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The Hodograph Method for Convex Profiles.

ROBERT A. HUMMEL (*)

1. - Introduction.

This paper extends results of Brezis and Stampacchia [1] concerning
the problem of planar fluid flow past a given profile with prescribed velocity
at infinity. Brezis and Stampacchia showed that the hodograph method
for this classical problem warrants reconsideration using variational ine-
qualities. Their treatment is restricted to symmetric planar flow past an
obstacle which is convex and symmetric with respect to the horizontal
axis. In this paper we treat flows with zero circulation past strictly convex,
but not necessarily symmetric, obstacles.

One of the principal advantages of the hodograph method is that the
nonlinear compressible fluid flow equation becomes linear in the hodograph
domain. The variational inequality posed in the hodograph domain for a
symmetric profile and incompressible fluid, as described in [1], has been
extended to treat compressible fluid flow past a symmetric obstacle [2].
Although we restrict the analysis to incompressible fluids in this paper, a
similar extension to compressible flow past convex obstacles is possible
(to be treated later). Extensions to flow in a channel [3], and flows with
cavitation [4] have been investigated for the symmetric profile case. Analogs
of these extensions in the case of a general convex profile may be possible,
but are not considered here.

For convex, symmetric profiles, Brezis and Stampacchia showed that
the symmetric flow solution can be obtained from the solution to a varia-
tional inequality, or from the solution to a certain minimization problem.
The domain of the class of competing functions in these problems is the

hodograph image of the portion of the flow region above the axis of sym-
metry. The solution may be viewed as the projection of a certain function

(*) Supported in part by U. S. Army Research Office Grant Number DAAG29-
81-K-0043 and NSF-MCS-79-00813, with the National Science Foundation.
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onto a convex set in the Sobolev space Ho of functions defined on a modified
hodograph plane.

In the extension to convex, nonsymmetric profiles, the entire hodograph
image must be used, and is most conveniently viewed as a Riemann surface.
We show in Section 3 that the Riemann surface Q always has two sheets
with a single, known, branch point. The class of competing functions with
domain can then be defined, and the results of Brezis and Stampacchia
may be extended to the new class. In Section 4 we show that this extension

leads to a quasi-variational inequality for the flow solution. Finally, in
Section 5, we pose a variational inequality. In this inequality, the class
of competing functions is a convex set of functions defined on S2, positive
on one of the sheets and negative on the other sheet, with a specified jump
across a pair of cut lines. The profile geometry is used to define a distribu-
tion T on the Riemann surface, and a symmetric bilinear form a(u, v ) for
functions in H§(Q) is also given. The variational inequality will take the
form:

We will then show that the flow solution may be obtained easily from
grad u.

Throughout, we consider incompressible, irrotational, inviscid, steady
planar fluid flow past an obstacle. The equations of motion are derived
from the equation of continuity, y and the irrotationality condition. For

general bounded obstacles, the classical existence and uniqueness theory
for flows with prescribed circulation is equivalent to applying the Riemann
mapping theorem to determine conformal maps. It should be emphasized
that a solution is possible for any prescribed circulation, which is tanta-
mount to prescribing the total lift on the obstacle. The question of deter-
mining the physically stable, y or naturally occurring circulation cannot

be addressed without imposing additional constraints. In this paper, we

seek the no-lift solution, which requires that the circulation about the

profile be zero. Although the no-lift solution may not be the most desirable
solution, the general solution for any nonzero circulation can be obtained
from the zero circulation flow. The formulation of a variational inequality
in the hodograph domain is facilitated by the zero circulation requirement.

We assume that the prescribed velocity at infinity is sufficiently small
that no cavitation takes place in the flow region. We will also assume that
the profile is smooth (at least since the presence of cusps or singularities
on the profile boundary give rise to singularities in the flow solution, or
can be interpreted as requiring a particular circulation so that the flow
will be continuous. In the symmetric case, corners are allowed at the leading
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and trailing edges because it is known a priori that the stagnation points
will occur there. For convex profiles, the determination of the stagnation
points is part of the solution.

