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Robert A. Hummel
Courant Institute

New York University
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Abstract
We begin wilh some polemics aboul compuler uision

research and paltern malching, and the need for ro-
buslness. We aiew a large portion of compulei aision
as malched fillering, n dis-
guised. This broad sta umber
of examples. Typicall uhen

denoed meaning. lhe
fornula has heuris be-
hauior, etter perfo her
heurisli appliCd io s.

1 Introduction
Computer vision research is beginning to show

promise for commercialization. Small dembnstration
rly in robotics, man-
demonstrate capa-

ecade ago (and yet
corner two decades

ago). Aerospace contractors are beginning to develop
production automatic target recognition systems, and
renewed interest in countering armored threats in re-

tensible,
keting, s
will be n
Those w

There is good reason to believe that narrowly-
defined applications with sizable markets are finally
amenable to computer vision technology. It is not

stations, with the intention that demonstrations sys-
tem use commonly available inexpensive hardware.

Are we prepared? Alas, academic researchers have
little appreciation of the subtleties of the market-

The melhodologies thal researchers ulilize in order
to deaelop demonstrslions musl be mod"ified lo account
for the new goals. In particular, it is critical that the
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tive, which has been a mainstay of computer vision
algorithm development, is based on optimization, and
generally leads to some form of matched filtering. We
begin with a discussion of classical matched filtering.

2 Matched Filtering
By matched filtering, we mean simply an inner

product. So if /(c, y) is an image, and rn(e, y) is a
model or pattern that is being sought, we compute

r
I f @,v) .m(x,y)dzdy

J

in order to determine the degree of match. If multiple
patterns are sought, say mi(e, y), for i = 1, ' . .n, then
n inner products are computed, and the largest wins.

Beginning with optical character recognition, and
continuing with optical computing and target recogni-
tion, matched filtering holds an important appeal and
promise. The technique is easily implemented, and has
mathematical justification. Specifically, if one wants
to find the best match in terms of the .L2 norm, then
the minimum of ll/ - ^rll' is equivalent to maximiz-
ing (.f, m;) - (l/2)ll-,ll'. If all the models have the
same norm, then we have derived matched filtering,
and if the models have diferent norms, then we have
good justification for a minor modification to matched
filtering.

Alas, it is doctrine in computer vision, and to a
lesser extent in pattern recognition, that matched fil-
tering does not work. Unless the number of models
is minimal, noise and variability kills the technique.
The doctrine is re-learned by successive generation of
researchers, and is verified empirically and by theoret-
ical analysis.

But, as. we will see, variations of matched filtering
reappear in many guises. The methodology of com-
puter vision research seems to dictate that matched
filtering form the key component of the matching en-
gine, providing it is sufficiently embellished. The per-
formance of these systems, as we all well know, is ad-
equate for the examples that are published with the
papers, but falls apart when the method is extended to
more models or more complicated systems. The prob-
lem of dealing with noise remains the key difficulty in
the application of computer vision technology. The
source of the problem is that matched filtering can't
deal with noise effectively, which has been known for
decades.

At the same time, Bayesian techniques show great
promise in alleviating problems with noise and inade.
quate matching engines. The difficulty with Bayesian
techniques lie in the representation of the information
that is to be analyzed. The representation is crit-
ical, but is not dictated by any theory. Acccrdingly,
Bayesian networks or Bayesian reasoning systems have
to be developed for each application, often in ad-hoc
ways. A better methodology is required.

In the sections to follow, we will not solve the
problem of formulation the representation in order
to utilize Bayesian reasoning to break the log-jam
of matched filtering. Ilowever, we will show how

matched filtering itself can be reformulated and mod-
ified so as to admit a Bayesian interpretation, which
should assist providing new methodologies that lead
to more robust performance

3 Other guises for matched ftltering
Matched filtering can be formulated as the task of

maximizing a collection of vector dot products. If e-

is a vector representing the ordered pixel values, and
{"-i}i=, is a collection of target vectors, then the prob-
lem is to find the index that maximizes r-. r-i over all
possible r'. Since the c-; will typically contain multiple
translates of the same prototype pattern, many of the
vector dot products can be efficiently implemented as
convolutions. Since the i; are not orthogonal, there
can be considerable cross-talk. The vector c- of pixel
values may represent the result of an edge detector or
other filter of raw sensor data, and may also incorpo-
rate multispectral and multisensor information.

