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Abstract

We study the problem of how to detect “interesting objects” appeared in a given image, I.
Our approach is to treat it as a function approximation problem based on an over-redundant
basis. We first establish a template library, say £, then “optimally” decompose I into a linear
combination of templates 7;s € £ after applying some suitable transformation A; to each selected

7;. We can write this as follows

I= Z Z cijAi(T5),

M
j=1i=1
where ¢;;’s are the decomposition coefficients to be found. Since the template library is over-
redundant, there are infinite possible sets of {¢;;} that can “decompose” the image I. To select
the “best” decomposition c;; we first propose a global optimization procedure that considers the
“LP norm” (3_; 3", |cij|P) with p < 1. This concave cost function selects as few coefficients as
possible (sparse representation of the image) and handle occlusions, however it contains multiple
local minima. We identify all local minima so that a global optimization is possible by visiting
all of them (in the case of p = 1 linear programming can be applied). Secondly, because of
the number of local minima grows exponetially with the number of templates, we investigate a
greedy and iterative “LP? Matching Pursuit” strategy. At each stage, say stage n, we select the
template 7;, an (affine) transformation A;, and coefficient c¢;; that minimizes the image residue
[|R™I||Le = ||R™™ — ¢;jAi(75)||Ls. The image I itself is the image residue at the first stage,
i.e. RO = I. Because of occlusions, special attention is devoted to the overlapping regions. We

show results for object recognition with occlusions.



1 Introduction

In the field of signal processing and computer vision an input signal or image is a function f over
some subset of R or R?. In order to manipulate and analyze f, it is useful to introduce a linear

decomposition into basis elements f;, i.e.,
f=Y¢f;-
J

Such a decomposition can allow not only a compact representation of f but also aid in understand-
ing important aspects of the signal or image. An example of a well known and useful decomposition
-of this type is the Fourier series expansion. We note that in the Fourier case the elements f; form a
basis (an orthogonal one), thus, there is a unique decomposition, i.e. a unique choice for c;.

We study the object recognition problem via a robust template decomposition approach. Our
main concern is to represent “interest objects” that appear in a given image with a linear combination
of image templates from a well established library of templates. The term “interest objects” depends
solely on the kind of application. For example, if the application is to recognize faces then, we
-should have a template library with a lot of faces (and/or features of faces). Let the image to be
recognized be I and the template library be £. The task of image recognition is reduced to a function

approximation problem of the form

I(z) =323 ciAi(m) (@) = D_ eiiTis (=) (1)
i i
where 7; € L, T;; = Ai(r;) denotes an affine transformation applied to the template 7;, and c;;
is the choice of coefficients that “best” decompose the image. Typically the library £ is large, in
order to accommodate many possible situations and we also have to consider the possible (affine)
transformations. Thus, we have an over-redundant basis leading to infinite many solutions, ¢;;, to
this problem. That is not the case for the Fourier decomposition.

The mathematical problem of function decomposition with over-redundant basis can be illustrated
as follows. Say the library consists of sinusoids and functions of the form 1/(k + z) (where k varies

over N). Let us assume that our target function (our image) is accurately represented by the function

f(z) =sin2z + (—3_-:1-_:1:-)- . (2)

It is clear that only two terms from the prototypelibrary are required to represent f(z). However,
one could write f(z) using either sinusoids alone or as combinations of 1/(k + z) alone, but either
-representation would require many terms. The problem is to formulate a coefficient selection criterion

and a method to compute the coefficients that yields compact representations.



1.1 Coefficient selection criteria

Coeflicient selection may be viewed as a constrained optimization problem. One is given the prototype
library {r;}, a set of possible (affine) transformations on the templates {A;}, an objective function
F (discussed in the following), and the function (image) I that is to be decomposed. The task is
to select the coefficients ¢ = (¢;;), so that the objective function F(c) is minimized subject to the
constraint given by (1), i.e. I(z) = 3;3"; ¢ij Ai(7;)(x) .

The purpose of the objective function F is to select a best representation, ¢*, from among all
solutions ¢ that satisfy the constraint. One may think of the value F'(c) as being the “cost” associated
with using the representation (1).

We want the cost associated with adopting a term A;(7;) in the representation for I (¢;; # 0)
to be distinctly high, relative to the cost of not using the template at all (¢;; = 0) . This favors
the selection of economical (minimal) representations. Second, the cost should escalate with the
magnitude of ¢;;, but should not dominate the first condition, i.e., the rate of increase in cost as a
function of |c;;| should decrease. This condition allows us to model noise in the function via special
“noise templates.” We need to allow for noise in our decompositions, but prefer representations that
can be explained with minimal noise content. This condition leads us naturally to consider concave
objective functions.

The experimental results presented in this paper utilize primarily the objective function

M N
Fpe) =) leijl?, (3)

j=11i=1

where N is the number of possible (affine) transformations and M is the size of the template li-
brary. We also consider the p-norm error minimization, which is closely related to this cost function.
Moreover, we do consider variations of this cost function when applying the greedy matching pur-
suit strategy. Coifman and Wickerhauser [?], working in another domain, have proposed an entropy
like function, 37, ; |cij|*log|ci;|2. Despite its attractive conceptual origin—minimizing the amount of
information—it is not directly applicable to our situation since for us the coefficients ¢;; are free and

are not guaranteed to square-sum to 1 (as is required in their formulation).

1.2 The optimization problem

For the cost (3), if the parameter p is greater than 1, then the objective function F, is convex and so
the minimization problem has a unique local minimum which is also the global minimum. Standard
numerical descent techniques can be used to perform this minimization. Since larger values of |c;}|

are heavily penalized, this objective function will tend to distribute the weights ¢;; across as many of



the A;(7;) as possible. In fact, as p — co the minimizing solution is exactly the one with the largest
|cij| as small as possible. In this case the representation (1) is in some sense maximally stable with
‘respect to arbitrary prototype library element removal.

Alternatively, we consider the situation with p < 1. Now the objective function is non-convex, and
in fact the optimization problem will generally have multiple local minima, making the optimization
more difficult. An objective function of this form will tend to coalesce the weights ¢;; onto as few
A;(1;) as possible, providing an efficient representation (few non-zero c;;’s). This is the type of
representation desired in the example given in (2), and is the chief interest of the present work.

Thus, the template matching problems lead naturally to the problem of minimizing

M N
Fy(c) = ZZ |ci517, 0<p<1l, 4)

j=11i=1
subject to the constraint (1), i.e., I(z) = 3, 3=, cij Ai(5) (2) -
We will show that it is possible to charactherize all local minima and obtain the global one by
visiting them. In the case of p = 1 a linear programming technique can be applied. Since the number
of local minima grows exponential with the size of the template library we consider an alternative

greedy algorithm.