The results of this paper were obtained as part of the author’s Ph. D.
thesis at the University of Minnesota, 1980. The author gratefully acknow-
ledges the kind assistance and encouragement of his advisor, David Kin-
derlehrer.

2. - Formulation in the physical plane.

To formulate the planar flow problem past a bounded convex obstacle,
we assume we are given a closed, bounded, strictly convex subset 5’ of the
complex plane. Further, we assume that 3(T is (0~xl), and that
the flow velocity at infinity is given, with q~ &#x3E; 0. The flow region CBT
will be denoted by G.

At any point z E G, the associated flow velocity vector in q = (qi(z),
q2(Z)). The flow problem is given by

For any solution to (i)-(v), the circulation about S is defined by

There is a one-parameter family of solutions to (i)-(v), parameterized by
the circulation 1~, which in turn is directly proportional to the lift on the
profile. We seek the no-lift solution, which is prescribed by the side condition

For any given value -P, there is a unique flow satisfying (i)-(v) whose
circulation is the prescribed value h. This solution may be constructed

as follows:
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be the conformal map taking G onto ~z : lzl &#x3E; 1 ~, with f(cxJ) = o0
and f’ ( oo) &#x3E; 0. Then let

and

where

Then = (qi , q2) is the desiied solution. In particular, the problem (i)-(vi)
has a unique solution which may be constructed from the conformal map
I(z), by setting I’ = 0.

In this paper, we seek an alternate construction of the solution to the

problem (i)-(vi). The method will apply only to convex profiles, and requires
the condition T = 0. However, the new algorithm will replace the use of
the Riemann mapping theorem with the construction of a solution to a
variational inequality. Further, the new method extends quite easily to
compressible fluids. The notation defined below will be used in the

construction.
In general, any solution q to (i)-(v) defines a function

which extends to a holomorphic function in G U A possibly multi-
valued primitive fll(z) always exists, so that

The harmonic functions q(z) and y(z) are the potential and stream func-
tions respectively. In light of condition (iv), the stream function is always
single valued. Further, the stream function is constant on stream lines,
and thus constant on 85. We may assume without loss of generality that

Note that the stream function satisfies



345

The convexity of the profile boundary is required in order to represent
points on the boundary in terms of the tangent orientation. Since the flow
direction at a boundary point is a tangent direction, this representation
is extremely useful for hodograph methods. We define

to be the complex coordinate of the point on a~ whose clockwise oriented
tangent has argument 0. At 0 = 2013 ~ Z+(6) is located at the «lowermost
point  of and processes in a counterclockwise direction once around
J as 6 increases to 7r.

The counterclockwise oriented tangent can serve as a parameter as well
as the clockwise oriented tangent. We define

to be the point of a ~ whose counterclockwise oriented tangent has argu-
ment 0. In this case, as 0 increases from -1t to 1t, Z-(O) travels from the
uppermost point of in a counterclockwise direction once around aT.
Since Z,(O) and Z-(O) describe the same curve, they are related by

Despite these relations, it will be useful to retain both functions.

Although 3(T is a derivative is lost in the representation of the

boundary, y and thus .X+, .~’_, Y+, and Y- are functions of 0. The

tangent vectors (X’ (0), Y’ (0)) and (~’L(0)~YL(9)) have arguments 
and 0 respectively, and so are always perpendicular to the boundary normal
(sin 0, - cos 8 ) . Thus

The following notation will also be used. The total profile height is

and the horizontal displacement of the upper and lower extreme points is
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Note that W = 0 for symmetric profiles. The curvature functions are

given by

Since (X + (6), Y+ (6)) is a vector in the same direction as- (cos 0, 
is simply the magnitude of the vector (,X+ , ¥~), i.e., ~/(.X+ (8)) ~ -~- ( Y+ (8)) ~~
which is the curvature of 3(T at (X+(O), Y+(O)). Note that

Likewise, (.~’_ (8), Y’ (8)) lies in the same direction as (cos 0, sin 0), and so

3. - The hodograph domain. .

