quadratic functional in (4.15)
has the form

R(.’L‘, va” '!/,) =
1
8(z,y,2',y') - 27 (Lo’ +yy + zyz'y)
1 2 2
- Z;((m? - 1)(z’ - 1) +(y? - 1)(y’ - 1))

Note that the quadratic polynomial projection kernel is inde-
pendent of (zo,yo). =

Once again, it can be shown that E(zp,yo) will itself
be a quadratic polynomial in (z¢,y). Thus, as with the
center-surround kernel method, a search over (2¢,y0) is not
necessary.

The quadratic polynomial projection method has the prop-
erty that if U, ,,) is a quadratic polynomial, then (zo,yo)
will be identified as the focus of expansion. Alas, if U&omo)
happens to be a quadratic polynomial, then Uy, ) is simply
the sum of two quadratic polynomials, and therefore, (zo, yo)
will be erroneously identified. We might assert that it is
highly unlikely that the scene will be such that U&O,yo) gives
precisely a quadratic polynomial, but unfortunately, if p(z,y)
happens to be a linear function, then U(Zo,yo) is indeed a
quadratic polynomial. It so happens that p(z, y) is linear (and,
thus, harmonic as well; therefore, the center-surround kernel
method will also fail) when the surface Z(z,y) is planar
(although the entire scene will have to consist of the single
planar surface).

3) The Subspace Projection Method: We note that Ug:,’:"’ %)
is a quadratic polynomial in (4.6) of a special form; U(xmyo)
must lie in a 3-D subspace of quadratic polynomials spanned
by the (redefined) basis functions

d1(z,y) = —?J"' + gfgxy + fz — fxo,

To

pa(x,y) = —%x"’ + o+ fy = fue. (4.16)

$3(2,y) = =y — 2* + 2oz + yoy.

Note that unlike the Hermite basis functions from the previous
section, these basis functions depend on (x9, yo).

For the subspace projection method, we define the error
E(xq,y0) to be

3
E(zo,y0) = min |[Uize o) — O aithill®.
t=1

ai,a2,a3

The norm is based on an inner product, and we use the
Hermite inner product defined in (4.14). This is a standard
least-squares minimization problem, and the a; may be found
as the solution to the ‘‘normal equations”’

ay (Ulzo,u0) 91)
Q(ZO ,yo) (12 = (U(ZJO ,yo) b ¢2) (4'17)
as (Ulzo,50)+ #3

where Q(z,y,) is the three-by-three matrix of inner products,
i.e., the 1, jth component contains the value (¢;,$;), which
depends on (zo, o). It is not hard to show that for a solution
set a1, az, and a3, the minimum distance E(zq,yo) is given

by the quadratic functional formula (4.15), where R, which is
the ‘‘subspace projection kernel,’” is now redefined as

R(xo,yo)(zv Y, xl, y’) =

6(z,y,z',y’)
¢1(I,’ y,)
= (¢1(z,), d2(z,9), #3(z, 9))Q, Loy | $2(,v)
¢3($Ivyl)

The triple product (the second term on the right-hand side)
means the same thing as

3 3

3N witilz,v)i(ey)

i=1j=1

where ¢;; is the i,jth component of the inverse matrix
Q(:)’yo). Note that Q and, thus, @~ can be precomputed;
they are matrices of constants that depend on (zo, yo). In fact,
closed-form formulas for the coefficients can be derived as
functions of (zo, yo); details appear in [43]. Using the resulting
kernel R provides the exact test, and E(zo, yo) will be zero if
and only if U, ,.) is a quadratic polynomial of exactly the
correct form.

However, the disadvantage of the subspace projection
method is that the error surface E(zg, yo) is not quadratic in
this case, and thus, a search over many possible FOE points
may be necessary.

V. COMMENTARY

We may now summarize the two algorithms and comment
on their applicability. An analysis of their viability, based
on numerical analysis and empirical evidence, is given in
subsequent sections. Although the algorithms are not directly
motivated by biological concerns, there are implications for
possible neuronal implementations. These implications are not
stressed here.