1.3 Matching Pursuit

Inspired by Mallat and Zhang’s work [8] we consider a matching pursuit strategy where, at each
-stage, the criteria of best selection is based on minimizing an image residue. In regression statistics,
this decomposition method is known as Projection Pursuit Regression , a non-parametric method
that is concerned with “interesting” projections of high dimensional data (see Friedman and Stuetzle
(5], Huber [6]).

The original matching pursuit is based on the standard L? (Hilbert space ) method. In recognition -
of image with occlusions, the L? norm is not suitable. We propose an LP matching pursuit with
0 < p < 1, to improve the robustnesee. With 0 < p < 1, we lost the sturture of inner product but
the notion of projection can be recaptured via the values of cost function, that is, the criterion for a
template to be “best matching” or “closest” to the image is to minimize the values of a cost function.
We will adopt the term ” LP norm” though it is not really a norm.

Our algorithm is then a multi-stage iterative algorithm that at each stage we apply the LP? matching
pursuit to find a “best-matching” template (using the previous results). The image is updated by
extracting the object matched by the selected template (see the algorithm section for details).

To test the robustness of the L? norm, we also consider a cost function built from a robust

regression estimator, namely the LT'S-method (Least Trimmed Squares, Rousseuw 1983, 1984, [10]).
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It is a projection method with the ability to distinguish corrupted data from correct ones. The basic
idea is to project a testing image to each templates in the library then pick up a template with
the minimal LTS cost to be the best matching one. Simulation results for both the L? and LTS

matching pursuit are shown in the end of this paper.

2 Template Library

To begin with, we must first establish a well-defined, over-redundant library of templates for some
specific application.

By a redundant library, we mean it contains many non-canonical templates as well as one canon-
ical template. A canonical template is a trivial template with zero gray-level value pixels everywhere
except one pixel at the extreme left and top corner that its gray-level value is 1. Moreover, we will
assume we can apply a set of affine transformations to each template, e.g., translation. Clearly, this
single canonical template plus a set of all translations form a basis for the image space. Other tem-
plates are said to be non-canonical and consist of images of interesting objects. Also, it is convenient,
on most occasions, to require £ to be complete and well-defined so that no template in £ can be

matched by other template also from £ over half of its total pixels.

2.1 Template and image coordinates

Suppose we have now created a well-defined complete template library £ = {r; : j = 1...M} for some
application, where we will use €¢; = 71 to represent the canonical template. We still have to consider
all possible affine transformations A; for each template ;. In general, these affine transformations
include all possible translations and possibly linear transformations to account for scale and changes
of viewing the scene Let the image to be recognized be I of dimension N and each template 7; be
of dimension N7 (the dimension of an image is just the image lattice size, i.e. the total number of
pixels, and to simplify, we assume that both N and Nt are perfect square numbers). In this paper,
we only study the case that A; is a translation and thus, the lattice size and the number of possible
A;’s are the same, N. Furthermore, let P = {p;,pa,---,pn} and Q = {q1,92," -, gn;} be the pixel
sets of I and any 7;, respectively. (We order the pixels from top to bottom and left to right.) Since
we choose to represent the pixel sets in one dimensional form, the issue of mappings between P and
@ resulted from shifting some 7; over I needed to be addressed clearly. Let A;(7;) now represent a
translation on template 7; such that its first pixel is positioned at the i-th pixel p; € P (see Figure

1). For the sake of simplicity, let’s only consider a translation A; acting on template 7; such that no
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Figure 1: The pixel correspondences between I and Ty = Tj; = A;(7;). We see that pixel ¢, is

positioned on p; and ¢, on pg, respectively.

portion of @) is shifted outside P. We can explicitly describe such relation as follows:
Q —Ai>Q,' ={pr : k€, I;isanindex set C {1,2,..,N}} C P. (5)

The mapping formula for A; is such that ¢, € Q = pr = pi(ri) € €2 where 1

k=it (Sl x M)+ (= 1= | ) V).

Denote T;; = Ai(r;) and e;; = Ty = Ai(e1) 2, then we have T;;(px) = 7j(gr). Using these notations,

one may prefer to write the decomposition equation (1) as

I(pk) = thlezl(pk)+zzcm ] pk)

_2 1=1

= Zc,\e,\ (p) + Z exTx (px) (6)

A=N+1

where A = A(4,j) = (j — 1) X N + i and pg is the k-th pixel of the image. From now on, we will
mostly abide by the more compact form of single index representation such as in Equation (6). Also,

we may write I[k] in stead of I(px) for simplification.

! The expression |z| denotes the greatest integer less than or equal to z.
Note that e;i(p;) = &i;, where &;; = 1 for i = j and &;; = O otherwise.



3 Optimization problem and solution

Equation (6) can be written in matrix notation as Té = I where

ei(pr) -+ en(m) TIns(pr) -+ Tmn(py)
oo | ) oo oen(pd) Twialp) - Tun(p2) ’
61(;)N) eN(.PN) TN+1‘(PN) TMN.(PN)
c1 I(p1)
i=| and 12| [®)
CMN I(pN)

Note that e;(p;) = d;j, where §;; = 1 for i = j and §;; = 0 otherwise. If the prototype library forms
a basis (linearly independent), then M = 1, and there is no freedom in choosing the coefficients (c;);
the coefficients are uniquely determined by the constraint. If there are linear dependencies in the
prototype library, then M > 1, the prototype library over-spans, and the set of all solutions (c;) to
the constraint form an (M — 1) N dimensional affine subspace in the M.N-dimensional coefficient
space. Let S denote this solution space, i.e., dim(S) = (M - 1) N.

The task to detect interest objects embedded in I by a linear combination of templates from £

can be formulated as solving the following optimization problem:
Min F,(é)  subject to the constraint Té¢ =1 (7
c

where T € RVXM-NV ¢ ¢ RM-N 1 ¢ RN, M > 1. The constraint space, S, is the set of all ¢ satisfying
Té =1, and is an affine subspace of dimension (M — 1) N. We will first study the LP-cost function
(4). It is natural when analyzing F;, in (4) as a function in the coefficient space (c;) to decompose
the domain into orthants, where each coefficient is of constant sign. This allows the removal of the
absolute values in (4), so we may treat F,, as a smooth function inside each octhant. For example,
if we consider the restriction of F, to the orthant consisting of all points ¢ such that ¢; < 0, ¢z < 0,

and ¢; > 0 for ¢ > 3, then (4) can be written

MN
Fp(e) = (—et) + (=e2)” + 3 _ .

