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The theory of histogram modification of continuous real-valued pictures is developed. It
is shown that the transformation of gray levels taking a picture’s histogram to a desired his-
togram is unique under the constraint that the transformation be monotonic increasing.
Algorithms for implementing this solution on digital pictures are discussed. A gray-level
transformation is useful for increasing visual contrast, but may destroy some of the informa-
tion content. It is shown that solutions to the problem of minimizing the sum of the informa-
tion loss and the histogram discrepancy are solutions to certain differential equations, which
can be solved numerically.

1. INTRODUCTION

Every random variable f has an associated distribution function P,;(z) which
specifies the probability that the value of the random variable will be less than or
equal to z. By a transformation we mean a one-to-one function 7 mapping the
real numbers (or the range of f) into the real numbers. The composition T © fis a
new random variable (obtained by applying the transformation 7" to each value
of /) having distribution function P;.;(z). In this paper, we are concerned with
the problem of finding a transformation 7 such that the composition T ° f has
some specified distribution function P,(z). Thus we are given f and P, and desire
a T such that Pr,(z) is in some sense close to P,(z). Later, we will add addi-
tional constraints to T so that the solution is a compromise between (1) the
degree of match between Pr.;(z) and P,(z) and (2) some measure of the cost (in
terms of information loss) of transforming f by T.

Although the results in this paper are valid for a general random variable f,
most of our examples for motivation and implementation will regard f= f(x,y)
as a gray-level-valued continuous picture function. The stated problem is then
equivalent to the problem of modifying a picture’s histogram by applying a uni-
form gray-level transformation to the picture. This type of transformation can be
useful in picture processing as a method of contrast enhancement or as a
preprocessing step for normalizing a set of pictures. This normalization tech-
nique has been shown to be useful in texture analysis [1], and in creating pho-
tomosaics [2].

Treatments of problems related to histogram modification fall into three ca-
tegories: (i) transforming a continuous random variable to a continuous random
variable; (ii) transforming a continuous random variable to a discrete (quantized)
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random variable; and (iii) transforming a discrete random variable to a discrete
random variable. This paper is primarily concerned with the first case. The other
two cases are regarded as approximations to the continuous case; thus the
results obtained here are applicable to those cases by using standard approxi-
mation methods.

2. HISTORY

The continuous-to-continuous case belongs to the theory of distribution trans-
formations in elementary statistics [3]. For example, it is well known that if we
regard a distribution function Py as a mapping from the reals into the reals, and
take the composition of this mapping with f, we get a random variable with uni-
form density. One often wants to solve for the probability distribution when a
known function is applied to one or more random variables. In histogram modifi-
cation, we treat the opposite problem where we solve for the function given the
desired final distribution.

Most of the work in the continuous-to-discrete case comes under the heading
of optimal quantization. In this field, one is given a continuous picture with a
density function p(x), and one seeks a partition of the domain of p(x) into in-
tervals [x;,x;+1) such that the quantizer Q which assigns each interval to an
output level y; minimizes some measure of the quantization error. Equivalently,
one seecks transformations 7 and § such that the composition shown below
yields an optimal quantizer. In this scheme, T determines the x;’s, and § deter-
mines the y;’s.

Continuous Continuous Digital
to to fo
continuous digital digitai

G
r(;eotest integ—er_‘ S {Yi }
L quantizer ‘J
It is easy to show that the quantizer which produces a uniform output density
(a ““flat histogram’’) maximizes the expected information content, i.e., entropy. It

turns out that this is very close to optimal quantization.
In 1964, Roe showed that the quantizer that minimizes the distortion

Input T

0,0 =3 [™ x—wlp(nds
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in the limit as N — o« satisfies the approximation
Ln
f [p(x)]"0*Ddx = Cin + Co,
0

where r is a positive constant [4]. His work therefore yields an approximate
method for solving the optimal quantization problem as given by Max [5], and
rediscovers approximations to the total quantization error given by Panter and
Dite [6]. In 1966, Algazi [7] used Roe’s results to solve for the optimal trans-
formation T in the scheme shown above:

T(z)=(N-—1) ﬁ [p(x)]l/(ﬂ-l)dx/J;)X [p(x) ]y,
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where p(x) has support contained in [0,X]. In the limit as » — 0, this is essen-
tially the histogram flattening transformation given in this paper. For general
r > 0, this transformation will broaden histograms by spacing quantization levels
close together in those regions where p(x) is large. Most authors specialize to
the case r = 2, however, rather than examine the limit r — 0.

