IEEE COMPUTER

‘ SOCIETY REPRINT

» THE INSTITUTE OF ELECTRICAL AND EL
7o

IEEE COMPUTER SOCIET
1730 Massachusetts Avenue, N.\
.C. 20036-1903

COMPUTER

IMPLEMENTING A PARALLEL CONNECTED COMPONENT ALGORITHM ON
MIMD ARCHITECTURES

Robert Hummel and Alan Rojer

Courant Institute of Mathematical Sciences
New York University
251 Mercer, New York, NY 10012

Abstract

The choice of an appropriate architecture for parallel
image processing can have a large impact on the
efficiency and the ease of implementation of vision
algorithms. A shared memory MIMD architecture
may be effective for higher level algorithms which
require non-local communication between image
elements. In such a machine, processor allocation
and synchronization are key issues. We present
techniques for allocation and synchronization of
processors in the NYU Ultracomputer, using the
fetch&add primitive. We apply this scheme to
implement a parallel connected component
algorithm. We conclude that the method allows a
high degree of parallelism with relative ease of
programming.

1. Introduction

Many higher level image processing algorithms
suggest dynamic allocation of multiple processors to
image processing subtasks. However, most parallel
algorithms in image processing assume an SIMD
architecture with processors statically assigned to one
or a group of image pixels. For vision tasks such as
component labeling, convex hulls of regions, feature
extraction of regions, and object matching, fixed
assignments of processors will inevitably lead to low
parallelism, due to the high overhead of
communication between distant parts of the image. It
seems more natural to have an intermediate number
of more powerful processors to conduct tasks which
require global information. If memory is shared
among MIMD processors, the communication
overhead is removed (or hidden) and the processors
become the limiting resource. Then we need to
consider allocation and synchronization of the
processors. If we can structure the problem as a
(possibly dynamic) set of tasks which must be
created and performed, an MIMD algorithm results
by simply assigning any available processor to a
quized task, which may result in creation of further
tasks.

CH2229-3/85/0000/0088$01.00 © 1985 |IEEE

88

Our target machine is the NYU Ultracomputer,
a shared memory MIMD machine, which uses the
fetch and add primitive for communication and
control of processes. The fetch and add instruction
returns to the issuing processor the value of a
specified shared variable, and has the side effect of
incrementing the value stored in the variable by a
specified increment. Concurrent fetch&add’s are
handled as though they had been issued in some
arbitrary sequential order, but with no execution
time penalty [3].

We study, as an example, the Shiloach/Vishkin
connected component algorithm, which is an O(logn)
SIMD algorithm which requires roughly 4n
processors, where n is the number of pixels. We
show how the algorithm may be converted to an
MIMD algorithm, and acheive nearly optimal
speedup from limited parallel resources. We also
present enhancements in the implementation to
reduce redundant parallel work.

2. Processor Allocation and Syncronization in the
NYU Ultracomputer

We assume the algorithm we wish to implement
is structured as a sequence of steps, each of which
may be decomposed to a set of independent rasks.
We assume that all tasks in a step must be completed
before the next step is begun, but that within a step,
tasks may be executed in parallel or asynchronously,
in arbitrary order. Many image processing
algorithms have this structure. Thus our allocation
problem is simply to assign available processors to
outstanding tasks. The synchronization problem is
simply to prevent work beginning on a task which is
not in the current step.

To allocate processors to tasks in a step, we use
an array of pointers to the data to be processed.
This array is a task list. At inception of a step, or on
completion of a task, a processor executes a
fetch&add with increment 1 to the (shared) list index
of this array. The nature of the fetch&add ensures a
unique index for each request. The processor can
then perform the task associated with the returned
index; no other processors will be assigned to the
same task. Tasks can be created in a similar fashion.

A fetch&add to the list index of a new task list
provides an index in which to write a pointer to the
new task.