=3
Moreover, it is clear that F,(c) — oo as ||c|| = oo, so for minimization purposes it suffices to
consider bounded c. The bound will depend upon the constraint equation (1), but, for example, if

co is any solution to (1), then it suffices to consider only those c satisfying |¢;| < (F,(co))*/? for all i.
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Figure 2: Illustration of a domain restriction polytope obtained from the intersection of a 2 dimen-
‘|sional constraint space S with a rectangular solid bound domain D in a 3 dimensional coefficient
space. In this example the intersection is a non-regular pentagon. If the restricted objective function

F is concave, then its local minima occur at the vertices of the pentagon.

When combined with the restriction to orthants, we have a decomposition of the pertinent domain
~of F, into M.N-dimensional cubes of edge length (F,,(co))l/ P,

The intersection of the constraint space S with these domain cubes gives rise to convex polytopes,
as illustrated in Figure 2. The system of domain restrictions can be written out explicitly. For the

first (positive) orthant they are

Ac = b
¢ < di 1<i<M.N (8)
—e < 0, 1<i<MN, 9)

where previously we considered the case with the d;’s a single constant at least as large as (F,,(co))l/ P,

The relation ¢; = (1,0,...,0) - ¢ < d; describes a half-space in the space (c), and the entire
collection (8) and (9) together describe the intersection of 2M N halfspaces, i.e., a polytope with at
most 2M N faces. The general inequality defining a half-space is v-¢ < d;, where v is a vector normal
to the bounding hyperplane, and d; determines an offset from the origin. So an arbitrary convex
polytope having N’ faces can be described in the form Be < d, where B € RN'*M.N ,d € RN ', and

the inequality is interpreted coordinatewise. So the generalized constraint relations can be written:

Ac b
Be < d.

Il

(10)

The relations (10) can be viewed as defining a polytope inside the affine space S. If we were



to perform a basis transformation to obtain coordinates conducive to representations inside S, then
F, under the same transformation would loose its simple form. Even without this consideration, it
is useful to study more general objective functions. The specific property of F;, of interest to us is

concavity. A function F mapping from a convex domain €2 of a vector space X to R is concave if

F(Bz + (1 - B)y) =2 BF(z) + (1 - B)F(y)

for all z and y in Q and B € [0,1]. The result we desire (Proposition 1) actually requires only a

weaker property, which we call pseudo-concave. A function F : Q — R as above is pseudo-concave if

F(fz + (1 - B)y) 2 Min{F(z), F(y)}

for all z and y in © and g3 € [0, 1]. Clearly any concave function is also pseudo-concave.

Proposition 1 Let Q be a closed, bounded, convez polytope in a vector space X andlet F : Q — R

be pseudo-concave. Then the global minimum of F on  occurs at a vertez of 2.

Proof: Let z € Q. We will show that there is a vertex v of Q such that F(z) > F(v), from which
the proposition follows.

It is well known that z can be represented as a convex combination of vertices of €2, i.e., there
exists vertices vy, v2, ..., v, of  and corresponding strictly positive coeflicients ay, as, ..., a,, with
Y iy a; = 1, such that

T = i a;v;.
i=1
If n =1, then a; = 1, and so ¢ = v; is a vertex and there is nothing to prove. Otherwise we have by

pseudo-concavity that

F(z) = F (a1v1+(1—-a1)i & vi)

=2 1-a
> Min {F(v), F (Sig aivi/(1 - ap))} (11)

If n = 2, then ag = 1 — a3, so F(z) > Min{F(v,), F(v;)}, and we are finished. Otherwise simply

iterate the decomposition on the last term in (11) until
F(z) > Min{F(v1), F(v2),...,F(v.)}

is obtained. |



4 One template matching and simulations

In many cases we do not want the representation (6) to use more than one template. For example,
if we want to find a specific face in an image, then it suffices to use only one face-template. In these
cases the non-canonical template represents a key feature and the canonical templates e) represents
non-interest elements , e.g., noise. Let us consider a template 72 of size N7 (11 = €¢;) and a particular

translation, A;, with ¢ fixed. In this case the equation (1) can be restrcited to

ei(pi) e €i+Np—1(Pi) Tny1(pi) ci (0:)
ei(pi+1) o0 eirNp-1(Pi+1) IN+1(Pis1) _ a
) ) ) ) s
o I(pitNp-1)
ei(Pi+Np—1) -+ €iyNp—1(Pi+Np-1) TN4+1(PigNp-1) CN+1

where again, e;(p;) = &;;. Thus, we can rewrite the equation above as

(e )

0 r[1] : 1]
2] L '
0 1 7[Ng] Ci+Nr-1 I+ I;TT —1]
\ CN+1 /

where we reuse 7[j] for the value of Tn4+1(pi) = Li(7j(q1)). We can also assume that 7[5] # 0 for
j=1,..., N7, since otherwise we can redefine either T or the pixel ordering to get a smaller value
for Np.

It follows from Proposition 1 that the local minima of Fj(c) can be found by setting ¢y 41, ¢, - - -,
CitNp—1 to zero one at a time. If we set ¢y41 = 0 then we get ¢ = I[k] for all k. This is the “pure
noise” solution. The first nontrivial (template using) solution sets ¢; = 0. This forces the template

coefficient cy4+1 = I[¢]/7[1], from which it follows that ¢;4; = I[i + 1] — eny417[2], and in general

Civk = I[i + k] — cy417[k] for k =1,..., N7. For ¢; = 0 solution we can then explicitly calculate
i+Np—1
Fp(e) = [E/r[UOP+ 3 [k - I](k)/711P + Z (kP + E [1[k]
k=i k-_1+NT

1+NT-—1

= |IE)/ruP+ - (K] - Ifr(k]/r[1]P ~ II[k]|”)+ZII[k]”
=1 k=1

The solution determined by setting c¢;4+; = 0 (1 < j < Nr) can be calculated in an analogous

fashion. The corresponding value for Fy,(c) is then
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i+Np

N
Fp(e) = [T[)/rli+ 0P+ D (I[k] = IG)r[k)/7 (5 + 1)IP — TTRIP) + D I TTR]IP .
k=1

k=i

The optimal cost of the match of the template in the (translation) position ¢ is the smallest of the
values of F,(c) across all N7 + 1 solutions (c). One can perform a similar analysis for all template
translations, and define the matching position of the template to be the position which generated the
smallest match cost.