Next, let us consider statistical pattern recognition.
Although there are many forms, let us first consider
the K-nearest neighbor classifier, with K equal to one.
In this classifier, a feature vector s- locates the proto-
type that is nearest, i.e., that minimizes lla--e-;ll2 over
i. This is equivalent to maximizing

i .i, - 1lt"-.t12.' 2tt 
)tt '

which we may write as (c-, 1) .(r-i,6i), where 6; =
-(L/2)llill'z. Thus we once again get a vector dot
product maximization, but in this case, the vector rep-
resents the feature values of a region of interest with
an appended component that is always one, and the
matched filters encode the prototype feature vecbors,
with an appended bias term.

What about classifiers with K greater than one?
Perhaps there is something essential in better pattern
recognition methods and more sophisticated classifiers
that relieve them from the tyranny of matched filter-
ing. For example, a tweclass 5-nearest neighbor clas-
sifier might use a voting scheme among the five near-
est neighbors to a test pattern, resulting in one of the
two classes assigned to the test. However, the result
of the voting scheme is that the multiparameter fea-
ture space is decomposed into regions that result in
assignments to one class or another, and the result-
ing decomposition can be closely approximated by a
l-nearest neighbor classifier, providing enough proto
types are inserted. In other words, by changing the
prototypes, a l-nearest neighbor classifier can be used
to approximate just about any static pattern recogni-
tion scheme.

4 Model-based vision
Next, let us consider a model-based vision applica-

tion. Suppose that we are using an hypothesis-and-
test approach, such as the Lowe SCERPO method
[1] or successive methods. As some stage in the pro-
cessing, there is a 3-D model rn that is hypothesized
to be present, and some number of parameters that
have been estimated, so as to predict certain features.
The system must determine other parameter values,
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viewpoint parameters based on newly discovered fea-
ture matches.

The first of these two phases, matching scene fea-
tures to model features, can be formulated as follows.
We view scene features as vectors y], which include
position information in the scene, and can also in-
clude attribute information. Likewise, the hypothe-
sized model is composed of a similar collection of fea-
tures, say z-;. that de'
pends on unln we wish
to determine p ollection
of transformed model features,

1r@t' ' 'p";ii)j
best approximates a subset of observed scene features

iv-r ).

A metric is required in order to measure the distance,
and a typical measure is a mean square metric in fea-
ture space. This metric is common due to its math-
ematical tractability-the parameter search is facil-
itated when the minimization can be performed as-

methods, analytic optimization, and by many other
methods. In general, some of the parameter values

com-
es of

:T:
gree of match may well be changed as matches are
hypothesized. However, in any given iteration, new
matches are sought, either along with providing ad-
ditional constraints on parameters, or as a verifica-
tion to already determined parameters, and the metric
to evaluate correspondences is fixed for the iteration.
Thus, if all p; are free, then we wish to find a subset
S of the observed features, a map from the subset S
matching y-i € ^9 to a subset of the model features z;i,,
such that the minimum

min I ll"(pt ..pntZj.)-ii,ll'
Pt P^:--

is small relative to the number of matches in S. One
formulation establishes a threshold fraction for each
model, and declares a model to be recognized if there
exists a matching of at least the specified fraction
of model features to features in the scene such that

a suf-
g min-
penal-

There are many special cases, some of which we
discuss later.

The second phase, viewpoint refinement, is formu-
Iated as follows. We have a collection of scene features
y-;, for i = 1...t, in correspondence with specific fea-
tures in a hypothesized model, say Zi,, i = I...1c.
Using a norm that can take into account the stated
correspondences, we wish to find the optimal param-
eters p1 ...p, in order to minimize the distance from

1r@, ' ' 'p^; ii)\!=r

to the set of features {y.r=}f=r. In a sense, the sec-
ond phase is the same as th-e first, except that the
collection of features are now fixed and in correspon-
dence, whereas the matching phase described above
must posit correspondences as part of the solution.

Suppose we fix on .L2 norm. Then the problem is
to find the p1 ...p,, minimizing

L

! llr(l' .--p^;ii) - ii,ll'.
i=1

The figure depicts the two problems: finding matches
and parameter refinement.

Clearly, both phases are optimization problems,
and can be solved by many different approaches to
numerical optimization.

Suppose that ? is linear in all its variables. This
is a special case that is unrealistic, but nonetheless
surprisingly common, and will be approximately true
much of the time in any case. Clearly, a local linear
approximation is often valid, and since iterative opti-
mization operates locally, a linear assumption is not
totally unuseful.

In that case, the solution to both phases, for a fixed
model and fixed matching, is a Iinear minimization
problem, of the form

hypothesized
oo

oo

o---->o
verified

Establishing new matches

o
onn
o o / oaru"ting parameters
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mentable as a atched fil-
ter operation) ue can be
formulated as c- dePends
on the values i the model
features li, and c-; depends on the vector D-, and hence
on the y-;'s, although the functional relation may not
necessarily be simple.