A hodograph transform replaces the physical coordinates of the flow

region with coordinates formed by the components of velocity. If the

transformation

is locally one-to-one at a point, then the flow solution near that point can
be represented by the inverse map, which is a function of the hodograph
variables (Ql, q2).

In general, the hodograph transform (or equivalently, the map z -&#x3E;V(z))
is not globally one-to-one. Accordingly, the desired inverse map, regarded
as a function of the entire hodograph image, will be multivalued. One way
to deal with this situation is to solve for the different branches of the inverse

function separately. This is the approach used for symmetric obstacles
in [1], and provides a solution because the two branches are related by the
symmetry of the problem.

For nonsymmetric profiles, we will need to use all branches simul-

taneously. Since V(z) is holomorphic, we can view the hodograph domain
as a Riemann surface in one-to-one correspondence with the flow region.
In this way, the hodograph domain becomes more complicated, but the
inverse to the hodograph transformation is single-valued.

For convex profiles, it is possible to determine a-priori the general
structure of the Riemann surface of the hodograph image. Briefly, we
will show that the hodograph may be viewed as a two-sheeted surface lying
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over a bounded region of the complex plane with a single first order branch
point at q.. The map V(z) takes (~ onto the bounded region, conformally
mapping an upper region (~+ onto a slit region, and conformally mapping a
lower region (~_ onto an overlapping region, slit along the same line (see
Figure 3.1). The next lemma justifies this figure.

LEMMA 3.1. Assume that 5’ is strictly convex, and that V(z) solves the

flow problem (2.1), (i)-(vi).

(a) V(aG) consists of two closed curves joined at 0. has at

most two solutions for a given C.

(b) V’(z) = 0 if and only if z = 00.

(c) There is a left stagnation point and a right stagnation point on the
profile boundary. The flow travels from the left to the right stagna-
tion point along both the upper and lower portions of the boundary.

(d) V(z) = ~ has no solution for  0, and two distinct solutions for
 

(e) The set GB~z: 0 c V(z)  q~~ consists of two regions G+ and G-.
V(z) is one-to-one on G+ and on G_.
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PROOF. Recall from the construction of the flow solution in Section 2
that when r = 0,

where f (z) is the conformal map of G onto {z E C: lzl &#x3E; 1}, with f (oo) = oo,
and f’(oo) &#x3E; 0. Since f (z) is conformal, f’(z) # 0 for z E G. Thus V(z) # 0
in G. On aG, the same formula for V(z) holds, but and f’(z) must be
interpreted properly. The regularity of the boundary permits f (z) to be
extended to a homeomorphism of G onto by, say, Theorem 14.19
of [5]. To show that f’(z) exists on aG, one must apply a theorem of War-
~schawski [6] to the inverse map of f(z), which is a conformal map from

onto G. To satisfy the hypotheses of Warschawski’s theorem, it
suffices to show that the 0 parameterization of aG as a function of arclength
0 = 0(s), is a Lipschitz function. However, since J is 02,x, 0 = 0(s) is a

function, and thus assuredly Lipschitz. We conclude from [6] that f-I
extends to be C’ on ~ 1~, with nonzero derivative for lzl = 1. Accord-

ingly f (z) is likewise differentiable on aG, and f’(z) =1= 0 for z E aG. Using
t3.1), y we see that V(z) = 0 only at those points in 0 where f (z) = 1 or
f (z) = - 1. Consequently, y there are exactly two stagnation points (solu-
tions to V(z) = 0) in G, both located on the profile boundary. These points
can be denoted by Z~(0~) and I 

For all 0 except and OB I

depending on whether the flow is directed in a clockwise or counterclockwise
direction around 3(T. The profile boundary without the two stagnation
points has two components. Along each component, the flow orientation
must be consistent, since a change in orientation can only occur at a

stagnation point. Thus the image under of each of the components
consists of a curve emanating from 0, sweeping out points whose arguments
vary from 0 A to OR (modulo 2~), or from 0~ + n to n. Since arg V(Z+(O))
varies monotonically, each image forms a simple closed curve starting and
returning to 0., I

Next, since V(z) is holomorphic in G, the number of solutions to 
equals the winding number of properly oriented, about the point i.
Because consists of two simple closed curves, this winding number
is at most two. This proves statement (a).