It should be noted that this discussion pertains only to single template matching. If one wants
to simultaneously match multiple templates (for example two eyes, a nose, and a mouth template
on an image of a human face), then to be efficient one would like design some special structure into
the optimization problem (??) that would allow the global minimum to be found by optimizing one
template at a time. This will be the spirit of the greedy matching pursuit strategy to be discussed

in section ??.

4.1 Simulations

We have designed a sequence of experiments focused on the effects of noise and occlusions to compare
the L? template matching method with the conventional correlation techniques.

The experiments consist of numerous trials on random images with fixed occlusion size and fixed
noise variance. The latter determines the signal-to-noise ratio (SNR) for the experiment, defined
here as the ratio of the standard deviation of the image to the standard deviation of the noise.

Each trial has four components: an image, a template, an occlusion, and noise. The image is 64
pixels wide by 64 pixels high, randomly generated using an uncorrelated uniform distribution across
the range (—256,256). The template is a 4 pixel by 4 pixel subimage of the image. After selecting the
template, a portion of the image from which the template is drawn is “occluded” by redrawing from
the same distribution that formed the image, i.e., from an uncorrelated uniform distribution with
range (—256,256). (Occlusion sizes range from 0-14 pixels, from a total subimage size of 16 pixels.)
Finally, noise is added to the (occluded) image, drawn from an uncorrelated gaussian mean-zero
random variable.

Translates of the template are compared against the noisy, occluded image, using both p-norm
error minimization and our proposed decomposition method. (Because both the template and the
image are drawn from zero-mean random variables, there is little difference between 2-norm error
minimization and standard correlation.) For each method the translation position yielding the best
score is compared with the position of the original subimage from which the template was formed.

If the two agree then the match is considered successful, otherwise the match fails for the trial in

11



question. The first experiment, displayed in Figure 3-(a), displays the percentage of successful match
trials at various occlusion sizes and no noise. Dashed curves there show the results from our proposed
“technique for p = 0.125, 0.25, 0.5. Solid curves correspond to results obtained by minimizing the
p-norm for the same p-values and in addition for p = 1.0, 2.0, and 4.0. (We do not currently have
an appropriate formulation of our method for p > 1.) Note that smaller values of p outperform
larger values, and that for a given p value our method performs only slightly worse than minimizing
with respect to the corresponding p-norm, providing nearly 100% correct results with p = 0.125 for
occlusions as large as 11 (out of 16) pixels.

This result is somewhat artificial, however, since noise is generally present in real images. Fig-
ure 3-(b) presents results for when noise is present at a SNR of 37. Here we note that p = 0.125 still
performs very well, although good results can not be obtained if the occlusion is larger than half the
template size. Notice that the results using larger values of p are less affected by noise, especially
those with p > 1.

Figure 3-(c) displays the results for varying noise levels with a constant occlusion size of 5 pixels.
"Note again that larger values of p produce results which are less sensitive to noise. For example, the
results for p = 0.125, which are best for large SNR, are poorest for SNR of less than about 3.

The final graph, Figure 3-(d), shows the results obtained by varying the p-value for fixed occlusion
and noise levels. We see there that for high noise levels (SNR=2) with no occlusions the best p value
is 2. For an occlusion size of 4/16 and a SNR of 9.2, the best p value for the p-norm minimization
method is somewhere between 0.25 and 0.5, whereas the optimal p value for the decomposition method
‘is somewhat smaller. The remaining curve corresponds to no noise and an occlusion size of 8/16.
Also note that for small p (generally best for large occlusions), the performance difference between
p-norm minimization and the proposed decomposition method is smallest.

To conclude, these experiments show that both our proposed decomposition method and p-norm
minimization with p < 1 are superior to standard correlation for template matching in the presence
of occlusions and low levels of (gaussian) noise. Smaller values of p tend to be more robust against
occlusions at the cost of greater sensitivity to noise. Although p-norm minimization outperforms
our proposed decomposition method, the difference is slight and may be outweighed by other factors

when applied to natural images.

5 Multiple templates and matching pursuit

‘In this section, we proceed to elucidate the matching pursuit method for the case of multiple templates.
The basic idea is to devise a greedy iterative method where at each stage only one template is selected

and thus, we can rely on the previous section result. In this section we will consider the L? norm

12



[ [
20 80 -4
g g
8 g
2 & ]
] ]
: E
.20 ‘3 1
g
S S
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Number of occluded sites (16 total) Number of occluded sites (16 total)

(2) (b)

100 .
$ % ' g
=] =]
8 8
i o g
g gz
o0
B ‘2
) 4 §
S 27 3

0 ¥ 1 1 1 1 1 1 i

1 2 4 8 16 32 64 128
Signal to Noise Ratio

(©)

Figure 3: (a)Experimental matching accuracy as a function of occlusion size with no noise. The

solid curves correspond to p-norm minimization, dashed to our proposed method. (b)Experimental
matching accuracy as a function of occlusion size at a SNR of 37. The solid curves correspond to
p-norm minimization, dashed to our proposed method. (c)Experimental matching accuracy as a
function of noise level at a fixed occlusion size of 5 (out of 16) pixels. The solid curves correspond
to p-norm minimization, dashed to our proposed method. (d)Experimental matching accuracy as
a function of p, at various noise levels and occlusion size. The solid curves correspond to p-norm

minimization, dashed to our proposed method.
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and also, for comparison, we will consider the LTS (Least Trimmed Squares). The LTS is a high
breakdown regression method (a high breakdown regression estimator means it can tolerate a large
‘amount of outliers contamination and the LTS is known ([10]) to be capable of sustaining data
contamination up to 50%).

The cost function F}, in (7) is total cost. The matching pursuit method is an iterative greedy
algorithm so the whole optimization problem is indeed solved in many steps. Let’s denote the stage-
wise cost function as F, to be distinguished from the global F},. In case of restricting the coefficient
vector ¢ to only one non-zero element, the global F, is reduced to F,. This implies that the cost
function JF, at each stage is actually a function of some scalar c.