Elias [8] suggested a different distortion measure,

M,(Q) = {Nz (s =" [ pa}”,

which in some sense measures the ambiguity in a quantized picture obtained by
application of the quantizer Q. Note that this measure no longer depends on the
vi’s, and thus depends only on the choice of the transformation 7. Interestingly
enough, one can show by methods similar to those used by Max that when r = 1
this measure yields histogram flattening (sometimes called the equal probability
quantizer) in the limit as K — o for continuous histograms. Elias also shows that
the equal probability quantizer is asymptotically optimal as K —> o for the limit
r— 0.

If one could characterize the desired output histogram in terms of the initial
distribution, optimal quantization would become equivalent to the problem of
histogram modification. This viewpoint, however, is generally less convenient,
although the relationship between error minimization and entropy maximization
deserves investigation.

Discrete-to-discrete transformations are useful for computer processing of
digitized pictures. Most gray-level manipulation studies for contrast enhance-
ment have involved photometric corrections and simple linear rescaling, as at
JPL [9], or logarithmic rescaling (density coding) as described by Stockham
[10]. “Maximum discriminability” versions of Mariner pictures were pro-
duced at JPL by logarithmic stretching about the mean gray value, which
produces generally broader and flatter histograms [11]. For the results of a
cyclic linear rescaling technique which divides the gray scale range into several
equal length intervals, and maps each interval linearly onto the entire available
gray scale range, see Selzer [12].

The concept of histogram modification, as defined here, has received relatively
little attention. In 1971, Hall et al. [13] mentioned distribution linearization (his-
togram flattening) as an effective contrast enhancement technique, and Haralick,
Shanmugan, and Dinstein [14] describe an algorithm for obtaining the equal
probability quantizer. Both of these references regard the continuous-to-con-
tinuous case as being approximated by the discrete-to-discrete case.

Documentation for a gray-level transformation program designed for his-
togram modification of digitized pictures is provided by Troy [7,15]. Her pro-
gram regards histogram modification as an iteration process on constant gray-
level subsets of the picture, which is inefficient for sequential processing
computers. The program HISTRN written for this report performs the same
function as the program GRATRN described in [15], but is considerably more
efficient because it defines the transformation prior to operation on the input
picture, and is based on the discrete approximations to the continuous case
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theory developed in this paper. This increased efficiency makes histogram modifi-
cation by HISTRN an inexpensive and powerful image enhancement technique.

3. PROBLEM FORMULATION

Before developing the theory of histogram modification, we need to make cer-
tain assumptions in order to accurately characterize the histogram function. Let
Sf(x,y) be a continuous real-valued function defined on a closed rectangle S of the
x-y plane. The cumulative probability distribution is defined by

Pi(z) = u{(x,y) € S| flx,y) =z},

where p is the Lebesque measure normalized so that u{S} = 1. We note that fis
measurable since it is continuous, and has bounded range since S is compact. We
will assume that the range of £ is contained in the interval [0,a]. The continuous
analog of the picture histogram is the probability density function given by

pe(z) = (dldz) (P(2))

at all points where P/(z) is differentiable. Of course, P/(z) will be discontinuous
at points where

p{(x,y) € S| flx,y) =2z} >0,

but we know that since P; is monotonic, it is differentiable almost everywhere.
Nonetheless, because of the possibility of these jumps, ps(z) does not satisfy the
highly desirable property [% p;(z)dz = 1. One could avoid these difficulties by
using the Stieltjes integral whenever integration involving a histogram factor is
needed. That is, instead of [q(z)ps(z)dz, one can use [q(z)dP;(z), where g(z)
is any continuous function. In this report, we will assume that all picture cumula-
tive probability functions are absolutely continuous, so that

Pi(z) = f C i)z

This is a reasonable assumption since, in the quantization process, all gray levels
in the intervals {z;,2:+:1] will be identified. Thus we may adjust f so that gray
levels corresponding to jumps in the probability function will be broken up and
assigned to a range of gray levels within the quantization interval.

The general problem of histogram modification (for continuous pictures) may
be stated as follows. We seek a gray-level transformation T which maps the in-
terval’[0,a] into itself such that the output picture obtained by applying T to the
value of each point of the input picture f has some specified histogram p,(z).
Thus we are given f and p,, and desire a T such that

prs(2) = Py(2), for all z € [0,a], (D)
or equivalently,
Pr.g(z) = P,(2), for all z € [0,a].