Synchronization of processors to ensure
sequential execution of steps is accomplished in a
complementary fashion. We store the total number of
tasks (i.e. the length of the task queue) in a shared
"coordination variable” at the beginning of the step.
On completion of a subtask, a processor does a
fetch&add to the coordination variable with increment
-1. At any time, the coordination variable contains
the number of uncompleted subtasks. In contrast, the
list index contains at all times the number of subtasks

which have been allocated (i.e initiated). When there
are no tasks remaining (list index less than number of
tasks), the processor waits for completion of the step
(zero coordination variable) before beginning the next
step. Note this strategy does NOT permit creation of
tasks for the current step, since it relies on a static
number of tasks. Tasks for future steps of course can
be created. An illustration of the general control
structure for a step follows.

/* General control structure for parallelization of a step */
/* N subtasks */

shared int J; /* task list index */
shared int T; /* coordination variable */
private j; /* local index to current task */

J «~0;
T «N;
/* (all processors) cobegin */
/* request subtask */
while((j + fetch&add(J,1)) < N) {
/* perform allocated subtask on object indexed by j */
/* report completion of subtask */
fetch&add(T,-1);
}

/* coend */
while (T I= 0) /* wait */;

The overhead in this approach stems from extra
time spent on task allocation (i.e. fetch&add to list
indices), as well as time at the end of the cycle when
there are no tasks left as as processors wait for other
processors to finish before they begin the next step.
Let 1, be the time to perform the processing of a
subtask. In a fully parallel implementation, ?, is
sufficient for the entire step. Let ¢, be time spent on
allocation, in particular the extra fetch&add required
to coordinate the list index. Then the time ¢, required
for a subtask in the partially parallel implementation is
given by t,=t,+1, . If we have k processors, we can
complete k subtasks in time ¢,. Thus, the time T(N)

required for N subtasks is
N(t,+ IE)

N |

k| k '
If ¢, is small relative to ¢, and k is small relative to N,
we approach full parallel speedup of T(N)=t,/k.

T(N)=

89

3. A Parallel Algorithm for Connected Components
of a Graph

We consider an Ultracomputer implementation of
a parallel algorithm for connected components. The
algorithm was discovered by Shiloach and Vishkin [1].
Their computation model 1is similar to the
Ultracomputer; however, they assume a processor for
each vertex and two for each edge. For reasonable
sized images and Ultracomputers, we are likely to
have far fewer processors available.

Each vertex in the graph is assigned a parent
pointer. The algorithm wuses these pointers to
construct a forest of root-directed trees, also called a
pointer graph, each of which comprises vertices
known to reside in the same connected component.
Initially each vertex is its own parent, i.e., each vertex
comprises a rooted tree with only one node. At
termination, the parent pointers of all vertices in the
same connected component point to the same root
vertex.

Each vertex is assigned a processor. Each edge is
assigned two processors; in effect, a processor in each
direction of edge traversal. Two operations are
performed in the algorithm. The hook operation
directs the pointer of the root of a tree (self-directed
before the operation) to point to some node in
another tree. Hooking is mediated by the edge
processors. The shortcut operation redirects a vertex’s
pointer to the parent of its parent, reducing the height
of the trees. Shortcutting is mediated by the vertex
processors.

At intermediate stages of the algorithm, the trees
in the pointer graph can be classified as live, stagnant,
and dead. A live tree has been shortcut or hooked in
the current iteration. A stagnant tree has not been
shortcut or hooked in the current interation. A dead
tree has not been shortcut or hooked in the previous
iteration. The algorithm follows.

/* intitialize */
(Vv)[v € V] cobegin
parent[v] < v;
age[v] < 0;
coend
I1+<0;
While (3 v)[age[v] = I] begin
I++;
/* Shortcutting */
for all v € V cobegin
old-parent[v] « parent[v];
parent[v] « parent[parent[v]];
if (old-parent[v] # parent[v]) age[parent[v]] « I;
coend
/* Ordered Hooking */
for all (u,v) € E cobegin
If parent[u] = parent[parent[u]] /* u points to a root */
and parent{u] < parent[v] then begin
parent[parent[u]] « parent[v];
age[parent[v]] «I;
end
coend

(]

(1

[2]

/* Stagnant Hooking */
for all (u,v) € E cobegin
if parent[u] = parent[parent[u]] /* u points to a root */
and age[u]<i/* stagnant */
and parent[u] # parent[v] then begin
parent[parent[u]] « parent[v];
age[parent[v]] < I;
end
coend
/* Shortcutting */
for all v € V cobegin
old-parent[v] « parent[v];
parent[v] « parent[parent[v]];
if (old-parent[v] # parent[v]) age[parent[v]] « I;
coend
end

B3]

[4]

The proof of the complexity of the algorithm
depends on the observation that the shortcut
operation leads to a height reduction which is
logarithmic in I, while hooking only increases the
heights of trees additively by combining them. The
algorithm is shown [1] to have a bound on the number
of iterations of O(logs/,|V]).