Of course, for the first phase, the model parameters,
the subset of model features, and the match to scene
features are not fixed. Thus many innovative search
strategies can be developed to perform the minimiza-
tion in an efficient manner. However, here's a brute
force method. We begin by enumerating all possible
matches, over all possible subsets of model features,
over all possible models,
ther, for each a, some o
fixed, and the others are
minimization is a linear
and leads to a vector product i'io to obtain the value
to be minimized (or maximized). If we find extrema
over the many a, the result is posited recognitions.

For the second phase, no maximization is required
over m
quired.
related
the cas
ues are unknown, the set of available parameters might
have to be discretized, which can lead to errors, In-
deed, the correspondence problem is interesting pre-
cisely because one wants to find a search strategy that
is better than exhaustive search.

We see that at least one form of the hypothesis-
and-test app
plemented as

Of course, th
or at least a
mation of features ?, and the approach that has been
outlined is brute-force, and likely to be improved in
actual implementation. Nonetheless, our formulation
shows the pervasiveness of matched filtering.

5 Unstable problems and unstable
methods

At this point, we have said that:

o Matched filtering won't work; and

o All methods lead to matched filtering, perhaps
in disguise.

This theme will continue, even as we discuss geometric

approach, and we must make sure that the methods
thit are used to solve the problems are different than

particularly optimiza-
or stable, and if they
fail to solve them due
e unstable.

The computer vision community hopes that the fol-
Iowing is true:

1. The computer vision problems as formulated
above are stable problems;

2. The decades of failure of matched filtering ap-
proaches means that matched filtering is an un-
stable mebhod for solving most of these prob-
lems; and

3. Stable approaches will soon be found, or have
been found, and are yet to be fully promulgated.

But it could also be that the problems as formulated

the matching problem.

6 Geometric Hashing

s becomes more manageable. Geo'
a search method is particularly at-
l) it is parallelizable, (2) efficient
aling with large databases, and (3)

are {r.1 i}ljr. The recognition should be independent
to so-me il-as-s of transformations that can be applied to
the models, such as translation, rotation, and perhaps
skew transformations.

Accordingly, we define a bosis sel to be a mini-
mal collection of features such that placing a basis set
in one-to-one correspondence with another basis set
(such as a basis set in the scene) determines a trans-
formation in the class of transformations under which
recognition must be invariant. For example, if the
features are points in ft2, and if recognition is to be
similarity (trinslation, rotation, and scale) invariant,
then a pair of points establishes a basis.
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o_________>o oo --------->o

Figure 1: In the pattern matching problem, the origin
is fixed in the pattern and in the scene, and we simply
wish to observe the designated pattern in the scene.

For any particular basis, remaining features may be
normalized with respect to the basis. So, if we choose
a basis B in a model mp, then all features i1,,; in my
may be transformed in such a way as to move the ba-
sis to some pre-determined configuration. Likewise,
given a basis B' in the scene, then all features g-1 may
be transformed so as to move the basis B' to the same
pre-determined configuration. If model m[ occurs in
the scene with basis B in the model in correspondence
with the features B/ in the scene, then after normal-
ization, the normalized model features should occur
within the normalized scene features in the same con-
figuration.

Accordingly, rather than searching for transforma-
tion parameters by a numerical scheme, in confor-
mance with the idea of enumerating over all possible
matches indexed by o (as formulated in the previous
section), we begin by expanding the model base, con-
sidering each model mp and every basis B within rnl
to be a prototype pallern. Thus the new collection of
models, now called patterns, are pairs (mp,B), sub-
ject to the condition that the basis B is a basis set of
features in the model rnp.

To perform the search, we choose a basis B' in
the scene, and normalize the features y-; with respect
to the basis B'. The goal is to determine if any of
the model/basis pairs (^t, B) match the normalized
scene. The question is the same as asking whether
any of the models are embedded in the scene in such
a way that the scene basis B/ matches to any basis
in the models. If all bases have been included in the
enumeration, then it suffices that Bt simply lies within
an embedded model. The match problem is depicted
in the figure.

For any particular model/basis (*r, B), bhe ques-
tion is very simple. We have a collection of normalized
mod h we call {i;} We have a collec-
tion cene featuiet {"';}. We want to
find f i - j; for a subset of the possi-
ble l e-i lies "near" 17i,.

