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A class of feature-detection operations using orthonormal basis functions is intro-

duced. The basis functions are derived from the Karhunen—Lo&ve expansion of the local

" image data. This theory is applied to define a new edge detector which can be adjusted
to have increased sensitivity in any desired orientation.

1. INTRODUCTION

In his papers on edge and line detection in digital imagery [1, 2], Hueckel
_introduced a local operator which makes use of a finite set of orthonormal basis

functions to reduce the complexity of the local data. His operator may be regarded
as an example of a more general class of feature detectors which locate instances of
a target set of patterns (such as edges or lines) in digitized pictures. Typically,
the target patterns can be parameterized by variables representing the local mean
gray level, orientation, size, variance, and possibly other properties, so that the
pattern can be described by the values of a few identifying parameters. For
example, the edge-line patterns described by Hueckel [2] can be specified by six
independent parameters. The object of a simple feature detector is to find the
parameter values of the target pattern closest to the local input data, and output
some measure of the degree of match between the best pattern and the actual
data. One method of performing this function is to execute an exhaustive search
of the target patterns to locate the best parameters. An economical feature
detector attempts to find the approximately best parameters without an exhaus-
tive search. For this purpose, it is useful to project the initial local data and the -
set of target patterns onto a finite-dimensional subspace in order to reduce the
complexity of the data, and to permit a functional dependence between the
parameter values of the best pattern and the coordinate values of the initial data
in the finite-dimensional subspace. -

Let us consider the components of a general feature detector using orthonormal
basis functions. We will eventually give selection criteria for the basis functions
and define detectors which take into account initial bias, suitable for iterative
implementations such as relaxation techniques [3].

Let 8,,...,.(2, ¥) represent the k-parameter family of target patterns defined
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on the unit disk ©. For an input signal I(z, y) defined on D, we seck values py,
.e., Pi 80 that [|I — 8;,...p,]| is minimized. The most convenient norm || || is

usually the L? norm ;
12 [ [ e, vydsd

Suppose M is a finite-dimensional subspace of L?(D). We may then find an
orthonormal basis for M, say {¢1, ¢2, ..., ¢x}. Denote by I’ the orthogonal
projection of I onto M. Thus

N
Il(x) Z/) = ;1 ciﬁoi(x: y);
where

¢ = / ./:DI (z, y) HEA y)dxdy./‘

Similarly, 8,,...,, denotes the projection of the pattern S,,...,,. If M is chosen
carefully, this projection will be one-to-one on the class of S-patterns. This
permits us to find values for py, ..., pix so that ||I’ — §',,...,.| is minimized.

Since [[I’ — 8’| < |[I — 8|, we have min ||I’ — §’|| < min ||I — 8||. Thus if
D1y - - -, pr minimizes || I’ — 8,,...,./| we have a lower bound for the distance from
I to the mainfold of target patterns. This inequality has two important conse-
quences:

(1) A faslure to find a target patiern on the M subspace fitting I’, i.e.,
min [|I’ — §’|| is large, signifies the nonexistence of a pattern fitting the input data.

(2) If I is exactly one of the S’s, say I = Sy, ...p, then I’ — 8 p...0xll = 0
will be the unique minimum for ||[I' — S'||, so that the process of minimizing
1" — 8'|| will find the exact paramelers, py, ..., P

Thus the feature operator acts as a screen for possible pattern matches, since

(1) ensures that eliminated patterns do not contain a match, whereas (2) ensures
that no true match is missed. In addition, if M is choseh judiciously, we may as-
sume that , :

(8) The parameters minimizing ||I' — 8',,..5,| are close in value to the
parameters minimizing |I — Sp,.. 5|, whenever I is fairly close to an S.