We briefly review the (L2) matching pursuit below. Suppose it is given a signal f, and a library
of functions D = {g.,},er where I is a set of index tuples and D represents a large, over-redundant
family of functions. The Matching Pursuit introduced for signal processing in [8] is a greedy stage-
wise algorithm and relies on the inner product methods on Hilbert spaces. A “best” matching library
element to the residual signal structures at each stage is decided by successive approximations of the
residual signal with orthogonal projections on elements in the library. That is, say at stage n, for

any element g, € D, we consider

Rn_lf =< Rn_lf’ gy > gy + R"f (12)

where R"f is the n-th residue after approximating R"~!f in the direction of g, (assume that the
initial residue is the function f, i.e. R°f = f). The matching pursuit strategy is to find g,» that

minimizes ||R"™f|| (or the g, closest to R"~1f), i.e.
IR f= < R"7 f, 97 > gyellpe = Min || B f= < B f, g3 > g3z

Next, We describe the L? matching pursuit. At stage n, if a transfromed template T(= T3; =

A;(7;)) is chosen, the n-th residual image can be updated as follows:
R™I(px) = R™" I (px) — eATx(pk) fork=1..N and A=(j-1)xN+:.
We can derive an analogous form as (12) by rewriting the above equations as
R"—ll(pk) = e Ta(pk) + R™I (pk)- (13)

From (13), we see R™I can be derived by “projecting” R™~'I in the direction of T and the best

matching T’ is the one that minimizes the cost at stage n.
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Cost function (LP-method) The cost function F;}, at stage n, using the L? norm is defined as

. - S P = 3 [l (14)

leal? - |Variance(T;)|2 kel kel

Fy(ex) = ||B™M||re =

where ry = |R" 1I(pr) — exTa(px)| is the residue at pixel pg, k& € T, the index set as in (5),
when R™ 1] is matched by the template T). Variance(r;) is the variance of the gray-level-value

distribution for 7;. The normalized residues that can be computed off line

- Tk

B lea| - |V ariance(r;)|

W=

are used to avoid “over-utilization” of templates on darker regions of the image (0 is black, 255 is
white). To see this, if we did not normalize i with |cy|, then it is possible for a template to match
very well in a darker region due to a small residue sum caused by a small value of |c)|. We now

briefly address one extreme case: p = 1.

Case p=1: When p =1, it is the L'-method under consideration. Unlike the L2-method (least
squares), theoretically, L!-method works if the template library £ is robust. This property is due to
the fact that L! regression is sensitive to leverage-point outliers but not to outliers in the y-direction.

(Our experiments show that LP with 0 < p < 1 is more robust than L.)

Cost function II (LT S-method) The cost function F7 ;g using the LT'S-method is defined as

Firs(ex) = IR |lcts = ), |7l (15)
kel

where T'; is a subset of T'; and |T';| = A that it contains those indices k’s for the first h smallest |7|?’s
among all the N7 squares of normalized residuals. Note that the Variance(r;) used to normalize
residues rx’s in (15) is computed from only the h pixels actually used. (So, it cannot be calculated
off line.) The scalar h = [aNT| where the notation [2] denotes the smallest integer greater than or
equal to z and « is some constant between 1/2 and 1. The value of « is crucial. For any interesting
object O embedded in the image I, h = [aNr] is the expected number of robust pixels in O. We call
a the robust constant of our template matching algorithm and the range of it ensures the capability

of recognizing objects with occlusions up to 50% of their total pixels.

Case o = 1/2 : The best robustness properties are achieved when the robust constant « is ap-
proximately 1/2, i.e. h is close to N7/2. On the other hand, this may increase the probability of

false recognitions (see simulation results).
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Case o =1: For a =1, the optimization problem is back to the original L2 matching pursuit. To

recognize images with noises and occlusions becomes difficult.

5.1 One template matching

As discussed in the previous section the local minima to F"(c) are at the vertices of the polytope
‘that is the intersection between the subspace expanded by the reduced linear system and the Ny
hyperplanes, each defined by rr = 0, k¥ € I';. For each hyperplane ry = 0 the solution of the
constraint equation (1) is ¢y = I(px)/T(px). Based on this, we can formulate a definition for the
solution space associated with each template 7. An “interesting” filter can then be developed to

speed up the template matching algorithm.

-Definition 1 Given an image I with pizel set P, we define the coarse solution space Sy generated

by T with respect to I as:

Sy =A{cx e =[I(px)/Ta(pr)]"y pr €, I(pr) #0 and Tx(px) # 0}

where Q; is defined as in (5). 3

The coarse solution space Sy can be further classified according to the next definition.

Definition 2 Let Sy be the solution space of some non-canonical template T\. Assume that S) =
S3,1USx2U - -USy; (U means disjoint union) of which my = |Sx1| > |Saz2| > <+ > |Sx,| and [,
my are some positive integers. Then a sub-solution set Sxx, for k € {1,2,---,1}, is said to be a

mazimal sub-solution set if |Sy x| = m.

As an example of illustration, let Sy = {2,2,2}U{4,4} then |Sy | = |{2,2,2}| = 3. We will call

the value, 2, the principal contrast scalar of Sy and denote it as c).

Observation : If Ty« is indeed embedded in image I and its principal contrast scalar is ¢*, then
Fp(c) = Min Fple) = Min Fy(c) = Fplex:)

‘where \* = (j* — 1) x N + ¢*. That is, the cost F,(c*) (or Frrs(c*)) can be approximated by only
P

considering for those maximal sub-solution sets. For p = 0, the above approximation becomes exact,

®The notation [z]* is defined as

[]" [z], whenz>1
T =
H—;—;I, otherwise

where [z] denotes the closest integer to z.
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since in this case, to minimize the cost F, is equivalent to minimize the number of nonzero residues.
For L? with 0 < p < 1 and LT S-methods the above assertion is then no longer clear and we adopt

it as a further approximation.

5.2 Stopping criteria and further simplifications

We now define an “interesting” operator to improve our algorithm. This operator provides an explicit
measurement for degree of interests for any possible matchings and more importantly, it functions

as a preliminary filter to avoid unnecessary computation.

Definition 3 Given a transformed non-canonical template T», using the same notations as in the

last definition, let’s define
_ 15l
S|

Clearly, 0 < Siml < 1. We call Siml the similarity ratio of T\ to its corresponding part in the

Simlr,

image 1.

Applied Simlr, to, e.g. the tasks of face recognition, we may set Simlrpreshora = 0.85 then this
suggests any face template T can match to some interesting object in I only when it resembles the
object more than 85%. It is constructive to see how much algorithm complexity can be reduced by
applying this operator. To give an overall correct answer for question of this kind in image processing
is difficult since it involves the uncertainties of the properties of images under consideration. However,
we have made the following assumption that it seems to be fair enough in most cases. Similarity
assumption: for an N-dimensional image, the SimlTpyeshotd filter will reduce the total N searches of
possible matching positions into O(N1~5imiThreshota), )

The last and most important threshold is the threshold for the costs and we denote it as
COSTThreshold- The values of COSTThreshoId,LP and COSTThreshold,LTS vary with P and «, Tre-
spectively. The cost threshold serves as a stopping criterion for our algorithm. Further study in this

aspect is shown in the simulation section.