The flow circulation algorithm is easily understood. Cir-
culation values are obtained for a number of cycles in the
image domain. A circulation value is simply a contour integral
of the vector flow field around the cycle and measures the
“‘swirling”” of the field about the cycle. Mathematically, a
circulation value is proportional to the average of the curl
of the vector field in the region enclosed by the cycle. Our
analysis has shown that these values, taken as data points at
the centroids of the regions, will approximately lie on a linear
surface: g(z,y) = ax + by + c. By fitting such a surface to the
given data, the parameters a, b, and c are determined. These
are proportional to the rotational parameters of motion wy, wo,
and w3, respectively. Clearly, fitting a linear surface to the -
data is a global process, which we believe will lead to more
stable determination of the rotational parameters than local
methods based on local deformation parameters (i.e., higher
order derivatives of the vector flow field). Further, fitting
a linear surface is a particularly simple global process; the
coefficients can be determined by a regression analysis that
will essentially use weighted sums of the data points.

The fact that the circulation values only approximately lie
on a linear surface makes the flow circulation algorithm an
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approximate method. In the next section, we consider the
magnitude of errors that can result pointwise. However, the
real issue is the extent of the errors in an average sense, and
there are ways that the errors can be managed to improve the
accuracy of the globally obtained rotational parameters. We
mention three techniques here: 1) discarding of outliers, 2)
depth filtering, and 3) surface normal balancing. For discarding
outliers, an iterative approach may be used, which first fits a
linear surface and then improves on the parameters defining

the surface by discarding data that lies far from the norm.

For depth filtering, we might intentionally discard cycles that
enclose points that lie on nearby surfaces. Such surfaces are
frequently located near the periphery of the visual field; other
nearby surfaces (that do not lie normal to the line of sight)
might be identified and discarded from the flow circulation
algorithm by independent depth sensing mechanisms. For
surface normal balancing, we note from (4.2) that perturbations
to the estimates of w;, we, and w3 are mediated by the values
of the surface component normals ny, n;, and n1vs — ngvy,
respectively. Thus, if the circulation values obtained for the
flow circulation algorithm encompass elements such that the
tilts (n1,7n2) are balanced, then errors will cancel. Thus,
when surfaces with large tiits are present, we should chose
circulation values such that the union of the enclosed regions
contains surfaces that have an even balance of tilts with respect
to the horizontal axis, the vertical axis, and the axis defined by
the direction to the FOE. Again, independent surface structure
methods such as stereo and shading clues may be used to
make the selection.

The FOE search algorithm is an exact algorithm in the sense
that barring noise, the FOE will be found. This algorithm is
also quite easily stated. For every candidate point, the circular-
component flow velocity function is computed according to
(4.6). The resulting function is used in a quadratic functional
computation, which is used to determine if the function is a
quadratic polynomial of the appropriate form. The functional
is zero at the FOE.

Three methods were suggested: the center-surround kernel
method, the quadratic polynomial projection method, and
the subspace projection method. The methods determine, re-
spectively, whether the circular-component flow function has
constant Laplacian, is a quadratic polynomial, or is a quadratic
polynomial in the proper 3-D subspace. Since the error surface
for the first two methods is itself a quadratic function, that
surface is either identically zero, or there will be at most
one zero of the error surface, which in the noise-free case
must lie at the FOE. Of the three methods suggested, the
center-surround kernel method is the simplest for determining
whether the circular-component flow function is a quadratic
polynomial.

There are alternative ways of implementing the methods.
The center-surround kernel methods can be implemented by
filtering the circular-component function with an appropriate
kernel and then determining if the resulting function is the
zero function (or constant, in the case of the kernel (4.10)).
Alternatively, a quadratic functional computation may be
made, in the form (4.12), to determine if the final value is zero.
The computation can often be simplified by making use of the

structure of the quadratic functional kernel R, implementing
part of the computation as a convolution, as demonstrated
by the example of (4.13). For the projection methods, a
function may be determined by projecting Uy, 4,) onto a
subspace, or a value is obtained from a quadratic functional
applied to U, ,,). For a discrete version of the quadratic
polynomial projection method, for example, we could fit a
quadratic polynomial to the discrete collection of data obtained
as point evaluates of the circular-component flow function
at the locations where flow field values are available and
then determine the quality of the fit. If a sum-of-squares
norm is used, the error surface will once again be quadratic.
Accordingly, the best-fit quadratic polynomial yields a simpler
version of the Heeger/Jepson algorithm. For the subspace
projection method, the kernel of the functional depends on
(0, y0) and, thus, is the most complicated method.

If the viewed scene consists of a single flat plane, with con-
stant orientation over the entire visual field, then the circular
component function Uy, ,,) will be a quadratic polynomial for
any (zo, yo), and therefore, the center-surround kernel method
and the polynomial projection method will fail. For this case,
the full complexity of the subspace projection method is
required.