The value of k unknowns py, ..., px minimizing ||[I’ — §,,.. 5, ]| satisfy the &
equations

i)
E_HI' - Slm‘---pk” =0, 1= 1, e ke (1)

In Hueckel’s operator, M is chosen to be a nine-dimensional subspace so that the
resulting equations may be reduced to a sequence of polynomials, which may be
solved successively using the equations for roots to polynomials of degree four and
less. To do this, he first isolates the angular dependence :

1’ = So.pan.mll® = 5O + 90, P2, ..., PO,
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where
f(e) = min ”I,"" Slﬂ.pz...penz'
Dgreves Pg
Thus ¢ is nonnegative, and for a fixed 8 one can find values p:(6), ..., pe(6)
solving g (8, p2(8), ..., ps(8)) = 0.
The parameter values 6, ps, ..., ps minimizing ||’ — §’|| can then be found
from

af '
— () =0, f(6) minimized;
a6

P2 =p2(0); ...;
Ps = Da(6).

It works out that finding 8 minimizing f(6) is equivalent to solving a quartic
polynomial, while the remaining variables can be solved using the quadratic
formula and solutions to linear equations. Unfortunately, this method does not
always yield values of ps, ..., ps which are within the permitted ranges, nor
can one guarantee that the parameters will be real (as opposed to complex)
valued [4]. Nonetheless, the error ||[I’ — §’|| which results is a lower bound for
the error ||I — S|| minimized over all admissible patterns. As mentioned earlier,
this effectively screens the data for potential pattern matches.

In this way, the parameters for the best edge/line projected onto M can be
found by using formulas which depend only on the coefficients c1, ..., ¢ of the
basis functions in the expansion of I’. In fact, a large class of feature detectors can
be regarded as functionals depending on a few coefficients in the expansion of the
local gray level values in terms of a fixed set of basis functions. For example, the
gradient operator depends on the samples obtained from differences of averages
in the horizontal and vertical directions. The two corresponding basis functions
have a region of positive support opposite a region of negative support. As
another example, consider a linear operator

.0 =//;) T (z, Y1 (z, y)dzdy.

Clearly, this operator simply samples the coefficient of T'(z, y), a single basis
function generating a one-dimensional subspace.

We would like a general method to derive a Hueckel-like operator for any
specified feature detector. What basis functions should we use so as to best repre-
sent the feature information in the local data? The sample values obtained by
integrating the local data against the basis functions must determine the param-
eter values of the best feature pattern. So the basis functions should attempt to
preserve, as well as possible, the information about parameter values in the feature
patterns. In addition, the equations governing the optimal parameter values will
become too complicated for an economical algorithm if M is chosen incorrectly
or too many basis functions are used to define M.

In Section 2, we describe a general method for finding a sequence of basis
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functions which preserve the feature information, and thus permit the develop-
ment of a Hueckel-like feature detector. This method allows one to vary the
basis functions according to initial expectations in the probability distribution of
target patterns. Unfortunately, there is no guarantee that the resulting minimiza-
tion problem will admit a functional solution, or even a fast iterative approximate
solution. However, if the basis functions are kept small in number, and perhaps
cleverly modified, the resulting minimization will sometimes be equivalent to
finding the roots of low-order polynomials. In Section 3, we apply this theory to
a simplified edge-detection problem, where the orientation of the edge is treated
as the principal unknown. Section 4 extends this edge detector to the case where
prior knowledge biases the expected orientation distribution of the edges. This
extension demonstrates how the choice of basis functions can be used as a tool
in a process of iterative. refinement of feature parameters in scene analysis.
Sections 5 and 6 present some experimental results and a summary of the principal
results.

2. OPTIMAL BASIS FUNCTIONS

The basis functions which define a finite-dimensional subspace of local patterns
and thereby determine the feature operator should preserve the feature informa-
tion. One way to preserve information is to require that S’ be a good approxima-
tion of S. In general, the discriminability of the parameters will be maximized
providing that the projection of I to I’ maps onto a subspace M which is “parallel”
to the manifold of patterns S. These two observations coincide if we make certain
assumptions about the set of target patterns S. Specifically, we assume that all
patterns S have zero mean and unit mean square norm. This may be assumed
without loss of generality, since each local input pattern can be normalized,
thereby eliminating two parameters (which should be independent of the others)
at the very start of the problem.