5.3 Algorithm

Before describing the template matching algorithm, let’s first define the initial conditions. Notice that
we have made the assumption each object (human face, as in our simulation) can appear only once
in the image I. Hence a selected template is no longer under consideration later. In the beginning of

program simulation, we have
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P = {p1,p2,---,pN} = pixel set
ROI = I = input image

{ £°=L = template library
Matched = 0

Overlapped = ()

\

The set Matched contains those pixels in P that have been matched by some template from the
template library and the set Overlapped contains pixels matched by more than one templates at two
or more matching pursuit stages. The updating step in the algorithm description will give a detailed
rules for updating pixels’ gray-level values as well as these two sets, Matched and Overlapped.
Initially, both Matched and QOverlapped are empty. A correspondence map MatchBy is used to
‘memorize the template that each pixel in the set Matched is matched by.

The multistage template matching algorithm is illustrated by the execution of one iterative stage
and the stopping criterion. Suppose we are at stage n then the completion of stage n is done by
executing the following four steps.

A. Matching step : For each non-canonical template 7; in the template library £*~! and for each

possible translation A;, let T\ = A;(7;) :

"(A-1) compute the solution space Sy for T where A = (j — 1) X N + ¢ and

n—1 *

Sy=<cle= M , Pk € Q; — Matched, R"“ll(pk) #0 and Th(pk) #0;;
Tx(pk)

(A-2) compute the similarity ratio Simlr,. If Simlr, is less than SimiTpreshoia this indicates

that T is not a candidate for possible matching. Otherwise, proceed to (A-3).

(A-3) compute the robust cost COST) as if image R* '] is projected onto the direction of
T, and its associated principal contrast scalar c). Record them as an ordered quadruple
entry (T, cy, Simlr,, COST)) into the n-th cost catalogue C". In fact, for n > 2, the
robust cost COST) for T\ can be looked up directly from the previous cost catalogue
C™~1 if, at stage n — 1, the position of T is not overlapped with the best matching
template selected in the previous stage. So, in most cases, step (A) can be reduced to a

single look-up operation.

If all robust costs in catalogue C™ are greater than COSTrhreshold, this suggests we have recovered »
all interested objects in the image I then the algorithm jumps to the stopping stage. Otherwise,

continue to the next selection step.
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B. Selection step : Choose a template which “best” matches the residual image R"~'T by looking

up the robust cost catalogue C”. A best matching template T to image R" '] is a template that
has the minimal COST).
D. Updating step : Remove 7;« from the stage-wise template library £"~!, that is, L

L"1 — {r;+}. To update the gray-level values is more complicated, we have to consider the possible

overlapping between interesting objects or occlusions. For each pixel px € P and T)«(px) # 0,
(Case 1) if px ¢ Matched then

R™(pk)  R" M1 (px) — ex= x Txe(px)

Matched «— Matched U {px}

MatchBy(pg) + Ths

(Case 2) if py € Matched and py ¢ Overlapped then

Overlapped + Overlapped U {p;}
NewOverlapped <+ NewQuverlapped U {px}

(Case 3) if px € Overlapped then

NewOverlapped + NewOverlapped U {py}

At each stage, if the local set NewOverlapped (initialized to @ at the beginning of each stage) is
not empty then this implies there are overlappings occurred in this stage. We then decompose the
set NewOverlapped into one or several regions based on the rule that pr, and pg, are in the same
region if MatchBy(pk,) = MatchBy(pk,). Compute the robust costs restricted in each overlapped
region for both the old “top” template, say T,/ and the newly recognized template T«. The one with
smaller robust cost on this region will be the new “top” template. Then updating the MatchBy and
gray-level values become clear after all overlapping ambiguities are resolved.

Stopping stage : When the algorithm jumps to this stopping stage, say at stage n, it implies that

all robust costs for the non-canonical templates in £*~! are greater than the robust cost threshold
COSTrhreshoid- This indicates we have recovered the main decomposition for I and the remaining
task is to check if there are overlapping regions happened during the whole matching pursuit process
and if this is, indeed, the case, we then find a residual representation for those regions by only using

the canonical template eg. So, if the set Overlapped is not empty, the steps listed below are executed.
while there exists a pixel py € Overlapped do
match R"11(p;) with Txo = Lyego
Overlapped « Overlapped — {px}
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As pointed out that, after stage 1, computation for robust cost of any template T is, in most
cases, reduced to a single look up operation. So, the first stage is the most expensive stage from
the complexity point of view. At any stage n (n > 1), there are O(M Nr) templates that require
‘re-calculation for their robust costs since among all the O(M N) template Ty’s, there are O(M Nt)
of them will overlap the best matching template chosen in stage n — 1. Hence we can approximately

derive the following relation that for n > 1,
. Nr .
Complexity of stage n ~ N Complexity of stage 1.

We conclude this section with a complexity analysis study for matching pursuit stage 1.

Complexity Analysis : The complexity for carrying out stage 1 in our proposed algorithm is
O(MN - Nt) + O(MN-5! . Timers) for the LP-matching-pursuit method and O(MN - Nr) +
O(MN-5™.Timerrs) for the LT S-matching-pursuit method. Here O(Timers) and O(Timerrs)
are the time to compute (14) and (15), respectively.
Proof: We’ll prove for the LP case since the reasoning is the same for both methods. The complexity
‘can be derived by observing the total times that step (A) is executed since it is the main step
required extensive computation. Let’s now begin with matching pursuit stage 1. For each execution
of step (A), we see that (A-1) and (A-2) are definitely carried out but (A-3) may or may not be
computed depending on the result of (A-2). By taking advantage of the integral approximation for
the definition of coarse solution spaces, we can achieve a linear-time complexity, O(Nr), for (A-1)
and (A-2). Following the previous similarity assumption that each prototype template 7; is expected
‘to generate O(N 1_*9""") possibly interesting matching positions, total complexity required for stage
1 is then O(MN - Ng) + O(MN'=5™! . Timer,) where O(Timers) is the complexity for (A-3), i.e.,
the time to compute (14).