The fact that the algorithms use global information to obtain
the motion parameters is their great advantage. As was noted,
the history of motion parameter determination is largely based
on local measurements of the vector flow field (and local
measurements of the derivatives of that flow field) to determine
both the motion parameters and the local surface structure (the
surface normal and/or surface curvatures). Although there is
plenty of psychophysical evidence showing that humans are
capable of deducing local surface structure from (potentially
impoverished) local flow field data, there is no certainty as to
the mechanisms underlying the determination. Our contention
is that stable and accurate determination of translation and
rotation motion parameters (due to egomotion) is possible
using global information and that local surface structure de-
termination might conceivably make advantageous use of the
globally determined motion parameters.

As a consequence of the global use of information, both
algorithms make use of regression methods. The flow cir-
culation algorithm fits a linear function to observed data,
whereas the FOE search algorithm essentially fits quadratic
polynomials to a collection of functions. The two algorithms
are, in a sense, complementary. The flow circulation algorithm
works best if visible surfaces are frontal planar; the FOE
search algorithm works best when there is a lot of variation
in surface orientations. The flow circulation algorithm uses
as input the sum of flow components about cycles, whereas
the FOE search algorithm requires circular-component flow
velocity values evaluated at points (which are then filtered).
The prefiltered circular-component values may be used to
compose the circulation values, but it is entirely possible that
independent feature detection mechanisms can be devised for
the two algorithms.

On the other hand, each algorithm may be used to verlfy
the other. If the flow circulation algorithm gives an estimate
of the rotational parameters w, then the rotational vector
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Fig. 7. Plot of ny /R is seen in the left, and a plot of na/R of the same
image domain is in the right for a typical scene imaged by a depth sensor
consisting of a road. The depth data is used to compute the surface normals.
The values of n2 /R are mostly positive and average to 0.0103, whereas the
values of ny /R are better distributed around zero, averaging to 0.0040.

field Viy is determined and, therefore, can be subtracted from
the observed vector field V. The result should be a pure
expansion or contraction vector field centered around the
FOE, as reported by the FOE search algorithm. On the other
hand, given the FOE, the rotational parameters can then be
found independently of the flow circulation algorithm from
the coefficients of the best linear fit using the basis functions
(4.16) to the circular-component flow function about the FOE.
This should give the same rotational parameters as the flow
circulation algorithm.

VI. AN ANALYSIS OF THE SENSITIVITY

In this section, we calculate the range of errors that might
be expected for the proposed algorithms by numerically inves-
tigating typical values of the parameters.

A. Rotational Parameter Estimation

For the flow circulation algorithm, the important issue is the
validity of the linearity assumption for the flow circulation val-
ues. We first consider the situation with pointwise evaluations
of the curl. Recalling (4.2)

curl(V)(z,y) = —= - (w1 + ngs) —y (w2 _ n}ss)

- (s ),

Here, we have assumed that units of measurement are in terms
of the focal length of the system so that f = 1.

Clearly, our ability to estimate the parameters wy, wp, and
w3 will depend on the size of the remaining terms in the
corresponding coefficients, that is, we need the terms

nz-vs  mi-vz (niva —naup)
R’ R’ 2R
to be small in magnitude, respectively, relative to the expected

sizes of w1, we, and w3. In the worst case, the magnitudes of
any of these three terms can attain the respective values of

losl ool o +ed
R' R’ ~ 2R

Gaze points

—

Rotation

Forward transiation

Fig. 8. Geometric and motion parameters for the flow fields shown in Fig,
9. In the case on the left, the person’s translational velocity is zero, and the
rotational velocity is (0,-0.125,0), indicating an instantaneous rotation about
the vertical axis of 0.125 rad/s. In the case on the right, the person’s rotational
velocity is zero, and the forward translational velocity is 5 focal units/s. The
wall lies 40 focal units to the left and extends from 20 to 80 focal distances
in range.

