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Abstract

Gaussian blur. or convolution against a Gaussian ker-
nel. is one of the most common models for image and signal
degradation. We are concerned with the inverse of this pro-
cess. or Gaussian de-blurring. \s in the process of blurring,
we seek a linear deblurring kernel. Although the inverse
of a Gaussian cannot be represented exactly as a convolu-
tion kernel in the spatial domain. by restricting the space
of allowable functions to polynomials of fixed finite degree
then a convolution inverse does exit. Constructive formulas
for the de-blurring kernels are derived in terms of Hermite
polynomials. For image polynomials of fixed degree N, the i
corresponding kernel gives stable deblurring among the class
of functions which are Gaussian filtered versions of data well
approximated by polynomials of degree N’ and less. Stated
differently, the de-blurring kernels are pseudo-inverses of the
Gaussian convolution operator.

1. Introduction

Given an image or a signal, the realization of any prac-
tical system for processing it must introduce some amount
of degradation. Since almost all of these systems consist
of several stages, each of which contributes to the degrada-
tion, they often compose into what appears to be a Gaussian
degradation. In this paper we shall be concerned with in-
verting this process, or the de-blurring of Gaussian blur.

Our model of blur is as a spatially invariant Gaussian
point spread function within a linear system. Formally this
leads to convolutions, as follows. Let f(r) denote the original
image function, € IR". Then the observable - but blurred
- function h(z) is given by:

h(z) = K(z,t) s f(1)
- /m" K(z - €.0/(§)de,

where
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is the Gaussian kernel, whose extent is parameterized by
t > 0. It is normalized to have unit mass.

K(z,t) =
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The problem of Gaussian de-blurring can now be formu-
lated: How can the original data f(r) be reconsiructed when
only h(z) and the amount of blurring ¢ are known? Again,
we shall formulate this as a convolution. and we seek a filter
D(z,t) such that

J(z) = D(z,t) + h(z)

= D(z.t) » K(z,t) » f(z) ;

for f(z) among a class of functions. .

Our motivation for choosing this problem is two-fold. '
Firstly, many practical imaging configurations are structured l
in a manner that introduces blur either optically or for other ,
reasons (e.g. computerized tomography 'Herman, 19801), -
and the Gaussian is the natural first approximatidn to this
blur. And sensors are becoming far more reliable at higher
light levels, leaving deterministic sources of blur more salient. ;
Techniques for reducing this blur are thus of practical impor-
tance. .There are even applications in physiological optics.
such as the de-focusing that automatically takes place for
objects outside of the depth of field of an accornodated eye.

Our second motivation is theoretical. It is well known
that while the deblurring problem is in general non-invertible
from Fourier considerations and unstable, ! it is nonethe
less possible to achieve acceptable deblurring under certain
conditions. One way to accomplish this is by means of a
pseudo-inverse } which is an exact inverse under restricted
conditions. Although such results have been available in the
mathematical literature for some time ‘John. 1955!, they are
not widely known within the computational vision and im-
age processing communities. Rather, the image processing
community typically formulates the problem purely in dis-
crete terms by applying algebraic pseudo-inverse techniques'
le.g., Pratt, 1978]. But this obscures the analytical struc—:
ture of the process, leaving central notions such as the order
of the de-blurring pseudoinverse implicit. Pseudo-inverses
imply notions of approximation, and one would like a for-
mulation in which the degree of this approximation could be
made explicit. Then one could understand how the structure
of the de-blurring kernels changed as a function of the order
of approximation.

t One must be clear about the fundamental distinction between a “stable”
or “unstable” problem (in the Numerical Analysis literature it is usually
refered to as a well- or ill-conditioned problem [e.g. see Stewart, 1973 )
as opposed to 3 stable or unstable algorithm for a given problem. Hence-
forth, stability will mean differently when applied to a problem «r an
algorithm.

-

Also, refered toas a “generaliz-d iuverse.®




In this paper, we derive kernels which can be used to
deblur a fixed amount of Gaussian blur. They accomplish
this inverse process ezactly, and stably. among polynomials
of fixed degree. Our analysis uses Hermite polynomials, a

time. Blurring is the forward problem. and deblurring is the
inverse problem. Formally, the problem of reconstructing
f(z) given h(z) and t is the inverse heat equation problem,
since the function h(z) represents a distribution of heat after

t units of time, where f(z) is the initial ¢ = 0 distribution.
As in the forward or blurring problem. which was mod-

natural choice for reasons that will become clear shortly.
The explicit formulas for the de-blurring filters are given in
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the main theorem in Section 5. Since the analysis leading to
this theorem is technical. we provide motivating background
in the next section.