Furthermore, since we wish T to preserve an ordering relationship on gray
levels, we require that T be either monotonic increasing or monotonic de-
creasing.




HISTOGRAM MODIFICATION TECHNIQUES 213

Of course, there is no a priori reason to believe that such a T exists. However,
under suitable conditions on f, p,, and T, we will soon prove an existence and
uniqueness theorem for solutions to (1). More generally, we can seek a transfor-
mation which minimizes the difference between pr.;(z) and p,(z). Our measure
of difference will be

f: [ Prp(2) — py(2) ]7dz. (2)

This suggests the following refinement to the problem of histogram modification.
We add to (2) a cost function C,(T) measuring, in some way, the loss of informa-
tion in transforming from fto T » f. Thus we wish to minimize

Ci(T) + ¢, foa [Prs(2) — pg(2)]%dz (3)

for T, where ¢; and ¢, are weighting constants.

In the next section, we treat the case ¢, = 0, that is, the problem of minimizing
(2). Later, we will suggest two models for C/(T) and demonstrate techniques for
minimizing (3).

4. MINIMIZING THE HISTOGRAM ERROR

We first prove the theorem which solves the histogram modification problem.

THEOREM. Let f(x,y) be a continuous real-valued random variable with
range [0,a] and having an absolutely continuous probability distribution Py(z).
Let ps(z) be the corresponding probability density function, and suppose that p,
is given satisfying

i) py: [0,a] — (0,),
(11) fgpg(Z)dZ =1.

Denote by P,(z) the function given by

Py(z) = L py(2')dz'.
Then there exist unique monotonic transformations taking f'to a random variable
having a density function equal to p,(z). These are given by
T(z) =P, (P(2)), (4a)
T(z) =P, (1= P(z)) (4b)

for the monotonic increasing and decreasing transformations, respectively.

PROOF. Since P, is absolutely continuous, we only consider transformations
which take the picture f into pictures having absolutely continuous probability
functions. For any such T, we have

Pi(z) = p{(x,y) € S|flx,y) € [0,2]}
= u{(z,y) € S|T < flx,y) € T{[0,2]}}

= Pr.s(2)dz, ' (5)
7{[0.2]}
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where the integral is taken in the Lebesgue sense over the set 7{[0,z]}. If T is
continuous, two cases arise:

T{[0.2]} = {[T(O),T(z)] for T monotonic increasing,
< [T(z),T(0)] for T monotonic decreasing.

Treating the two cases separately, we have for T increasing,
T(2) .
Piz) = L( ) Pres(2')dz = consty + Pp(T(z)), (6a)
0
and for T decreasing,

T(0)
P2y = [ pr (&) = consty = Pr T (). (6b)

Using the facts that P(0) =0, Ps(a) = 1, and 0 < Pn(T(z)) = 1 for all z, one
can show that const; = 0 and const, = 1. Thus

P(z) = Pp,(T(z)) (7a)
and ) ' Pf(z) =1 PTof(T(Z))- (7b)

Equations (7a) and (7b) are valid even if T has points of discontinuity, since
Pros(z) will be zero on the intervals in the complement of the range of T corre-
sponding to the jumps of the function 7.

To prove the theorem, we must show two things: first, that solutions (4a) and
(4b) solve the histogram modification problem (1); second, that any suitable
transformation satisfying (1) will satisfy either (4a) or (4b), thus establishing
uniqueness.

Note that P, is strictly increasing on the interval [0,a] (since p,(z) > 0), and
thus has a monotonic inverse. Thus the transformation (4a) is monotonic
increasing, while (4b) is decreasing. Substituting (7a) into (4a), we obtain Pj.,(z)
= P,(z) for all z in the range of T. Since both P;and P,! are continuous, T as
given by (4a) maps onto the interval [0,a]. Thus (4a) satisfies Eq. (1). Similarly,
substituting (7b) into (4b) yields the same result.

Conversely, if 7' is a monotonic transformation satisfying Eq. (1), then we can
substitute Pr.; by P, in the proper form of Eq. (7) (depending on whether T is
increasing or decreasing), and solve for T to obtain the respective solution (4a)
or (4b).