If this is all the information that is given, then we will
need large values of R. Specifically, suppose that a reasonable
value for a rotational velocity of a rotational parameter is on
the order of 0.1 or 0.2 rad/s. Then, as long as R is greater than
|vs| by a factor of 50 or so, then the rotational parameters w;
and w, should be deducible to within an accuracy of 0.02
rad/s. Likewise, R should be larger than the magnitude of the
lateral velocity in the (X,Y’) plane by a factor of 25 or so.
Recalling that R is the distance from the nearest approach of
the tangent plane to the focal point, we observe that tangent
planes to surfaces visible in the scene should, for the most
part, stay outside of a sphere whose radius is the distance to
be traversed at the current velocity in the next 50 s. This is a
quite large bound and hardly ever true in practice unless the
translational velocity is zero. However, if the forward velocity
component is zero, then accurate estimation of w; and wo is
assured by this method, whereas if the lateral translational
velocity is zero, then w3 will be precise.

More realistically, it is the average values of n; and ny
throughout the image that influences the accuracy of the linear
regression that is used to estimate the components of w. For
example, if n; and ng, average to 0.1, then the previous
bounds may be reduced by a factor of 10. Although typical
values of the average surface normal tilts must be determined
empirically, many scenes are composed of a variety of tilt
directions. Fig. 7 shows plots of n;/R and na/R for a typical
scene of a road computed using depth data. The values of
n1/R are well distributed about zero and average to 0.0040.
The values of ny/R, on the other hand, are predominantly
positive and average to 0.0103. The result is that using this
scene, the value of the horizontal rotational component w; is
likely to be estimated with greater error when using the flow
circulation algorithm.

We observe with the above example that the rotation com-
ponent about the horizontal axis w; is confounded by forward
velocity and horizontal surfaces with large components of
na/R. Likewise, rotation about the vertical axis wp, which
would arise as a sensor rotates from left to right, is confounded
by a forward velocity and a surface patch whose tilt lies
horizontally. Consider, for instance, a person walking next to
a vertical wall (see Fig. 8). Instantaneously, the motion field
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Left to right rotation Forward transiation

Fig. 9. Image flow fields induced by the motions described in Fig. 8 on a
vertical wall. Qualitatively, the flow field due to rotation is similar to the flow
field due to forward translation locally. The curl of the two flow fields are
identical since —w2 in the rotational case equals njv3 /R in the translational
case. However, the magnitude of the vectors decrease with range in the case
of the translational motion.

induced by the wall can indicate either forward velocity or
rotation of the head away from the wall. As shown in Fig.
9, the two instantaneous flow fields are similar but not equal.
The curl of these flow fields along the wall are equal (equal
curls do not imply equal vector fields). In any given vertical
slice along the wall, the flow fields are qualitatively extremely
similar. The sense in which they differ is that the magnitude
of the vector field due to forward translation decreases with
the range; therefore, the velocity vectors are quite small at
the far end of the wall. Since the curls are identical, the
flow circulation algorithm will not distinguish between the two
cases. The ambiguity may easily be resolved by higher level
processing, such as analyzing over time the scene at the gaze
point. A similar analysis shows that rotation about the line of
sight is readily confused with lateral motion with respect to a
surface such that —nyv; + nyvs is large.

Our conclusion is that for some scenes, the flow circulation
algorithm should be able to estimate the rotational parameters
correctly; for other scenes, accurate estimation of rotational
parameters from the velocity field using the flow circulation
algorithm is an unstable process and that other processing,
such as scene analysis of the gaze point or global analysis of
some feature of the flow field in addition to the curl, will be
necessary.

B. FOE Estimation

For the FOE search algorithm, we already know, since the
algorithm is exact, that E(r,n) will always be zero, assuming
there is no noise. Since Uf‘;o’yo) (see (4.7)) projects to zero
(under any of the methods), errors arise solely due to noise in
the flow field. The noise is balanced against the error surface
E that resuits from projection of Uz’mo’yd) (see (4.8)). If the
scene consists solely of a plane that is tilted in any direction,
then p(z, y) will be linear, and both the center-surround kernel
method and the quadratic polynomial projection methods will
yield a function E(z,y) that is zero everywhere. Thus, the
algorithm fails in this case. However, if there exist two or
more planar surfaces (as in the case of a corridor scene; see

Section VII), then F will generally be nonzero except at the
FOE.

Except for these degenerate cases, the center-surround ker-
nel method works well in our experiments. If the convolution
kernel used is the radial derivative of the Laplacian of a
Gaussian (see (4.9), then E(x¢, yo) is the norm of a smoothed
version of a function of the following form:

1 o) 0
W (37% + y3_y> [L(z,y) - Ap+ ¢ Dyp)
where L(z,y) is a linear function (depending on (z, o)), and
Dy is a directional derivative in a fixed direction (which de-
pends on (g, yo)). Clearly, discontinuities and sudden jumps
in p will lead to large Laplacian and gradient values, which
will contribute to the residual and, thus, to E(zq,y0). We
thus see that the center-surround kernel method benefits from
scenes with depth variations. The amount of error allowed in
the flow field determination for typical scenes, however, must
be determined by further empirical analysis.