This problem can be formulated as an optimization
problem, but let us consider a heuristic matched fil-
tering approach directly. After all, we are attempting
to find a match of the pattern {c-;} within {r7;} We

now revert to a continuous formulation.
Let

f(i) = !01;- r-;;,

and let
g(i) = Dut;- di)

J

(Note that / is dependent on the model/basis pair
(ms,B), and so we might denote it as fl-.,s;. Nomi-
nally, the problem is to determine whether delta peaks
in / match a subset of peaks in g. Heuristically,
this can be determined by considering (/,9), although
clearly some "smearing" of the peaks is required in
order to account for normal noise and possible minor
displacements. One way of doing this is to "blur" /
by a gaussian,

f - f *Gc

, where Gc is a gaussian distribution with mean zero
and covariance C. We then comput" (I ,Sl .

A better approach modifies / according to expected
variations of the normalized features. Let us suppose
that the normalized features di have expected covari-
ance variations of C; respectively, when found embed-
ded in the typical (normalized) scene. Then, we rede-

fine / as

i@) =lc",1t _ t,y,

where G6:, is a Gaussiar, *rrn covariance G. Then the
inner product (f , c) measures not only the number of
features represented by peaks in / that have matches
in the scene represented by peaks in g, but also takes
into account how closely the matches line up.

Clearly, we are back to matched filtering. Worse,
the justification is heuristic. And it is not clear if the
scheme will not work because it is matched filtering,
or it won't work because the problem is still formu-
lated poorly, or perhaps it will work if the features are
robust, stable, and discriminative.

7 Bayesian Pattern Matching
This section shows that the fundamental pattern

matching problem, formulated in the previous section,
can be given a Bayesian formulation, leading to both a
justification and a modification of the heuristically de-
rived formula for matched-filtering -type recognition.
Our optimistic conclusion is that matched filtering is
probably okay after all, but that a non-optimization
formula is needed for stability. Moreover, the right for-
mula is critical, and the features and representation of
the features is even more critical. This formulation is
based on the thesis work of Isidore Rigoutsos [4].

The event that we hypothesize is that model rn1
is present in the scene with basis .B in m* match-
ing scene basis B/. We may denote this binary event
as E(rn3 , B, B'). A maximum likelihood formulation
asks us to compute and maximize

10i

Pr(E(rne, B, B/) l{uj }),



where the u-i are the unnormalized scene features.
Note that this formulation is slightly nonstandard, in
that if the model mr appears in the scene, then there
may well be multiple pairs (.8, B') for which the event
is true, and which "discovers" the model. We only
need find one such pair, if the model is present.

If the features are conditionally independent, then
the above expression can be decomposed. The condi-
tional independence assumption is a strong one, and
imposes a large constraint on the kinds of features with
which we can operate. The condition means that un-
der the assumption that a particular model is present
in a particular location, knowledge of a feature at one
location (or with one set of parameters) has no influ-
ence on the probability density distribution of another
feature. The condition is not at all true, for example,
when dealing with edge elements (edgels), which tend
to line up in lines, and are thus very much dependent.

Using various Bayesian manipulations, and using
the independence assumption, one can derive

, _ (Pr(E(mr,B, B'))l{4}\ _
'"8 \ Pr(E(-r-8, B) / -

togK+Dtor(L1'lffiP)
j

where the probability terms in the sum should be in-
terpreted as density function evaluations. See [5] for
details of these manipulations. If we assume that all
prior probabilities of the events E(^r, B, B') are uni-
form, then we can simply strive to maximize the right
hand side. The Iog(K) term will be independent of
(^t, B, B'), and so can be ignored.

Accordingly, let us examine carefully the summand
terms on the right hand side of the equation above in
light of the patterns {c-;} and {u-;}.

bility is simply an evaluation of this density function.
This function can be derived from a modeling of the
image space and of the feature extraction process, or
could be developed empirically.

The numerator is a more complicated story. This
density function is different, because it is conditioned
on the knowledge that event E(^p,B,B') is true.
This means that we know that the normalized scene
contains the features {c-;}, for f = 1...np, where there
are nr features in the model mp. Let us suppose that
we have s observed features. Let us further suppose
that of the n3 features in the model mr, it is reason-
able to expect on average a certain amount of obscu-
ration, and thus only p' np features will be observed
from the model, and the remaining will be background
clutter features. Finally, let us assume that each of the
expected features r; has an expected variation with
covariance matrix G. Then the expected density dis-

tribution is given by

s-7nt a nk

ptr) = .p(i)+ l'. t Gc,@- i;)

Note that tn" ru"n.tion r,* ,.r]r a'";.,r, one (assuming
p has total density one), and that the delta masses at
the locations of the pattern of the normalized model
rnl have become Gaussian "bumps," as heuristically
considered in the previous section. Accordingly, each
summand has the form