As a corollary to the theorem, we may differentiate Eqs. (7a) and (7b) to get
the differential equation form

pr(2) = pr(T(2)) - |T'(2)], (8)

a formula which will be useful later. The theorem holds even if we allow
Po(z) = 0 for some z in the interval [0,a]. In this case, however, we must in-
terpret P,~! as a choice function in order that T be well-defined.

Solution (4b) applied to a picture fis the same as solution (4a) for the “com-
plement” of f defined by f(x,y) = a — f(x,y). Note, however, that solution (4b)
is not simply the complement of the picture obtained from solution (4a) if the
distribution P, is not linear. In some circumstances, solution (4b) may be prefer-
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able to (4a). For example, if one desires the solution T which yields the smaller
value of [ [s(T o f—f)%dxdy, then solution (4b) will be the appropriate one in
certain cases, such as when p, and p, are as shown below.

5} 072 az O a/2 oz
If, however, one desires a transformation which preserves the relationship “is
lighter than” on gray levels, then solution (4a) will always be the appropriate
one.

5. IMPLEMENTATION

For application to the discrete case, we must approximate the continuous
transformation 7. by a mapping 7T defined on the quantization levels
{¥0, . . . ,yn—1}. Each quantization level y; represents the gray-level interval
[x:,x:+1); thus the discrete histogram of the quantized version, f, of the picture f
is given by

pe(y;) = f”l ps(z)dz.

Usually, however, we have available only the quantized picture )3 and its his-
togram p;, and can only approximate the original density function by assuming it
to be constant on the quantization intervals. Thus

pr(y) = pe(yi) [ (X541 — x3) fory € [x,5,%44). (9)

This gives the approximate distribution function

P Vi + &
;) = m pr(y3) ;) pr(yi).
Using a similar model for the desired output distribution P,, we obtain T.(y;) =
P, '(Pi(y;)) from Eq. (4a). The desired discrete mapping may be obtained from
T. by quantizing the images of the levels y;, . . . ,yy, or, equivalently, by in-
terpreting P, ' as a step function which assigns all the values between P,(x;) and
P,(x;11) to the level y;.

Often the actual values of the quantization levels and their corresponding end-
points are not available, and only a digitized version of the quantized picture is
supplied. Thus each quantization level y; is represented by its index j, and
the domain of p; is the set of integers 0,1, ... ,N—1. The values
(y; — x;)/ (x;41 — x;) may be approximated by using Max’s solution [5] and the
approximation (9):

i1 Gt
f ~yps(y)dy J ydy
Yi= x‘{z.j«#l : - ‘z'zz'jﬂ
f p(y)dy j dy
€ xj

XX
= 3 ,

80 (¥5 = Xilx541 — x;) = Y2, =01 ... ,N—1.
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Thus the discrete histogram modification transformation for quantized pictures
is given by

k—1

TG0 = P, (2 i) + 3 pilm) ). (10)
m=0

where P,”! is a step function which assigns all the values between P,(k)

(= 2*' = Ps(m)) and P,(k + 1) to the value k. For the particular case of his-

togram flattening, Eq. (10) becomes

vww{w—n(%mm+gmmﬂ. (11)

Here [-] denotes the greatest integer function.

Equations (10) and (11) may be regarded as the standard bin-filling technique
of [13-15]. However, this viewpoint tends to incorrectly identify histogram
modification as an iterative process involving repeated passes through the input
picture. In our approach, on the other hand, once the histogram of the input pic-
ture is determined, Eq. (10) or (11) may be used to define the transformation on
the entire domain of gray levels, which, in turn, may be applied to the entire
input picture during a single pass.

Equation (11) is particularly easy to implement, but prone to give only very
crude approximations to flat histograms. The problem is inherent in the quantiza-
tion of pictures to a finite number of gray levels. As long as we insist on as-
signing the entire set of points having gray level z; to the single level T(z;), we
can never split up a constant gray-level set, and can only merge such sets
together. Thus the net information will at best remain the same, and the
improvement, if any, will be purely cosmetic.