2. Background

2.1 Blurring and Diffusion

" There is a fundamental connection between blurring, de-
blurring. and the heat equation. It is provided by the struc-
ture of the Gaussian distribution. as the following example
illustrates. Consider a rod of infinite length onto which an
impulse of heat is placed at some position. As time evolves.
the heat will diffuse and the original impulse will spead out.
By basic physics the resulting temperature distribution will
approximate a Gaussian whose extent depends on the el-
lapsed time [see e.g., Feynman, 1963,. By superposition, the
model for the temperature distribution along the rod at any
time is the initial temperature distribution convolved with a
Gaussian. This is the physically realized solution to the heat

equation !. The spatial parameter for the Gaussian depends
on how much time has evolved. and the diffusion process

effectively blurs the initial temperature distribution incre-
mentally. In the notation introduced in Sec. 1. if f(z) is the
initial temperature distribution. then h{r.t) = K(z,t)* f(z)
is the blurred distribution after ¢ units of time. Formally,
this is an initial value problem. and can be stated as follows:
given f(z) and t, find h(z,t) satisfying

Ak =0h/3t.  h(z,0) = f(z).

We, of course. will interpret f(z) as an image.
Two basic observations follow from this formulation of
the blurring problem that will be important in the analysis.

First, note that the space of initial distributions that can

be blurred is a large one; it essentially corresponds to any
function for which the convolution integral is defined, and
clearly includes some discontinuous ones. Second, suppose
that a function f(z) has been blurred for some time, say
to, resulting in h(z,t5). This resultant function could subse-
quently be blurred further, say to t;, with t; > tg. These two
blurring operators, each of which may have its own physical
justification, results in one composite Gaussian operator. In-
deed, by the central limit theorem, other blurring operators
compose into approximate Gaussians when iterated.

2.2 Deblurring and the Inverse Heat Problem -

Since deblurring is the inverse of blurring, the preceeding
connection between blurring and diffusion suggests that de-
blurring can be modeled as a diffusion running backwards in

1 the so-called *source kernel® Widder. 1273 .
) .

eled as convolutions of the original data against a “blur-
ring kernel” (a Gaussian), our goal now is to find “deblur-
ring kernels”, or kernels against which the blurred data can
be convolved to vield the deblurred original. However, the
mathematics is not straightforward. There are a number
of technical differences which make the deblurring problem
more difficult than blurring. While the blurring (or heat
diffusion) problem can be solved for almost all distributions
(i-e., the solution is just a smoothed version of the initial
data), the inverse problem is defined only for a restricted
class of functions. Running “time” backwards makes it im-
possible, in general, to reconstruct the original data f(z)
from the blurred data h(z). First. not all functions h(x) are
blurred versions of some original function f(z). Secondly,
the blurring operator is not a one-to-one mapping in a gen-
eral function space. There exist pairs of distinct functions.
f(z) and f(z), which yield the same blurred function h(z).
Finally. in a general function space the deblurring problem
is horribly ill-conditioned. In other words, arbitrary small
perturbations in the given function h(r) can lead to large
changes in the reconstruction of f(z).

These difficulties are so severe that one might be pes-
simistic about any progress toward discovering deblurring
kernels. However, the deblurring problem can be given a
pseudo-tnverse formulation. which leads 0 a well-conditioned
problem. We formulate the pseudo-inverse problem for poly-
nomial data in section 3, and present the deblurring kernels
for polynomials in (5.5). The structure of these kernels is
a function of the order of approximation. revealing how the
solution to the problem changes as the data become more
complex.

3. Pseudoinverse Formulation

Let T denote the blurring opertor. which takes functions
in a large normed space A into much smoother functions, also
in A. Although T is a continuous operator, for nearly any
choice of A, T has no continuous inverse defined on its range.

The idea of a pseuoinverseis as follows: Consider a closed
subspace M C A. The image of M under T will also be a
closed subspace, and so if A is a complete Hilbert space, one
can pose the problem

Given hE€ A, find feM minimizing ;T f - hj].

The solution f to this minimization problem is the pseudo-
inverse of h under the map T on A relative to the subspace
M, and will be denoted A}'h.

In our case, weset A = E’(e"zd:). an enormous Hilbert
space. which contains distributions which are not tempered.
We set M = Py. the space of polynomials of degree N and




X SN DU TR

wKL 0.

54

¥

g dh :“‘-}(',\‘:,':,. vy e

et ke iy il

]
3
¢
_’.
3

less. In section 4, we will note that M is T-invariant. Since
M is finite dimensional and T is one-to-one, T is an iso-
morphism of M onto M. Thus the problem of finding the
pseudo-inverse of h is equivalent to finding f such that T f
is the orthogonal projection of h onto M. An algorithm for
computing f can therefore be constructed by projecting h
to h' on M. and then solving the finite dimensional problem
T f = h'. Clearly, this process is stable for fixed V.

In section 5. we present the solution to the deblurring
problem on M, so that the problem T f = A’ is solved by a
convolution

f =Dy R
It is evident that for A < A, and A’ the orthogonal projection
of h onto M = Py,

Dy xh =Dy +h'.

Thus the entire algorithm, projection onto M and inverting
T on M. can be represented by a single convolution. In fact,
the kernels Dx given in section 5 are unique in having this
double property.

4. The Deblurring Problem

Consider the operator {); defined on L?(IR) by the equa-
tion

(0f)(v) = / L ety - 2)ds

—oc 2\t
For t > 0. {1, is a compact symmetric bounded linear opera-
tor on [*(IR) mapping into L?(IR). This operator has many
special properties. such as ~

Qo fl, = N+

and
u(z,t) = (ﬂgf)(:).