'", (, - + . #lc.'- "-,,)

Plugging into the Bayesian formulation above, we see
that the maximization of the likelihood is tantamount
to computing, for each collection of {e-;} based on the
model rnp and basis B, given the normalized scene
features {r7i} based on the scene basis .B',

i.* (+.#i"",rr,-,-,,)
lsj=l \

This can be rewritten as

-srog (+-) *
\s - lJnh /

t,.* (, * Pr:fi),ri"",rr, - r,))
- \ s-
J=L \

And now for some magic. For any given u-; value, at
most one of the values of r-; will lie close. Let's call the
closest one i;. Then in the second term, the Gaussian
terms will all be essentially zero, except possibly for
the term Gc.,(ir, - di) Thus we may replace the
sum over i with the single term ii !

So we obtain the following formula. We fix B/ in
the scene, and obtain the collection {4}i=r. We have
many prestored model/basis patterns, each one con-
sisting of a collection of the form {i;}ijr. The support
level for a particular model/basis depends on finding
the nearest model normalized feature r-;, to each nor-
malized scene feature u-;. The support for the partic-
ular model/basis is then

-srog(+) .
: / Blo(il,) \
Itot (r* ?-c^ (c'i' - t '' 

) .

,=r

The bias term -slog(s/(s - !nr)), which we will de-
note by c; , depends only on the model rnr, and not
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on the basis B chosen within model m1 . Accordingly,
the support may be rewritten as

cn * (f@,,a), 91,

where g is a sum of delta functions at the locations

{di}j=r, as before, and f1-.,a; is again redefined, and
discussed briefly below.

But, at this point, we may note that the pattern
matching problem has once again been formulated
at matched filtering! The collection of biased inner
products should be maximized over all (rnp, B), and
then separate collections may be evaluated and max-
imized for d the function g,
i.e., g - gp,) pattern match-
ing provides than optimiza-
tion methodologies, it is not because matched filter-
ing is inherently inappropriate. Rather, there is still
hope that the Bayesian approach is better because the
change in formulation provides different formulas and
different representations.

Finally, we define the Bayesian pattern-based
matched filter .f1-*,r;. For a feature vector e-, and
d(d) defined as the index of the nearest normalized
vector among {e-;}, i.e., the collection of feature vec-
tors in rnp normalized according to the basis B, we
then have

i(E =r"s (r * m"c,r,,(i- '-,,o))
By using fancy data structures, such as hash ta-

bles and &-D trees, or self-balancing trees, the com-
putation of the multiple inner products can be made
quite eficient. This is what we refer to as "geometric
hashing." But it is not our purpose here to argue for
indexing and/or hashing methods here. Instead, our
point is that a Bayesian formulation leads to yet an-
other matched filtering formula, but where the filter
operates in a domain equivalent to the range space of
a feature value (which we have viewed as a vector, be-
cause there can be multiple attributes to a single fea-
ture), and with a formula that is non-obvious and only
somewhat intuitive. Indeed, the formula for / above
can be closely approximated by a sum of log terms
(since if r- is distant from a particular c-;, then the
Gaussian will essentially evaluate to zero, and the log
term is thus also nearly zero), but this is slightly difer-
ent than a sum of Gaussians, which was our heuristic
formula from the previous section.

E Comments
At this point, it would be typical and desirable to

state that the revised formula derived in the previ-
ous section for Bayesian pattern matching yields much
better results, which we can document with examples.
However, if we did this, we would be guilty of exactly
the kind of article criticized in the first section, where
the results are given in a summary in the penultimate
section. Moreover, the jury is still out. We believe
that Bayesian pattern matching will work much bet-
ter than traditional object recognition systems, given
the same features, but this is simply an intuition.

But from the standpoint of methodologies, we have
two points: (1) There are alternative formulations;
(2) we still haven't gotten rid of matched filtering,
although it is considerably transformed and disguised.

I Summary and Conclusions
For many years, people have worked on feature ex-

traction, with the conviction that stable, robust fea-
tures are important. We now state here that stable,
robust features are essential. Viewing recognition as a
pattern matching problem, the patterns have to be
representative of the objects, and the patterns are
composed of extracted features. Our discussion above
has been mostly about the matching engine. Although
we have shown alternative methodologies and devel-
oped new matching formulas, because we always come
back to matched filtering, it is entirely possible that
the precise matching engine does not matter. We be-
lieve that it does matter, and that the Bayesian ap-
proach should lead to more robust performance. How-
ever, in no way does the alternative approach obviate
the need for stable features. Indeed, if anything, since
our Bayesian approach is based on matching patterns
of extracted features, we have emphasized the need for
stable features.
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