In order to include information about the picture objects, and to improve the
contrast enhancement effects, the transformation 7 must be made context sensi-
tive. The choice of context will depend upon the desired effect. In general, then,
T will become a function of two or more variables, where one variable corre-
sponds to the gray level, and the others to local context values. In this way, each
set { f(x,y) = z;} is broken up into disjoint subsets, based on the range of the ex-
pected context values. If we order the entire collection of subsets according to
some rule depending on the gray-level and context values, then the net effect is
to requantize f to more gray levels, thereby more closely approximating the con-
tinuous case. For example, suppose we compute a requantized picture

h(x»)’) :f(xvy) + Of(Wf(X,}’) _.f(xay))a

where « is a constant, and w(x,y) is a local average function of the picture f
(e.g., the average of the four or eight neighbors). We may then transform the
requantized picture 4 by using Eq. (10) or (11), where the new histogram p,(z) is
used rather than ps(z), and the quantization levels z; have become the range of
possible values of h. We will write

T(Z,W) = T()(Z -+ Ol(W - Z))»

where T, is the previously described single-variable transformation applied to
the picture 4.
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a. b. C.

F16. 1. (a) Original terrain picture. (b) Result after executing FLATRN, CWT = 7. (c¢) Result after
executing FLATRN with Fig. 1b as input, CWT = 15.

A program which implements this last technique for digital pictures has been
written. This histogram flattening routine, known as FLATRN, first calculates a
requantized version of the input picture by adding a large multiple (~ 56) of each
point to its eight neighbors, and simultaneously prepares a histogram of the
result. Equation (10) is then used to define a histogram flattening transformation
on the requantized picture. The output picture is produced by applying this
transformation (see Figs. 1 and 2).

It is suggested that other methods of adding context information in the defini-
tion of T might include (a) weighting the local average gray level inversely to the
texture graininess ¢ in a medium size neighborhood of the point in order to
preserve edge and fine texture detail:

T(vaat) = TO(Z + (a/t) (W - Z))a

or (b), darkening a picture point if the average, u, over a large square centered at
the point is lighter than the average gray level u, over the whole picture:

T(zw,itu) = Tolz+ alt)(w—2) — Blu—uy)).
6. MINIMIZING THE INFORMATION LOSS

We now turn to the problem of minimizing the sum of the cost of transforma-
tion and the error (see Eq. (3)). We wish to transform f so that its histogram is
closer to p,(z), but we shall balance the histogram error against some measure
of the loss of information in transforming from fto T o f. Our treatment will
demonstrate the advantage of the “continuous case” approach to histogram
modification problems.

As a motivating example, suppose we are given two pictures taken under dif-
ferent lighting conditions, where each picture contains a subregion that corre-
sponds to the same object or material. If we want to combine or compare the
two pictures, we would like the histograms on the two subregions to match. One
approach would be to transform both pictures so that the respective subregions
have some suitably chosen standard histogram. If the subregions are small in
relation to the pictures, however, these transformations may cause a substantial
loss of information.

Let S, be the subregion of S, and let f; be the picture f restricted to §,. We
want to transform f so that the histogram py.;,(z) is close to p,, (z}. If CAT) is
the cost of transforming f by T, we wish to find a T that minimizes

aCAT) + ¢ ] (Dron(2) — pon(2))%dz. (3")
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Suburb

Lake

Wood

Scrub

Rail

Swamp

Marsh

Orchard
(a) )

Fi16. 2. (a) Original terrain pictures. (b) Resuits after executing FLATRN.

Now, C¢(T) must be additive over the set of partitions of f, and the cost of
mapping z to T(z) will be some function of z, T(z), and perhaps some deriva-
tives of T. Thus C;(T) can be given by an expression of the form

jo O T ()T (2))pyl2) dz. (12)

This integral contains the weighting factor ps(z) since this corresponds to the
density of points having gray level z. In the remainder of this paper, we will as-
sume that all the density functions are differentiable.




HISTOGRAM MODIFICATION TECHNIQUES 219

A simple model for the function C;(T) is the mean square difference between f
and T o f. Thus in (12) we have C(z,T(z)) = (z — T(z))> A more sophisticated
approach is to take C(z,7'(z)) = 1/T'(z), thus weighting against compression of
gray levels. Other approaches might use some information measure to model the
loss of content in going from fto T o f.

To solve Eq. (3') among the class of monotonic increasing transformations on
[0,a] fixing endpoints, we replace T by T + € T, where T, is a differentiable
function on [0,a4] vanishing at the endpoints. We then differentiate with respect
to €, and set the result equal to 0. For the second integral in (3'), we use Eq. (8)
to replace pr.s{(z) by po (T (2))}/T'(T7'(z)) and substitute x = T~'(z) before
differentiating:

& [ (pra@ = pu@rdi= e [ (BUEL b)) dz

0

= o [ [BAES = (1) | T ().