To prove (b), we first observe that V(G) is bounded, since Y(oo) = qoo
is a removable singularity. This means that Y(G) consists of the interior
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regions bounded by V(&#x26;G). Suppose that the flow orientation is entirely
clockwise or entirely counterclockwise around 85. This in fact happens
when the magnitude of T is large. When r is zero, this cannot happen,
,since then arg V(Z,(O)) would span the full circle from - n to n as 0

varies through its range from - n to n (Equation (3.2)). This results in a

disconnected image V(G), since V(Z,(O)) is pinched at the origin when
~8 = 6A and 9B (see Figure 3.2). Thus the flow orientation must switch as

one crosses a stagnation point.

To count the number of zeros of V~’(z), note that the tangent to 
rotates twice as one travels once around according to the results
-above (see Figure 3.3). However, if g(z) is any holomorphic map of a simply
connected domain 9) onto a bounded region, with a nonsimple closed
.curve which winds twice around an interior region, then g’ (z) must have
exactly one zero in Ð. This follows from the argument principle applied
-to g’ (z), where the winding number is calculated using a parameterization
z = u(t) of 3Ð. Specifically,

Since G U can be viewed as a simply connected domain, V’ (z) must
have one zero in G U ~oo~. But since V(z) = qoo + a_2/z2 + ... near oo (using
1-’ = 0), V(c&#x3E;o) = 0 is the unique zero of V’(z). This proves part (b).

Next observe that F(oo) = qoo and V(c&#x3E;o) = 0 imply that V(z) = q.
has at least two solutions, counting multiplicity. From part (a), must

be covered exactly twice, and so winds twice around q~. Thus
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This says that the flow is to the right at both the uppermost and lowermost
points of 3(T. Since the flow orientation is opposite at these two points,
there must be a stagnation point on the « right »

with

and another stagnation point on the « left » :

with

Part (c) follows.
On the upper portion of the profile, Z,(O) for 0,,  0  OB, the flow is

clockwise, so that iq2 ) is in the same direction as 0, and

On the lower portion of the curve, the flow orientation is opposite, y so

and

As 0 varies from - n the curve V(Z,(O)) looks like Figure 3.3, winding
twice around the segment and without crossing the negative
real axis. The assertions of part (d) follow.
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By lifting the map V(z) == , for we obtain two curves, each

emanating from one of the stagnation points, and each terminating at
z = oo, which is the only solution to = q~. The two curves intersect

only at z = oo, since qoo is the only point in V(G) which is multiply covered
by a single point in the physical domain. These curves separate G into
two components: one component, G+, contains the upper profile point
Z+(O), the other component, G_, contains the lowermost profile point Z-(O).
The image of the boundary of G+ consists of a simple closed curve together
with the slit 0 ,  goo traversed twice. Thus V(z) is univalent on G+, and
likewise univalent on G_ . This completes the proof of Lemma 3.1.

Lemma 3.1 allows us to describe the Riemann surface associated with

the hodograph domain. Clearly, V(z) can be lifted to a univalent conformal
map of G onto a doublesheeted branched Riemann surface. One sheet arises

from the image of G+, and the other sheet from G_ . The point C = qoo is a
first order branch point connecting the two sheets. The sheets are cut along
the lines 0~  with upper and lower shores of the cut lines on opposite
sheets associated, representing the continuous structure of the image of
the physical domain as one crosses the lines 0 C V(z)  q~~&#x3E;). One

can view the hodograph domain as a subset of the Riemann surface of the
equation w = 

It is customary in hodograph methods to use the coordinates (0, or)
defined by

These coordinates on the hodograph surface are especially convenient because

while

Since V(z) is never negative (Lemma 3.1 (d)), the transformation from the
C = q¡-iq2 coordinate to (6, c~) coordinates is one-to-one on both sheets.