It satisfies the heat equation
Au = uy,

with

u{z,0) = f(z):
see {Bers. John, Schechter|. If we denote the Fourier trans-
form of a function g(x) by §(w), then ¢ is a multiplier op-
erator given by

(Qf)(w) = e f(w)
By means of this formula, {1, can be extended to operate
on the class of temperate distributions S’ of Fourier trans-
formable distributions [Hormander, 1983]. In particular, O f
is defined for any polynomial f.
1

We will specialize to the case of t = , and set

TS =Ml = \if’ ot (4.1)

By suitably scaling the spatial parameter z € IR. f};, ¢t >0.
can be seen to be equivanlent to T operating on a rescaled
version of f. "~

.

h— e e ——

From the Fourier multiplier formula

(THW) e~ . (4.2)

2 PO .
and the fact that e™¥ /4 £ 0 for all w, it is clear that T is
one-to-one on any space of Fourier transformable functions.

Further, since the inverse of the multiplier. e"z/‘, has no in-
verse Fourier transform, the inverseof T is not representable
as a convolution, nor can be applied to the general space of
all Fourier transformable functions. Instead. we can restrict
the domain of T. and then represent its inverse as a convo-

lution on the range of T. Many such restricted domains are |

possible. In the next section, we consider 7 restricted tv the
class of polynomials of degree N or less.

5. Polynomial Domains

Let Py denote the space of polynomials over IR of degree !

less than or equal to N. The monomials {l.z',:c'—’,...,:tN}

form a basis for Py. If this basis is orthonormalized with !

respect to the inner product

o= [  f()g(z)e " dx. (5.1)

then the basis of Hermite polynomials {Ha. Hy,... . Hx} re-
sult. The Hermites can be represented explicitly:

ni2} " am
Hn(I _Y)'Z(‘l)my‘n'('%:) 2’;)—; (5.2)

me
or by the Rodrigues formula:

2 d"
&), (53)
see, e.g., |Courant and Hilbert, 1962 or [Lebedev, 1965 .
Our main result is that 7 ~! restricted to Px can be
represented by a convolution with an explicit kernel Dy(z):

Hp(z) = (-1)%

Theorem: For f € Py and g = T f, then

f=Dn=xg (5.4) ‘

where

[N/z

1)"
Z k2 Hax(z). (5.8)

The detailed proof of the above theorem, together with the
mathematics that leads to it can be found in |Kimia, Zucker,
and [Humme!, Kimia, Zucker| and is omitted here for brevity.

It is interesting to compare the form of Dy(z) with stan-
dard enhancement filters. For example, for V = 3,

2 2 0
Di3(z) = ﬁc" (1-1zx%),
which is a not uncommon high emphasis filter (see, e.g.. the

papers by E. Mach in ‘Ratliff, 1965 . and Rosenfeld and
Kak, 1976..
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6. Higher Dimensions

The Gaussian blur operator is given by

i) = [ttt (o)

Due to the separability of the kernel and Fubini’s theorem.
T can be decomposed into ,n iterared blurrings:

T=T T-...°Ta (6.2)
(T = [ e o (63)
-oc \ &
It can be shown. :Hummel. Kimia. Zucker}, that deblur-
ring of blured polynomials of degree N can be accomplished
by convolution against the kernel

Dy*(z) = Dx(z1)Dn(x2) ... Dn(zn). (6.4)

Thus the situation in higher dimensions is similar to the
one dimensional case. The deblurring convolution kernel is
separable, and will be of the form e"zP(z), where P(z) is
a polynomial of degree nN in £ € IR". Figure 1 shows a plot
of D" forn=2,N =3.

7. Conclusions

Gaussian blur is one of the most common forms of degra-
dation affecting signals and images. It is unfortunately non-
invertible in general. but pseudo-inverses are possible. In
this paper we formulated a precise version of the Gaussian
deblurring probleni. and ohtained formulae for the kernels
of deblurring filters in terms of Hermite polynomials. One
then simply needs to convolve these kernels against (blurred)
images to effect deblurring. As the order of the kernel in-
creases, the space on which deblurring is exact increases as
well.

The mathematics used in formulating the deblurring ker-
nels were based on the heat equation. The connection be-
tween blurring and the heat equation is provided by the
Gaussian: the spread of any heat distribution is governed
by convolutions against a Gaussian kernel. Deblurring then
amounts to solving the heat equation backwards in time.

However, backward solutions to the heat equation are no-
toriously unstable. Nevertheless, we have been able to show
that stable deblurring is possible in principle for a class of
image functions, and, perhaps more importantly, that some
degree of stable deblurring is possible in practice for real
images. The example in the paper was obtained using the
most straightforward implementation. More serious atten-
tion to numerical issues, such as arithmetic precision and
quadrature, could possibly lead to even better results.
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Figure 1. One dimensional deblurring kernel, Dy, N = 9.
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Figure 2. Twodimensional deblurring kernel. Dy (z,.22). N =
3. Note the sign changes in the kernel surround-
ing the central positive peak.