We differentiate

“ L [”T“(}{Zf'%)fm — P (T(x) + €Ty (X))]Z(T’(x) + €Ti(x))dx

with respect to € at € = 0 to obtain

e Ipn(x) O Tix) AP
cgjﬂ z[]f,(x) pgl(T(x))}( B n pm(T(x))Tl(x))T (x)dx

o [ 2 = o | Tiw a.

After factors of T{(x) are collected, this becomes

2¢y L“ [pgl(T(x)) - ?ﬁg;](pg,(T(x))T'(x))Tl(x)dx

a 2
o [ [oaren = () | i
We may replace the expression pg{(x)/T'(x) by pprs(T(x)), and integrate the

second integral by parts, using the endpoint conditions 7,(0) =0 and 7,(a) =0
to obtain

2, [ Upn(T10) = proas(T ()} (P TN T () T ()
=26 [ [ (TEDPUT DT () = pr (T ph (T T ()11 x) .
After collecting terms, and using Eq. (8) once again, we have
2, [ pu) [ha(T(x)) = i (T () IT () (13)

The first term in (3’) is treated in the same way, but, of course, must be
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F1G. 3a. Initial histogram.

handled separately for each function C. If C(z,7(z)) = (z — T(z))?, after dif-
ferentiating, we obtain

204 f * o) (T(2) — ) Tu()dz. (14)

If C(z,T'(z)) = 1/T'(z), then the calculation is
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F1G. 3b. Smoothed output histogram obtained by solving Eq. 15.

d _[* ps(z) _ ¢ Ti(z)
&), T e =, Ty o

= f -j—z ((_7{1%_)_2> Ty(z)dz. (14b)

0

For the T which minimizes (3’), the sum of (13) and (14a) or (14b) must be 0.
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Fic. 4a. Initial normal density function.
Thus
fo [2¢1p:(2) (T(2) — 2) + 2¢2p1 (2) (Phs (T(2)) — pg, (T(2)))1T1(2z)dz = 0,

@ d P (Z) ' ' _
fo [cl 4 ((Tf@—)—) + 2609 (2) (Do (T(2)) — pm(T(z)))}Tl(z)dz —0

for (14a) and (14b), respectively. In either case, equality holds for all continuous
T, vanishing at endpoints, which is sufficient to imply that the bracketed expres-
sions are identically O on the range [0,a]. This yields the differential equations

T(z) =z+ (co/er) (pr(2)Ipe(2)) (pgu(T(2)) — piros(T(2))) (15a)
and
'5% T'(z) = 2T (z) = (2¢3/c)(T'(2))? - (pg,(T(2)) — prp(T(2))), (15b)

respectively. Both equations may be solved numerically on a digital computer.
For reasonably typical functions p¢(z), p(z), and p,,(z), the desired T will not
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Fic. 4b. Max’s quantizer with N = 36. The output levels have been transformed to be spaced
equidistantly on the interval —3.35, 3.35.

vary too drastically from the identity transformation. The solutions obtained
from Eqgs. (15a) and (15b) may not be monotonic increasing, even through that
assumption was used in the derivation. Thus the constants ¢; and ¢, may have to
be adjusted in order to assure that the solution 7" will be monotonic.

Suppose that the desired histogram p,(z) is uniform, and that p,(z) = ps(z)
for all z. Then when we replace z by T7'(z), Eq. (15a) becomes

v d (e pa(T ()
() dz(q )

or, by letting S = 77!, we have

S(2) — (L (528 () = = (15¢)

C1

>

This diffusion equation may be solved using a Newton’s approximation method
for matrices in conjunction with a linear equation solver (for tridiagonal matri-
ces) [16].
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Figure 3 shows the result of applying this solution to an adjusted normal den-
sity function (Fig. 3a)

ps(2) = [1/(2m) ] *2 + (s]a),

where
S:f [1/(27m) 2] e ®2ds.

Here the gray-level range is assumed to be [—a,a], and the weighting constants
satisfy ¢,/c; = V2. The resulting output distribution has been smoothed slightly,
and is shown in Fig. 3b. Since the solution for T behaves rather critically in the
regions around z = =1 (where p;/(z) = 0), this smoothing procedure permits a
larger value for c,/c, than would be allowed by the monotonicity restriction, and
ensures a smooth, near-optimal output distribution.

Figure 3 may be compared with Fig. 4, where we show the initial and output
density functions obtained from the minimal distortion quantizer as given by
Max [5].
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