In (0, or) coordinates, the Riemann surface of the hodograph domain
has a different shape (see Figure 3.4). There are two sheets, branched over
the point where qoo. The cut lines are transformed to

the vertical straight lines 6 = (on both sheets). One of the sheets
is formed by the image of G+, and is given by

where 1,(0) = -log [ V(Z+(0)) [. Note that the domain of 1,(0) is I

since arg V(z) varies from 0~ to 9B as z traverses the G+ portion of 3(T (Equa-
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tion (3.4a)). The other sheet is given by

Here 1-(0) = -log I V(Z-(O)) 1, , and the domain is 0 + n) according
to equation (3.4b).

At 0 = OA and 0 = V(Z+(O)) = 0, and so 1+(0) has vertical asymp-
totes. Likewise, 1-(0) has asymptotes at 0 = 7r’ We

will denote the external boundary curves by

The cut lines arise from the image of the two curves ~z : 0 c V(z)  q~~,
(Lemma 3.1e). One curve, joining the right stagnation point with

z = oo, transforms to a cut connecting 0  0 points on the :0+ sheet with
0 &#x3E; 0 points on the :0- sheet. The other curve, which joins with

z = oo, is mapped to the cut connecting 0 &#x3E; 0 points on the :0+ sheet with
6 C 0 points on the :0- sheet. We will denote the first cut, connecting the
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left shore on ~+ with the right shore on 1~_ , by yA . The other cut, identify-
ing the right shore on ~+ with the left shore on 1‘~_ , will be denoted by yB .
By including the point (0, acx,) as a first order branch point, we obtain a.

Riemann surface D.

Of course, the parameters controlling the location of the asymptotes, 6~
and OB7 as well as the curves cr = and a = ?_(6) are not known a-priori.
They will be determined from the free boundary of a solution function

whose domain is an extended hodograph surface. Specifically, since 
~+ is always contained in

and 2)_ is a subset of an identical copy of the set which we denote

by S~_ . If we make the same identifications on the vertical cut lines as

exist between 2)+ and and include (0, aa,) as a first order branch point
we obtain a Riemann surface S~ which contains the (0, o~) representation
of the hodograph domain 2) (see Figure 3.4). The surface S~ is in fact the

(0, or) representation of the Riemann surf ace w = 
In summary, the map 0 + i~ _ - i log lifts to a one-to-one map

of the flow region G onto the Riemann surface Ð ç having a single first
order branch point over z = oo. The correspondence is a homeomorphism,,
and in fact a conformal map between Riemann surfaces.

4. - The integrated stream function.

The domain of the stream function y(z) is the flow region G, which is.
in one-to-one correspondence with the hodograph domain D. By restric-
ting to the Ð+ and Ð- sheets of D, we obtain two functions of (0, (1):

and

where

Recall that y(z) is harmonic on G. Since the transformation from z toy

0 + ia is anticonformal, 1Jl+ and y_ are harmonic on D+ and D_ respec-
tively. Further, since 5)+ and 5)- are bounded by curves or = 1+(0)

1-(0), and V- are of class Cl" up to their respective boundaries.
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1~+ and J~_. In fact, since the h+ and F- boundaries in ~+ and D cor-
respond to the profile boundary aG in physical coordinates, it is clear from
(2.3) that ~+ and y- vanish on 1~+ and 1~ respectively.

In analogy with Brezis and Stampacchia [1], we introduce the integ-
rated stream functions

Note that the functions ~~ are not defined on the cut lines, nor at the
branch point. These functions compositly define a function cu, on the subset
,D+ U 9)-c 9). However, U is not continuous across the cut lines y~ and YB -
In the case of a symmetric profile, Brezis and Stampacchia [1 ] show

that can be extended to a continuous function on ~+, and so is con-
tinuous i jumping the cut » (from the left shore of the cut on ~+ to the
right shore on ~+) . This is no longer true in the nonsymmetric case, but
of little consequence. We will eventually show that ’U., is the solution to a
variational inequality whose admissible functions are defined on the Rie-
mann surface S2 and have specified jumps across the cuts yA and yB . The
curves 7~+ and I’_ will arise as the free boundaries of the solution.