The quadratic polynomial and subspace projection methods
have the advantage that they can be used with sparse data, if
necessary, by fitting the appropriate quadratic polynomials to
the distributed data.

VIL. EXPERIMENTAL RESULTS

In order to assess the performance empirically, we apply
the algorithms to synthetically generated vector flow fields of
both synthetic scenes and scenes of actual depth data.

A. Flow Circulation Algorithm
Consider the image of an ellipsoid that is defined by

2 N2 2
()" (552) + (25) -
a b c

We assume that the ellipsoid center is 150 focal units away
(along the Z axis) and that the semiradii are 50, 30, and 70
focal units, respectively. We assume the ellipsoid is in front
of a flat planar background. With the observer moving with a
velocity of (0.3, 0,2) focal units/s and rotating with an angular
velocity of (0.2, 0.1, 0.5) rad/s, the curl of the vector flow field
will have values as graphed in Fig. 10. The true linear surface
is seen in the background region, and the distortion in the other
regions is caused by the translational velocity in conjunction
with the surface tilts. If there is error in the determination of
the curl of the vector field, then the resulting surface shown
in Fig. 10 will be similarly perturbed. In addition, a larger
translational velocity will cause a larger perturbation of the
surface. Recall that estimates of the linear surface will most
likely be based on averaged values over regions and not on
local gradients of the displayed surface. Clearly, the best-fit
linear surface to the surface shown in Fig. 10 will give an
accurate estimate of the parameters of the unperturbed linear
surface. .

We next apply the algorithm to a synthetically generated
vector flow field using a scene obtained from actual depth
data. The depth data was obtained from publically available
scanned data obtained from a ‘‘White Scanner’’ by researchers
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Fig. 10. Curl of the flow field due to an imaged ellipsoid, with a sensor
velocity of v = (0.3, 0, 2) and rotational velocity w = (0.2,0.1,0.5).

Fig. 11. Depth image, where lighter values represent points with smaller
depth. The scene consists of a cylinder and a sphere sitting in front of a flat
plane. Only depth values are depicted—the sampling rate with respect to r
and y vary somewhat throughout the image.

at Michigan State University. Fig. 11 shows a gray-scale
interpretation of the raw range data of the scene.

The scene contains a sphere and a cylinder; the sphere,
for example, has radius of about four focal units, and its
center is located 50 focal units from the sensor. The scene,
it should be noted, is a “*foveal region,”” occupying an image
size of 0.15 by 0.25 focal units. A simulated flow field is
then computed using the depth values, as well as the projected
image coordinate values, in conjunction with a camera motion
of v = (5,2,20) focal units/s and w = (0.2,0.1,0.5) rad/s
(relatively large motion parameters). An indication of the flow
field is shown in Fig. 12.

An approximation to the curl of the flow field is computed
using the u, v data at five points in the neighborhood of each
discrete sample, and the result is displayed in Fig. 13. Data is
plotted only at (x,y) positions, where meaningful depth data
is derived from Fig. 11. Once again, it can be seen that the
curl is approximately linear, as expected. Finally, the best-
fit plane (without using any benefit of discarding outliers)
is computed to the approximated curl data over the regions
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Fig. 12. Flow field computed using the depth values given by the depth

sceneof Fig. 11 computed analytically using a camera motion ofv = (5.2.20)
focal units/s, andw = (0.2.0.1.0.3) rad/s.

Fig. 13.  Approximate curl values of the vector flow field that result when
the scene whose depth values are displayed in Fig. 11 is imaged by a
sensor whose translational velocity is v = (5. 2. 20)and rotational velocity is
w = (0.2.0.1.0.5). Data is only shown in regions where depth values are
defined in Fig. 11. Partial derivatives of the flow components are computed
using a local regression, and the location of the curl values are moved to
approximately the correct image location. The resulting best-fit planar surface
predicts rotational parameters of (0.2126, 0.1023, 0.4982).

where curl data has been computed and is used to estimate
the rotational parameters. The procedure yields the estimate
w =~ (0.2126,0.1023,0.4982), which quite accurately reflects
the true rotational velocity.