The primary selection criterion for M, accordlngly, is that the expected value
of ||]S — 8’| should be minimal. This expectation, of ¢ourse, is taken over the
set of target patterns parameterized by py, ..., pi, and is weighted according to
the probability density of occurrence of the patterns. If we regard the S’s as a
random field with probability density f(pi, ..., ps), then the problem is to find
orthornormal basis functions ¢;, ¢, ... such that the expected truncation error
is minimized, i.e., '

N
E{||S — X a;¢;:]|} minimized,
i=1 -
where

- f /@ 8@, 1) oi(z, sy,

This problem is solved by the classical theory of optimal sampling using the
Karhunen-Logve basis functions [5, 6. The solution yields the ¢; as solutions to
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the integral eigenvalue problem

f/R(x, ¥, &, Y i@, y)de'dy’ = Niei(x, ¥), M2 A2 N.. >0, (2)
/

where
R(xl Y, xly y/) = E{S(xl y)'S(xI; :’/)}*

The autocorrelation function R can be computed :

X f(py .., Pr)dpudps. . .dpe.  (3)

Since R is an autocorrelation, it forms the kernel of a positive definite compact
operator, so that the eigenvalues will be positive real and countable. The desired
subspace M used to define the feature operator is obtained from the first few
eigenfunctions corresponding to the largest eigenvalues Ay > Ay > - - -.

Sometimes Eq. (2) will admit an exact analytical solution. Sometimes the
equation must be solved numerically by using a quadrature representation of the
integral and standard matrix eigenanalysis routines. Alternatively, (2) can be
transformed into a boundary value differential equation, which can be solved
numerically. Once basis functions are determined, the complete feature detector
can be defined.

Feature detection using orthonormal basis functions as proposed in Section 1
has three main components. First, one must find the coefficients of the local
expansion

1

i‘”— I ) [ACS) ]
= / /:,D (=, 9) vs(a, ¥)dzdy (48)

where I (z, y) specifies the local data. Next, one must find the values of the param-
eters py, ..., pr which minimize the error

s ..oy 1) = f fD LS m oy (@ 9) — 3 cigila, ) Pdady.  (4b)

Finally, some measure of the quality of the match must be made to determine the
output of the feature detector. The most logical measure is

Q- f / [Sou..ns(®, 4) — 1(x, y) Tdady. (40)

The third step, which computes ||I — S||?, is unnecessary if the value of
e = |[I’ — S'||? is large enough to indicate the lack of a match. However, if the
third step is ignored and € is used as an estimate for @, then the operator may
incorrectly respond when no true match is present.

The parameter values minimizing Eq. (4b) will satisfy Eq. (1). This crucial
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step of the feature detector may pose mathematically intractable problems,
especially if too many basis functions are used. In the example described in
Sections 3 and 4, however, no difficulties arise.

We should mention that the idea of employing Karhunen-Loéve basis func-
tions to assist in feature selection is a standard technique in the field of pattern
recognition [11]. In pattern recognition, however, the goal is to recognize an
instance of one of the feature samples without specifying the parameter values of
that sample. Our purpose in using Karhunen-Logve basis functions is different :
We wish to preserve the feature parameter information in order that the solution
to (4b) should yield the most likely feature pattern candidate.

3. EDGE DETECTION

Let us restrict our attention to the detection of edges which pass through the
central point of a circular neighborhood. This restriction will require the applica-
tion of edge detectors at every point, and may require the use of thinning after
edges are detected. However, these detectors are uniformly sensitive across the
image, which is desirable for parallel implementations. Moreover, we avoid the
complex-root objections to the Hueckel operator [4]. The more general case,
including parameters for edge displacement, could be treated numerically using
a more complicated version of the techniques demonstrated here.

For comparison, a survey of common edge techniques can be found in [77].
In particular, Griffith’s operator [8] and Chow’s operator [9] (in addition to
Hueckel’s) attempt to find an optimal edge based on a model of ideal edges.
Other approaches to edge detection are discussed in [5].