When ! t and are constructed in the case of a symmetric profile,
one finds that the curves are identical, that the two sheets are the same,
and that ~Jb_(9, (1) == 2013~JL+(0y (1). When the profile is nonsymmetric, both
sheets play a role in determining the function ’B1. Nonetheless, many of
the results of Section 4 of [1] carry over. For example:

THEOREM 4.1. ’l1+ and solve the Cauchy problems

Further.

(1) The two Cauchy problems are obtained by choosing the + subscript or the
- subscript consistently in all occurrences. This convention of writing pairs of
equations simultaneously is used throughout.
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where

and

PROOF. The first statement follows from a simple computation of ô’11:f:!oa
from (4.1). The second representation follows in an identical manner to
the proof of Theorem 4.1 of [1], or alternatively to the proof of Theo-
rem VII.8.2 of [7].

LEMMA 4.2. The functions are 02,tX on 0::, U F::,: respectively, and
satisfy

PROOF. The proof of Theorem 4.2 of [1] applies, using the representa-
tion (4.3) above.

We next investigate the boundary behavior of U. We have from (4.1),

Across the cut lines yA and yB, has known jumps. These conditions are

generalizations of the condition on ~+ along the slit line that is used in
the symmetric case, but is complicated by the presence of two inequivalent
sheets. There are two cut lines, and so two pairs of « shores ». We define
the following trace operators on each of those shores:

any function defined on 5),, and g- defined on 3)_y
define

These traces will exist as classical limits if g+ and g- are sufficiently regular, y
and will yield functions in L2 if is only locally Hi in Ð:f:. We may then
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define

for any function g defined on 9), u Ð_, where g, is g restricted to 9),.
(Recall that yA is the identification of the left shore of the cut on 2)+ with
the right shore on while yl, is the other pair of shores identified).

LEMMA 4.3.

where Hand Ware the constants defined in (2.7) and (2.8).

PROOF. We use the representation (4.3) to obtain

(Note that Equation (2.6) is used in the calculation of Since

defined in (4.4), is smooth on G (harmonic, in fact), it contributes no
jump along the slits yA and yB on the corresponding Riemann surface D.
Likewise, has no jumps. The result follows by evaluating the jumps
in the remaining terms from the Ð- to ~+ sheet along the shores of the
cuts 8 = 0, (/00.

We note that only condition (4.8) will be used to specify the boundary
behavior of the class of competing functions. The remaining conditions
(4.9) and (4.7) will be used to derive the variational inequality. We will
also need:

PROOF. The proof given by Brezis and Stampacchia of Lemma 4.5

carries over with minor modifications, providing one shows that q~,(O, cr)
decays like e-a as u - + oo. This fact can be established from (4.3) re-
written as
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It suffices to show that vanishes as u - + oo along any vertical line
(0, 0") on either sheet, for then 0") remains bounded as a --~. + oo.
Fix 0, and consider the vertical line ( 6, s ), s - cxJ in either 3)+ or 9)-: The
line corresponds to a path in G, which we denote by z(s) == -~- iy(s).
Recalling that zA and zB are the stagnation points (equation (3.3)), we have

Since V (Z~4) = = 0, 1

where is the arclength of z(s) from s = J to s = oo. Since Z(cr) - 0
as 0’ -* oo, the result follows.

We extend the composite function tL defined on D+ u Ð- to the domain
Q-, by setting ~ = 0 on Q_)B(D+U D-) ( 2) . Since and

grad%* vanish on jT~ (equation (4.7)), the extended functions ’l1:t: are

in 

At this point, we have established all but one of the necessary properties
in order to pose ~ as the solution to a variational inequality. In the sym-
metric case, it is evident from the definition of ctt, that ~Jb+&#x3E;0 (see Proposi-
tion 1.1 of [1]). One might suppose the validity of

in the convex nonsymmetric case, which would follow trivially if it were

true that y~(z) ~ 0 on G+ and on G_. However, the latter inequalities
are in general false. Nonetheless, we will show in Section 5 that the ine-
qualities (4.10) are true.