None of these experiments have made use of circulation
values. Instead, we have computed the full field of curl values
analytically or numerically over the image. If circulation
values were used instead, then the curl values would be aver-
aged over the corresponding regions. Preliminary experiments
using sequences of images with known motion parameters
suggest that errors can be substantial using existing flow
field extraction methods. Ideally, circulation values would be
provided directly by the sequence analysis process, as opposed
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Motion Parameter Estimation from Global Flow Field Data

Back walt

Sensor

View down the corridor

Fig. 14. Corridor and view from the sensor. The camera is located in the
center of the corridor, viewed from down the corridor. The back end of the
corridor is located 500 focal units away, and the width of the corridor is 50
focal units. The camera has translational velocity v angular velocity w, and
a flow field is thus induced on the image domain.
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Fig. 15. Plot of the values E(.ro. yo) obtained from the norm of the function
®(+4.40)> Which in turn is obtained from a discrete convolution of the circular
component function [, ,,) Using the horizontal difference of the discrete
Laplacian as the kernel. The minimum value occurs, as desired, at the FOE.

to providing full-field vector flow fields. Once a continuous
flow field is available, there is no advantage in computing
circulation values. In addition, the extraction will ideally make
use of large-field data, including peripheral fields as present
in normal human visual fields.

B. FOE Search algorithm

Some of the experiments' use synthetic flow fields created
when the camera moves along a corridor with translational and
rotational velocity (see Fig. 14).

Recall that the FOE search method involves computing for
each candidate FOE (zg, o) the circular component function
Utzo,yo)(#,y) of the flow field, as given in (4.6). We test
all three methods to determine whether the resulting function
Ulzo,yo) is @ quadratic polynomial. All computations are done
over a finite discrete grid.

We also test the first method (the center-surround kernel
method) with the vector flow field induced by the depth scene
shown in Fig. 11.

1) The Center-Surround Kernel Method:

We use a first difference (along the horizontal direction) of
a discrete Laplacian as the kernel K (see Section IV-B). It can
be shown that if this kernel is applied to point evaluates on a
discrete grid of the circular-component function U, ,,) With
(zo,y0) at the FOE, then, despite the fact that the discrete

Fig. 16. Contour and gradient of the error function E(rg.yo) using the
center-surround kernel method, as described in Fig. 15, computed for the
flow field induced when the depth image of Fig. 11 is imaged by a sensor
with translational velocity of (5, 2, 20) and rotational velocity of (0.2, 0.1,
0.5). The function has the minimum at the FOE at (0.25, 0.1).

Laplacian is an approximation of the continuous Laplacian,
the result should be a zero function. The actual kernel that
was used is 3 by 4, with entries

0 1 -1 0
K={1 -5 5 -1

01 -1 0

For every candidate (zo,yo), we compute Uy 4)(4,5) and
then convolve it with the filter K, yielding ®(z,,y,)(3,7)-
We know that for the correct FOE, this function ®(z, ) is
identically zero. To test this, we compute

E(x0,y0) = ZZ (‘D(xo,yo)(i’j))z'
i

A plot of the function E(zo,yo) is shown in Fig. 15 for
the case where the camera is moving along the corridor
with a translational velocity v = (—4,-2,16) and with
rotational parameters w = (0.1,0.2,0.035). The minimum of
the function, which is precisely zero, occurs at the true FOE
(—0.25, —0.125). As can be seen, the error function is nonzero
elsewhere and has a quadratic behavior.

Fig. 16 shows the error function that results when the
translational and rotational motion of (5, 2, 20) and (0.2, 0.1,
0.5) are used to compute a vector flow field of the depth scene
of Fig. 11, and the same center-surround- kernel method is
applied to obtain the ®(,, ,,) functions. We present the error
function as a contour plot together with a field denoting the
gradient of E in order to suggest the possibility of a gradient
descent search for the FOE. In this case, we assume that there
is a fixed-depth background behind the objects in Fig. 11
so that circular-component functions can be defined over the
entire image. Once again, the error function correctly zeros
out at the true FOE at (0.25, 0.1).
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2) The Quadratic Polynomial Projection Method: The
center-surround kernel method will fail to work in certain
pathological  situations; however, since the method works
adequately for the examples given in the previous section, we
would expect the other two methods to work as well. The main
issue is whether the accuracy of the localization of the FOE
suffers due to the enhanced specificity of the determination
of the quadratic polynomial nature of the circular component
functions.