Our model of ideal edges is a one-parameter family of functions defined on the
unit disk whose representation in polar coordinates (with the origin at the center)
is given by

Se(r, 0) =x0 — ), (5)

where x is a periodic function which is +1 on the upper half circle and —1 on the
lower half circle. Recall that these target patterns have been normalized to have
zero mean and unit mean square norm.

Suppose that the expected probability density of these edges is given by f(¥).
We assume that f(¥ + ) = f(¥), which says that Sy and S_¢ (= —8y¢) occur
equally often. By permitting nonuniform densities, the edge detector may be
designed to be more sensitive to certain orientations (Section 4).

The autocorrelation function (Eq. (3)) can be obtained by integrating with
respect to f(¥)d¥. In polar coordinates, the function R(ry, 81, 2, 82) = R(8:, 82)
satisfies

R(@,B8) =1—4|P(a) — P(B)], for 0<Le B<m

R(e,8) = R(B,0), and R+, B = — R, 8),
where

Pla) = / ) f®W)d¥, 0<a<2m (6)

The basis functions are eigenfunctions of the eigenvalue problem in Eq. (2).
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Since the autocorrelation function is independent of the radial components
71, T2, the eigenfunction ¢;(r, §) will likewise be independent of r. This reduces the
eigenvalue problem to finding a sequence of basis functions eir, 0) = ¢i(8),
i=1,2, ..., satisfying

/ R(a, B) ¢:(B)dB = Nigi(a), A > A > -

By differentiating twice, one can transform the integral eigenvalue problem into
a differential equation

(¢'s(@)/ f(@) + (4/M) ¢ila) = 0. Q)
Boundary conditions must be imposed and can be derived from the property
R(a + m, B) = — R(a, B) and the integral equation. One obtains ¢i(e + 7)

= — ¢i(a). Note that ¢, is periodic with period 27. )
For example, suppose that the probability density function is uniform, so that
f(e) = 1/2x. Then (7) becomes

8
¢"i(a) + = ¢i(a) =0,

with the condition ¢:(@ + 7) = — @i(a). Solutions are obtained for N, = 8x/n?,
n=1,3,5, ...; each eigenspace is spanned by the functions 0 (8) = cos (nf)
and ¢n41(8) = sin (nd). Thus the first four basis functions for optimal edge
detection with unbiased initial density (see Fig. 1) are given by

o1(r, 8) = cos 9,
@2(r, 8) = sin @,
@3(r, 8) = cos 30,
¢4(7, 8) = sin 36.

It is of interest to compare these basis functions with those used by Hueckel.
The first two functions are essentially Hueckel’s H; and H; (without feathering the
functions to zero at the edges). The Hueckel edge detector must be able to detect
laterally displaced edges within the neighborhood and accordingly includes basis
functions suitable for that purpose which are not present here. However, none
of his basis functions measure the cos 36 and sin 36 components. By including these
basis functions, our operator should be more orientation specific.

The complete operator is derived from Egs. (4a), (4b), and (4¢). The value of
9, which minimizes (4b) can be shown to satisfy the equation

N ,
2 cipi(o) = 0. (8)
t=1
The coefficients c; are obtained from Eq. (45) , using normalized input data I(z, ).
Note, however, that the normalization process simply transforms the coefficients
by a constant multiplicative factor when the above basis functions are used.
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L1

Fia. 1. Templates for first four basis funetions, unbiased edge detection. Background gray level =0.