5. - The variational inequality.

In this section, we show that the integrated stream function ILL defined
on the two sheets of the Riemann surface Q, as defined in Section 4, satis-

(2) All unions are taken as disjoint unions in the Riemann surface S2.
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fies a variational inequality. Theorem 5.3 establishes the inequalities (4.10), y
which allow us to state and prove the variational inequality for U in Theo-
rem 5.4. The first lemma, which is needed for Theorem 5.3, shows that
once ’1.1 is obtained as the solution to a variational inequality, the flow
solution 4(z) solving (2.1) may be determined quite easily.

LEMMA 5.1. Let iq2 == be coordinates on ~~ and ~_. Then

where z == 0153 + iy E G+ is the point corresponding to 0 -~-- i(1 E 9):,_- by the hodo-
graph map 0 + ia = - i log V(z).

PROOF. We use the representation (4.3)

where z E G:J::. is the point corresponding to 0 + ia E 9)-+. Here §J (z) is the

negative of the Legendre transform of 1jJ, given by (4.4), y and ~+(8) is

defined by (4.5). A simple computation, using (2.4), y shows that f or z =

= x + iy,

expressing part of the duality of the Legendre transform. Another calcula-
tion, using (2.6), shows

Equation (5.1) follows immediately from (5.2) and (5.3).
The practical consequence of Lemma 5.1 is that the function ’B1 allows

one to assign flow velocities to physical points, thereby constructing the
flow solution q(z). However, y the following corollary will be needed for

Theorem 5.3.

COROLLARY 5.2. ILL cannot attain an interior maximum or minimum in

1), or 3)_.

PROOF. At an interior maximum or minimum, grad % = 0. Suppose,
for example, that an extremum occurs at the point (00, Jo) of 3)+. Since
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the ( q~ , q2 ) coordinates are conformally related to the (0y0’) coordinates,
we have

Thus, according to (5.1), the point z = r + iy e (?+ corresponding to

0o + iuo E Ð+ is

But the hodograph map of G+ onto 5), given by - i log is a home-

omorphism, so the interior point (00, (10) cannot be mapped to a boundary
point. The corollary follows.

In the symmetric profile case, the following theorem is a triviality. For
the more general case, we must use many of the special properties of ’11
in order to prove:

THEOREM 5.3. ’lb+&#x3E;0 on 4li+ and U-  0 on S~_ .

PROOF. We will first show that along both shores of the slit

in D,, and ’lb-  0 along both shores of the slit in S2_ .
Consider the function

Since w(z) = lm[Ø(z) - q~z], where is the complex potential defined
by (2.2), w(z) is harmonic in G. Near z = oo, we have the expansions

Note that conditions 2.1 (iv) and (vi) imply that the term for V(z)
vanishes, so that has no log z term. Clearly, Ø(z) - q~z is bounded
in G, so w(z) is a bounded harmonic function defined on G U ~oo~.

Applying the maximum principle, we know that w(z) attains its max-
imum and minimum Since Y- (0)  y  Y, (0) for and

since 1p = 0 on we conclude that

for all z E G U {oo~.
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Note that

so

Applying (5.5), y we have

If we compute and at the branch point using the formula (4.3)
for we obtain

Accordingly, y (5.6) shows that and U-  0 at the branch point.
Furtb er, from Lemma 4.4, we know that

Thus if has a negative minimum on one of the two shores of the slit
in S2+, it must be attained at some point, say (0~ oo)y with 0’00 00.

At that point, we have

and

But

at the point (0+, corresponding to Zo = X, + iyo E G. Thus (5.8) implies
that yo = Y+(0), so
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But by (5.5), we have

Formula (4.2) for U implies that

so (5.8) and (5.9) yield ~+(0+, = This contradicts (5.7), and
so cannot have a negative minimum along either shore of the slit.