For the quadratic polynomial projection method, we use
orthogonal polynomials in two variables up to degree two
on a discrete domain of finite size. Rather than using a
discrete approximation to the continuous theory presented in
Section IV-B-2, we use basis functions that are defined and
orthonormal on a discrete grid of size 2n + 1 by 2n + 1,
with interpixel sampling distance d. We assume that the grid
is indexed by (i, j), where —n < i,j < n. The discrete basis
functions can be derived quite easily:

ia
DY

1

.

bilid) =5 i) =, Balind) =

.2_C

-2 -
: ) ¢6("'7]) = JT

¢4("y]) = %7 ¢5(’L,]) = K

where D, C, and K are constants that depend only on n and
d. The constants may be chosen so that the ¢; functions have
unit norm and are orthogonal with respect to the inner product

(fL9)= Y > fi,5)e(i,5).

i=—n j=-n

(7.1)

Note that we use a standard inner product as opposed to a
Hermite inner product. We compute

6
U(:co,yo)(iaj) - Z(U(:co,yo)v ¢k)¢k(is .7)
k=1

The norm squared of this function, based on the inner
product in (7.1) is the error measure E(xo,yo). We correctly
determine the FOE as the zero of this error function for the
case where the camera is moving along a corridor with a trans-
lational velocity of: (5,2,20) and with rotational parameters
(0.1,0.025, —0.05). The function E(zo,yo) is shown in Fig.
17.

3) The Subspace Projection Method: We solve for aj a2
and a3 by solving the ‘‘normal equations’’ (4.14) of Section
IV-B-3 using the inner product definition given in (7.1). The
basis functions ¢; for ¢ = 1,2,3 are simply point evaluates
(on the discrete grid) of the functions defined by (4.13). We
compute the inner product matrix @ explicitly instead of using
the analytical expressions given in Section IV-B-3, again using
the discrete inner product (7.1). Once we have a; az and a3,
we can compute the error function

3
E(20,0) = U(zo,yo) = 9 _ aihill*.

t=1

Thus, E(zo,y0) gives the norm of the residual after Ulzo,0)
is differenced with its projection onto the subspace spanned by

Fig. 17. Contour and gradient plot of the error function E(.xg, yo) obtained
using the quadratic polynomial projection method for the image flow field
induced by a translational velocity of (5, 2, 20) and rotational velocity of
(0.1, 0.025, -0.05) for the corridor scene (Fig. 14).

80000
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Fig. 18. Contour and gradient plot of the error function obtained using the
subspace projection method using the same scene and motion described in
Fig. 17.

the basis functions (which are quadratic polynomials) defined
at (xg,y0). Again, the norm is based on the inner product
defined in (7.1). We determine the correct FOE for the case of
a camera whose motion is the same as that described in Fig.
17. A contour plot of E(zo,yo) is shown in Fig. 18.

We see that although the contours are less regular, the:
error increases rapidly as we move away from the true FOE,
suggesting that the subspace projection method will yield the
greatest accuracy.

VIII. CONCLUSIONS

We have presented two independent algorithms for the
determination of motion parameters given the global optical
flow field. The flow circulation algorithm determines rotational
parameters of motion and works best when there is substantial
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rotational velocity of the sensor, and the scene consists of
a lot of distant surfaces that either lie approximately normal
to the viewing direction or whose tilts are well-distributed
with respect to the direction of motion. The FOE search
algorithm, on the other hand, determines the location of the
FOE and works best when the translational velocity of the
sensor dominates, and the scene contains plenty of depth
variations.

Since both algorithms are global, they would ideally use
large-field information. Further, the algorithms have been
formulated for dense flow fields but, in practice, will have
to deal with sparse data because accurate image motion data
is available only where corners or other identifiable features
can be tracked.

Our experimental results are hampered by the use of simu-
lated data or by the limitations of actual data, which includes
limited field of view and potentially inaccurate ground truth
information provided for motion parameters only (and not
depths). Nonetheless, the experiments validate the algorithms
but fail to establish their stability with respect to noise,
inaccuracies in the flow-field data, sparsity of the data, or
other real-world exigencies. We are confident, however, that
the global nature of the algorithms makes them more stable
than motion parameter determination methods that rely on flow
field data, and sometimes flow field derivatives, at a few image
points.
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