Thus the solution of (8) remains unchanged, and so normalization of local input
data is unnecessary.
For N = 2, (8) becomes
¢1cos 8, + cosin b, = 0, (9a)
and for N = 4, we have

cyeosf, + cosinf, + ¢; cos 30, + ¢y sin 36, = 0. B r: (9b)

The case N = 2 is solved by the formula 6, = arctan (—e¢i/¢s), or by noting that
the vector (eci, ¢2), points in a direction normal to the proposed edge. The
N = 4 case may be reduced to a cubic polynomial equation, with either a single
real root 6, (modulo =), or three distinet roots, one of which minimizes (4b).
However, if three roots are found, then the function ¥ ¢;¢:(6), which approxi-
mates I(0), certainly does not represent a “good” edge in any orientation. If
three real roots occur, the edge detector may return immediately with the re-
sponse that no edge was found.

The reduction to a cubic equation may be done in several ways. One method
is to expand the 36, terms in (9b), divide by cos® 8,, and substitute 1 4 tan? 4, for
sec? f, to obtain

(cz — c)z® + (61 — 3es)z® + (e2 + 3edxr 4+ (e1 — ¢3) = 0, (10)

where x = tan f,. If cos @, = 0, this derivation is improper. However, this case
arises only when 8, = x/2 is a solution of (9b), which requires that as = as. Thus
if (10) reduces to a quadratic equation, the “missing root” is 6, = /2.

Note also that the first two basis functions have attenuated support regions in
the diagonal directions, i.c., ¢i(r, 7/4) = 1/2! < 1. In the past, essentially
intuitive arguments have been used to derive edge detectors with the same
qualitative form (see, e.g., the Sobel edge detector in [12, p. 2717).
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One root of (10) will always be real, while the remaining roots will either both
be real or both complex. The discriminant is a positive multiple of

D = 4aza:® — a?a? — 18asa:a1a0 + 4as’ae 1+ 27as%?,

where @; is the coefficient of z¢ in (10). When D is negative, a single real root
exists and gives the optimum value for 8,. When D is zero or slightly positive, the
optimum @ corresponds to the isolated root. If D is large and positive, three widely
separated real roots exist. This case arises when the contribution from the second
pair of basis functions is greater than the first, indicating that no edge, in fact, is
present.

4. ORIENTATION BIAS

Suppose that we have reason to believe that a horizontal edge passes through
the center of a neighborhood, and-want the edge detector to look more closely
for horizontal edges. We choose a nonzero density distribution favoring horizontal

edges given by
fr(a) . ( o ) (11)
r a = -_—
27 \(1 4 )2 — 472 cos? o ’

where 0 < r < 1 is a parameterization of the degree of bias for horizontal edges.
This distribution was chosen using the following considerations:

@ fole) = 1/2r;
(i) 2@ = 1/2(a(e) + 5. (@));
i) [ fi@da=1 0<r<i;

(iv) Thus u(re®®) = f,(a) is harmonic at 0.

Equation (11) represents the unique set of functions f, satisfying (i), (ii) such
that «(2) defined in (iv) is harmonic in the disk [2]| < 1.

By expanding ¢;(a) in terms of cosines and sines, the differential equation (7)
becomes an infinite matrix problem, which may be solved numerically to any
degree of accuracy desired (see Appendix). Alternatively, one could choose to
find a numerical solution to the integral eigenvalue problem directly, using the
kernel obtained by substituting (11) into (6): R(e, 8) = 1 — 4|P(a) — P(8)|,
with P(a) = 1/27 arctan ((1 + 7%)/(1 — %) tan «). Here the arctan branch must
be chosen so that the angle returned is in the same quadrant as a.

Figure 2 displays the first four basis functions (corresponding to the largest
eigenvalues Ay, ..., As) for optimal sampling of edges, as computed numerically
for r = 0.8. Note how the bias for horizontal edges is reflected by larger magni-
tudes in the vertical directions, thus using the values in the normal directions to
the edge to a greater extent. Basis functions which are designed to favor edges in
any particular orientation may be obtained by simply rotating these solutions by
the appropriate angle. The angular dependence of ¢; of Fig. 2 is shown in Fig. 3.
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Fra. 2. Templates for first four basis functions, horizontal edge bias, r = 0.8. Note that ¢, 1s
the sine series and so measures the step across the horizontal axis.