In a similar fashion, one can show that cannot have a positive
maximum along either shore of the S~_ slit. We have shown that

In addition, ’l1:f: = 0 on so

The theorem follows by applying Corollary 5.2.
The main result is the variational inequality which follows. We will

use the convention f f g d0 dJ = f f g + d0 d(J + f f g - dO for any function g
u D- S2+ D-

defined on Recall that the constants Hand Ware defined

by (2.7) and (2.8), and R(O) is defined on by the formula (2.9).

THEOREM 5.4. Define

K = {V defined on ,S2_, V = Y+ on Q+, V = V_on S2_ suoh that
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Then the integrated stream function ’l.1 defined in section 4 satisfies 11 E K,
and for all ‘lr E .K,

PROOF. Lemmas 4.4 and 4.3 show that U satisfies (i) and (ii) of the

definition of K. Condition (iii) follows since ’l1 = 0 on and (iv) and
(v) are given by Theorem 5.3, to show that ’l1 E K.

Next, we wish to formally integrate the left side of (5.12) by parts.
The integrand is nonzero outside Ð+U D_, so applying Lemma 4.2, the
integral becomes

where n is the outward normal vector. The boundary terms in (5.13) vanish
on according to (4.7). Along the slits, grad --- ( a‘ly ~6 ) ( o-, c~) on
the left shores, and - (acLL/80) (0+, y) on the right shores. Note that ’tJ - ’tL
is defined on the slits because ‘l~ and U have equal jumps. Applying
Lemma 4.3, the final term in (5.13) gives rise to the final two terms in (5.12).

Since ’B1 = 0 on and since cg c K, ctL+ &#x3E; 0 on S2+B!~ +, and
’U’_- ’B1_0 on S2-BD-. Applying (2.10), we see that

Accordingly, the integral (5.13) is greater than or equal to the right-hand
side of (5.12), thus justifying (5.12) by a formal integration by parts.

To make the formal calculation above more precise, one must consider
the singularity in gradu at the branch point, and convergence on both
sheets as J - + oo. The method used in Theorem 4.6 of [1] carries over
to the two sheeted surface to show that the formal calculation above is

valid.

Since the variational inequality (5.11), (5.12) will have a unique, regular
solution [8, 9], the integrated stream function U can be obtained by solving
the variational inequality.
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6. - Remarks.

We have shown that the function U is the solution to the variationaf

inequality (5.12), and that the solution q = (gi, q2 ) to Problem (2.1) can
be obtained from ’l1 by means of Lemma 5.1. The resulting representation
of the solution provides an inverse map of the multi-sheeted hodograph
domain onto the physical plane. For this reason, in a practical implementa-
tion of these results, the solution automatically provides a dynamic quan-
tization of the flow region. For example, if the hodograph domain is quan-
tized by a uniform grid, the physical domain will be finely quantized in
those areas where the flow velocity changes rapidly, and more coarsely
quantized in those regions where the flow is nearly uniform.

The variational inequality (5.12) has been viewed as a relation for a.

function ’l1 which is defined on a naturally occurring Riemann surface. It

is possible to unfold the Riemann surface S~ by means of a B/6 -E- iar - 
transformation and reformulate (5.12) as a variational inequality whose
competing functions are defined on a new domain f2 C C. Such a process
offers no advantage over the more natural representation of S2 as a Rie-
mann surface.

Since the two sheets of D, namely S~+ and SZ_, are identical, it is pos--
sible to consider flL+ and U- as functions of a single strip domain, and
reformulate the variational inequality as a variational system, with a.

coupling between and U- given by the jump conditions. This obser-

vation is useful for numerical implementation.
Analogs of Theorems 5.1 and 5.2 of [1] carry over, but are omitted

here. We note however that one of the principal advantages of the method
of solution described here is that the solution domain, the hodograph
domain, is essentially compact. Indeed, a lower bound for u can be ob-
tained a-priori, and since the distributions in the variational inequality
are weighted by e-a, there is little lost if one truncates S~ for sufficiently
large a.
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