6 Simulation Results

‘Synthetically Randomized Images : Let’s begin with a simple but instructive experiment to
test our template matching algorithm for a synthetic example. In this experiment, the template
library £ consists of three different types (or shapes) of templates ((a), (b), (c) in Figure ??). There
are 40 templates for each type so that £ includes 120 non-canonical templates and one canonical
template eg. Each of the non-canonical template is a synthetically randomized image with gray-level
values between (0, 200) generating from a random number generator. For each value of p and ¢,
there are three testing input images, I, I2 and I5 (see Figure ?? and ??). The exact image I; to be

recognized is constructed by selecting one non-canonical template randomly from each typein £ then
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p | SimiThreshotd | §=COSTrhreshold a | Simlrpreshold | $COSTThreshold
0.25 85% 0.79 0.51 85% 0.072
0.50 85% 0.67 0.60 85% 0.137
0.75 85% 0.60 0.75 85% 0.200

Table 1: Threshold values used in the simulation with synthetic images for the L? and LTS matching

pursuit.

put together to form it such as all images (a), (d) and (g) in Figure ?? and ??. Image I is I; plus
noises that have a uniform distribution in (0, 10) and I3 is I; covered by some unknown occluded
square generated uniformly from (245,255). Notice that each I3 used for the LTS simulation is
occluded by a larger square compared to the case for L?. We summarize all threshold values in

Table 1 and show simulation results in Figure ?? and Figure ??.

Face Recognition : We then test our template matching algorithm for real image for a more
interesting application: face recognition. A small library of face templates has been established (see
Figure 7?). The dimension of all four face template (d) - (g) and two book-like templates (h) - (i)
is 64 x 64. All images, I; - Ig, to be recognized in Figure ?? are created by using mosaic (with a
robot camera) and are all of dimension 240 x 240. For each p and «, we do the following experiment:
simulations (a) - (g) with input images I; - I, respectively, using only the four face templates and
simulations (h) - (i) with input images Iy - Ig, respectively but using all six templates. We also
investigate the case that p = 2, it becomes the L? matching pursuit. By comparing the simulation
results, we can see both the LP and LTS are more robust than the L2. Again, all threshold values

are listed in Table 2 and Table 3 and simulation results are shown from Figure ?? through Figure
27

7 Conclusion

To this end, we have proposed an iterative and robust template matching method using matching
pursuit. The two objective functions, Fr» and Frrs, adopted for the optimization formulation in
our iterative matching pursuit algorithm displayed very robust results in recognition for synthetic
images. As for the case of face recognition, fair results are shown in our experiments. In all, for
an image that contains noises and all interested objects embedded in it are not severely occluded,

matching pursuit with the LP approach is very effective and robust. On the other hand, we showed
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SimlThreshold 2
! @[ [O]@[@[0]@[m]0 Ny (O hreshad
0.25 95% | 95% | 90% | 70% | 70% | 70% | 70% | 70% | 70% 0.79
0.50 95% | 95% | 90% | 0% | 70% | 70% | 70% | 70% | 70% 0.67
0.75 95% | 95% | 90% | 70% | 70% | 70% | 70% | 70% | 70% 0.60
1.00 85% | 85% | 85% | 70% | 70% | 70% | 70% | 70% | 70% 0.56
2.00 85% | 85% | 85% | 70% | 70% | 70% | 70% | 70% | 70% 0.40

Table 2: Threshold values used in the simulation with real images for the L? matching pursuit.

N StmiThreshold LCOS T rhreshotd
(a) [ (b) | (c) [ (d) ] (e) [ () | (g) | (h)] (D)
0.51| 90% | 90% | 90% | 75% | 75% | 75% | 75% | 75% | 75% 0.072
0.60 | 90% | 90% | 90% | 75% | 75% | 75% | 75% | 75% | 75% 0.137
0.75 | 90% | 90% | 90% | 75% | 5% | 75% | 75% | 5% | 75% 0.200

Table 3: Threshold values used in the simulation with real images for the LT'S matching pursuit.
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that the LT S-methods are capable of handling occlusions up to 50% with the penalty of possible
false recognitions.

There are much left to be accomplished for this work. We are now working on improving the
robustness and effectiveness of our matching pursuit algorithm, especially for a complex task such
as face recognition. In addition, we plan to establish a more complete template library of faces.
The other direction is to extend our results to be able to identify objects in an image that are affine

transformation of some non-canonical templates in template library L.
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A Special cases of optimization criteria

This section presents results to the optimization problem (??) for some special values of p. Typically

the finite dimensionality of the spaces RN and R plays a prominent role.

Case p = o©

Let us define

Foole) = lim (Fy(c))'/? (16)
M 1/p
= lim (Z |e,-|v) (17)
j=1
= lgjgﬁlql- (18)

‘(Note that we take the pth root of F}, to normalize the limit.) So for p = oo the minimization criterion

is

. _ . o llp
MinFoo(c) = Min lim (F,(c))"'". (19)
= Min max |c;| (20)
ceS* 1<;<M

The minimizing solution ¢* is the element of S* which has smallest maximal component |c}|. Fur-

_ thermore, for all p > 0,
. < . 1/p llp .
Min Feo(c) < Min (Fy ()" < M™'? Min Foo c),
S0

. 1 . l/p
ﬁ\é[g} Fool(c) = pll)ngo gggz (Fp(e))'®.

‘Therefore, for p large enough, the minimizing solution ¢* for F}, will have maximal component |c}

close to the smallest possible subject to the constraint in (?7?).

Case p=0

Let us define

R(©) = limFy(© (21)
= I{cj7é0|j=1’2a---’M}|’ (22)

and the minimization criterion for p = 0 is

i\é[fgqFo(c) = ggéq H{ile; #0,5=1,2,...,M}|.
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(g) R2

Figure 4: (a), (b), (c) are synthetic template type 1, type 2 and type 3, respectively. (d) test image

and (e) test image with noise added and occlusions (f) Result of the decomposition for the L, with
p = 0.25, and also for the LTS with a = 0.51. (g) Results once the breakdown limits are reached,
and occluded templates are not recognized. For L,, with p = 0.75 and for LTS with oo = 0.75.
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(h) I (i) I3

Figure 5: (a)- (f) are the template library, with faces and books. (g)-(i) The test images, where some

templates are present with small distortions (scale and viewing angle), noise and occlusions.
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() (h) (1)

Figure 6: Image decomposition for LP matching pursuit with p = 0.25 (similar results are obtained

for p up to 0.75). Results (d) - (f) Image decomposition for p = 2.0 and recognition is destroyed
(this is equivalent to use correlations methods, like in the L, regression pursuit). (g)-(i) Image
decomposition with LTS. False recognitions occur in (f) and (i) but we are still able to recover the
occluded face in (d).
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In other words, the minimizing solution ¢* minimizes the number of nonzero components c;. It will
be shown later in this document that there exists a finite set S** C S* such that for each 0 < p < 1,
the minimizing point ¢* € S* of F,(c) satisfies ¢* € S**. It follows from this that

Min Fy(c) = lim Min F,

Min Fo(c) = lim Min Fy(c),

and so for small enough p, the minimizing solution ¢* for F,, will be an element of S* which has the

minimal number of nonzero components.