Thus, as shown in the Appendix, for bias in the ¥ direction ¢;(f) is given by

ei(0) = X azteos (2k — 1)(0 — ¥) 4 biisin (28 — 1) (0 — ¥),
k=1
where for fixed 7, either ai’ = 0 for all &k or b, = 0 for all k. The coefficients
{a;’} and {b;'} are obtained as the eigenvectors of infinite matrix problems.
The biased edge detector can now be defined. First, the coefficients ¢; are ob-
tained from a local sum of the input data against the basis functions. Note that

Fia. 3. ¢1(8) for biased edge detection, r = 0.8.
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this sum (Eq. (4a)) can be rewritten as a sum of samples obtained from the un-
biased case:

= é i / f I(r, 8) sin ((2k — 1)(6 — ¥))rdrdo

k=1

+ 3 b / f I(r, 6) cos ((2k — 1)(8 — ¥))rdrds.

However, this sum should not be truncated to include only four terms, because
then the entire edge detection process depends on the first four unbiased samples,
and the potential advantage of iterative improvement through successive biasing
is lost.

Next, Eq. (4b) can be appromma.tely solved by finding 6, such that

§ cipi(6) = o ' (12)

Actually, this equation corresponds to minimizing |[Se, — I’|| ; the approximation
is very close provided 6, is close to ¥. To solve (12), for example, for N = 4, one
must find 6, such that

Z (Z axic:) cos (2k — 1) (8, — ¥) + (Z bi'c;) sin (2k — 1)(8, — ¥) = 0. (13)

The coefficients are easily obtained from the known eigenvectors and the samples
ci. Rather than searching for a zero 6, of (13), it is easier to find an approximate
solution by solvmg

&1 cos (8, — ¥) + & sin (0, — ¥) + & cos 3(8, — ¥) + & sin 3(6, — ¥) = 0,

where

4
= Z as'e, & = 2 bi'c;,
=1

i=1
4 . : 4 .
& = X asc, &= X bic, (14)

1 . =1

i.e., by solving a truncated version of Eq. (13). As before, solving (14) is equiva-
lent to finding the roots of a cubic polynomial, and yields either a single solution
6, — ¥, or three distinct roots signifying a poor edge match in any orientation.
Finally Eq. (4c) may be used to check the quality of the detected edge, providing
the initial local data are normalized to have zero mean and unit mean square norm.

The biased edge detector is suitable for use in an iterative process of refinement
of orientation information. Initially, samples are obtained at each point cor-
responding to the unbiased basis functions sin 8, cos 8, sin 36, cos 3¢, and the best
edge at each point is determined by solving the N = 2 equation or a cubic poly-
nomial. Nonmaximum suppression can be used for thinning, especially since each
response contains a specific orientation estimate. At those locations where a good
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edge is detected, a biased edge detector is applied. The orientation and degree of
bias should be determined by the initial response of the edge detector at that
point. The response at neighboring points may be allowed to affect the biasing,
as in a relaxation labeling process [3 ]. This process is repeated until the amount
of biasing is large enough to justify the application of an orientation-specific
edge detector.

5. SOME EXPERIMENTS

Several experiments were conducted to study the advantages of using optimal
basis functions for edge detection. In particular, a comparison was made between
the results obtained using the unbiased edge operator deseribed above and using
an operator described by Meré and Vassy [10], which uses simple step functions
in the z and y directions as its basis funetions. This comparison is useful, since
the basis functions described here are truly optimal only for continuous images,
not discrete ones, and are based on a model of ideal edges not always present in
real image data.

The comparison experiments used neighborhoods of sizes 5 X 5, 7 X 7, and
9 X 9. The Hueckel operator [27] was also included in the latter two experiments,
though its inclusion is somewhat unfair since it was designed for use with slightly
larger windows.