4. Implementation Concerns

The major concern in implementing the alogrithm
is allocation of processors. In the existing
Ultracomputer, there are far less than 2M+N
processors for any reasonably sized image. We can
save N processors by allowing the edge processors to
handle the shortcutting in steps 1 and 4. We can take
advantage of the bounded connectivity .of pixels in the
image to note that we require only 4N processors.
We still are not likely to have nearly enough
processors available.

In the extreme case of execution of this algorithm
by a single processor, we can determine that the
algorithm is O(MlogN), since control of the main loop
of logN iterations remains the same, and each step
inside the main loop will require at most O(M)
operations. For a planar graph like an image, this
becomes O(NlogN). Our goal is to acheive parallel
speedup to the full limit of our processor resources;
for k<N processors, the maximum speedup is
O(NlogN/k). In the case of k<N, we achieve nearly
this optimal speedup.

We consider now modifications to the algorithm
along the lines indicated in Section 2, equeuing tasks
and eliminating subtasks which don’t contribute to the
solution. In particular, we are interested in
recognizing edges which have nothing to add to the
solution because the vertices they connect are known
to reside is the same component, and in recognizing
vertices which are components of dead trees in the
pointer graph. These vertices can be shown to
comprise a connected component, so they do not
require further consideration.

Consider first vertices in a dead tree. In a dead
tree, all vertices point to the root (otherwise it could
be shortcut). Furthermore, the age of the root is less
than the iteration counter, indicating that no changes

90

have been made in the last iteration. We can
introduce a "pruning" step, which examines every
vertex, and enqueues only vertices which don’t point
to dead roots. This queue forms the list of subtasks
to be performed in the next shortcut step.

We note that edges can be classified into three
groups. We say an edge is used if it has succeeded in
hooking. An edge is redundant if both its vertices
point to the same parent. An edge is indeterminate if
it is neither used nor redundant. We can tell if an
attemped hook succeeds by limiting access to the root.
In effect, we let edges compete for the right to hook
by using the fetch&add to some variable which is
initially 0. Only the edge which receives the zero
result actually performs the hook, so it is assured of
success. Obviously, we can readily identify a
redundant edge. Thus after each subtask in a hook
step, we enqueue edges which are indeterminate onto
a new edge list, eliminating used and redundant
edges. This queue is used as the task list for the next
hook step.

We can keep the active lists of edges and vertices
by allocating space for two vertex task lists, and two
edge task lists. Initially, all pixels within "on" regions
are placed on one of the vertex lists, and all edges
between these vertices are enqueued on one of the
edge lists. During the first steps, we read from the
active list, and enqueue tasks to the other list. We
then alternate between these lists, using one for
current tasks and one for tasks for the next step.
Indicies returned by the fetch&add are used to
allocate tasks to available processors. Note that
removing redundant tasks doesn’t affect the
asymptopic complexity of the algorithm, although in
practice it should reduce the run-time.

5. References

[1] Y. Shiloach and U. Vishkin, "An O(log n)
Parallel Connectivity Algorithm", Journal of
Algorithms, 3, pp. 57-67 (1982).

R. A. Hummel, "Image Processing on the NYU
Ultracomputer”, Courant Institute NYU
Ultracomputer Note No. 72 (1984).

A. Gottlieb, R. Grishman, C.P. Kruskal, K. P.
McAuliffe, L. Rudolph, and M. Snir, "The
NYU-Ultracomputer-Designing an MIMD shared
Memory Parallel Computer”, IEEE Transactions
on Computers, C-32, No. 2, pp. 175-189 (1983).

[2]

B3]