Case p =2

The Hilbert space structure arising when p = 2 allows for a closed form solution to the constrained
‘optimization problem. In fact, this is a classical least squares minimization problem.
Let UDINxpmV be the singular value decomposition of A, where U € CV*N and V e CM*M

are unitary, D € RVXV

is diagonal, and Iy «s is the matrix with 7j-th entry equal to the Kronecker
delta d;;. The diagonal entries of D are the singular values of A, and are strictly positive since A

is assumed to have full rank. The optimization problem can then be written as

M
Minimize e (23)
Jj=1
subject to
UDInypmVe=0b. (24)
We can rewrite the constraint as
INxmVe=D107p, (25)

where UT denotes the conjugate transpose (which is the inverse) of U. Since unitary matrices

preserve the Ly-norm, minimizing the norm of ¢ is equivalent to minimizing the norm of Ve. But

clearly the last M — N components of Ve, (Ve)nt1, (Ve)n+a, - -, (Ve)u are unconstrained, so the
solution with minimal norm has these components set to 0. This means that the minimal solution
satisfies

Ve=InyynD 20T, (26)
or

c=VTywnD1UT0. (27)

The matrix Al = VT Iy yD~ U7 is called the pseudo-inverse of A. (See [?].)
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Theorem 1 The minimizing point c* € S* of Fa(c) is given by
¢ = Alb.
A special case occurs when the singular values D;; are identical:

Theorem 2 If the singular values of A are identically equal, say Diy; = o for all t = 1,2,...,N,
then the minimizing point ¢* € S* of Fy(c) is given by

¢t =o024%b.
Proof: Using the preceding theorem and D = olyxn we get
ct = VTIMxND—lﬁTb
U-IVTIMxNﬁTb

0_2VTIMxND[7Tb

= o7 24Ty,

O
As an example, if the matrix A is composed of columns forming separate sets of orthonormal
bases (for RN ), then the solution is given after proper renormalization by projecting b onto each

column.

Corollary 1 Let p =2 and assume N divides evenly into M. Suppose, moreover, that the columns
AkN+1, AkN+2, - - -5 A(eg1)N of A form an orthonormal basis for RY for eachk =0,1,..., (M/N)-
1. Then the minimizing point c* € S* of Fy(c) is given by

. N
¢ = M <Aja b), (28)
and
. N
Fa(e') = bl (29)

Proof: The rows of A are pairwise orthogonal, and have magnitude (with respect to the 2-norm
in RM ) of /M/N. Therefore the N singular values of A are identically equal to \/M/N, and the

result follows immediately from the preceding theorem. O
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Unconstrained optimization

The singular value decomposition presented above for p = 2 can be used in general to recast the
constrained optimization problem as an unconstrained optimization problem. Recall that we want

to minimize F},(c) subject to the constraint Ac = b, which can be rewritten
INxmVe=D7107s.

Letting ¢ denote the vector Ve, note that the first N components of ¢ are fixed by the constraint,

but the last M — N are unconstrained. So the original optimization problem is equivalent to

 Min _ Fy(V79) (30)
CN4+1:CN+425-4CM
‘where
C1
¢ _
2 | = p1g7. (31)
cN

This result cannot be used to provide a closed form solution for p # 2 because the matrix V does

_not in general preserve the p-norm.

B “Weight spreading”

It was mentioned earlier that if p > 1 then the minimizing solution ¢* to the optimization problem
(??) will have a tendency to “spread the weight,” while for 0 < p < 1 the opposite occurs. In
‘Section A it was shown that for p = co the minimizing solution ¢* has the smallest possible largest
component |c}|, and that this is also approximately true for p large enough. Also, for p = 0 (and for
p small enough) it was shown that ¢* has as few non-zero components as possible. In this section we
shall show that in some sense these results hold as well for 0 < p < co.

The following result shows that for N = 1, A = (1,1,...,1), ¢; > 0, the above statements
concerning “spreading the weight” hold in a very natural sense. It would be nice to be able to

generalize this result to N > 1 and arbitrary c.

Theorem 3 Suppose

M M
Z ¢ = Z Cj, (32)
7=1 7=1

0<c1<es<...<en, (33)



Figure 7: Illustration of two finite sequences c; and ¢; meeting the hypothesis of Theorem 3. The
curve ¢ produces a smaller value for F, if p > 1, while the curve & produces a smaller value for Fj, if

0<p<l1.

0<6 <é<...<ém. (34)

Suppose further that there exist k, 1 < k < N, such that

¢j2¢  forj<k, (35)
and
cj<é  forj>k. (36)
Then
F,(c) > F,(¢) if0<p<l, (37)
and
B <F(@E)  ifp>1 (38)

(Clearly Fy(c) = F1(€).) Moreover, for 0 < p <1 orp > 1 we have
F,(c) = Fy(¢) iff ¢; = ¢; V5. (39)

Proof: Without loss of generality let us assume ¢; > 0, since otherwise ¢; = é; = 0, and so the first
terms do not contribute and we may start with the first ¢; > 0. Figure 7 illustrates the requirements

for the two finite sequences c; and ¢;.
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Consider first 0 < p < 1. Let g(z) = zP. Since ¢; > &; for j < k, the concavity of g implies
k
2.G-8 2 Zg(ca ¢j = &) (40)

j=1

> g'(ck) Z ¢j — ¢j. (41)
i=1
Similarly, ¢; < &; for j > k implies
k k
Z S g (Ck+l) E C; — C5. (42)
7j=1 7=1
But it follows from (32) that
k
z =& = E ¢ — ¢j. (43)
Jj=1 j=k+1
‘This combines with
9'(ck) > ¢'(ck+1) > 0 (44)

to show

79 (45)
j=1 J=k+1
which can be rewritten as
M M
dodxy (46)
7=1 7=1
Moreover, the inequalities in (40) and (42) are strict unless c; = &; for all j.
For p > 1 the same argument holds with all inequalities reversed. 0
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