Figure 4 shows the results of applying the Hueckel, Mer6/Vissy, and “optimal”
operators to an artificial image containing edge slopes of 5, 10, 20, 25, and 40°
from the horizontal or vertical, with and without noise. (The noise was un-
correlated, approximately binomial, zero-mean, with a standard deviation of 18
gray levels (the contrast is 45 levels).) The Hueckel operator performs more
poorly, while the other two operators perform quite comparably. (The optimal
operator’s output appears to broaden somewhat less when the neighborhood size

Bxb . Tx7 9x9

Ly

Original
images

Hueckel

Meré/Vassy

Optimal

Fia. 4. Results of applying Hueckel, Merd,/Vissy, and optimal operators to an artificial image
with and without noise, using 5 X 5, 7 X 7, and 9 X 9 neighborhoods.
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Original Mero/vVassy

Hueckel Optimal

Fia. 5. Results for an image of a face, using 7 X 7 neighborhoods.

is increased, as a result of the inclusion of two additional basis functions.) Figure 5
shows results for a 7 X 7 neighborhood size on an image of a face.

Quantitative comparison of the (serial) Hueckel operator with the (conceptually
parallel) Merd/Vissy and optimal operators is difficult ; but the latter two can be
quantitatively compared, as in Table 1. The Merd/Vassy operator seems to be at
least as good as the optimal operator at detecting edges in the presence of un-
correlated noise, but it is somewhat poorer at estimating the slopes of the edges.

6. SUMMARY

The principal result of this paper is that the Karhunen—Logéve sampling
theorem may be used to determine basis functions for the design of feature
detectors which attempt to locate and identify instances of a class of target
patterns in original data. This provides a framework for the definition of feature
detectors, and an aid in part of their development. A considerable amount of
caleulation and ingenuity may be necessary to apply these results and complete
the development of a specific detector.

Specifically, the designer must identify his set of target patterns, and compute

TABLE 1

Quantitative Comparisons of Merd/Vdssy and Optimal Operators

Edge slope estimation Tidge s/n for image s/n of 1.0

True Merd,/ Véssy Optimal Neighborhood — Merd/ Optimal
slope response response size Vissy

5° 8% 8 1k 6 5 X5 1.0 15|
(g 6° 7 7 9 T 2.2 2.0
20° k3 3 19 2 9xX9 27 2.6
25° 18° ) 25° 2
40° 39° 5 40° H
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their autocorrelation statistics. The application of the Karhunen-Lo&ve theorem
may require a numerical solution to the eigenvalue problem. He must then de-
sign an operator which identifies that patterns in the data projected onto the span
of the basis functions. The latter task has been regarded, in this paper, as a varia-
tional problem of determining parameter values for the L?-nearest projected target
pattern to the projected input data. The resulting equations may need to be
simplified or approximated in order to allow solvability. Other kinds of operators
are possible, however. For example, the designer might simply measure the
strength of the projection of normalized input data as in the pattern recognition
theory of feature selection using basis functions [11]. If the subspace determined
by the basis functions closely approximates the target pattern, this strength
should be high when a match is present.

The advantages of the optimal basis function approach to feature detection
include (i) detectors which screen for target patterns with a low miss rate, and
(ii) detectors which can be biased to “look more closely” for a particular pattern.
The operator may incorrectly respond when no match is present, although the use
of “optimal”’ basis functions attempts to minimize this problem. The mathe-
matical ability to bias the operator and reexamine the data in light of a priori
knowledge fits into the relaxation paradigm in which different sources of knowl-
edge are allowed to influence the updating of the labeling. Since the synthesis of
a decision is based upon cooperating and competing sources, the potential for
biasing the examination of one feature represents a possibility for eliminating
incongruities. The ability of low-level processes to “look back” at original data
or other feature data has sometimes been viewed as an unavailable or inap-
propriate option, and sometimes simply rejected. While the mathematical
capability does not argue that the technique is ‘““visionlike,” the availability of
classes of biased feature detectors can certainly aid in the construction of vision
systems in which many knowledge sources ultimately cooperate in a labeling
decision. \

APPENDIX: MATRIX DERIVATION OF THE EIGENFUNCTIONS

Expand
ei(a) = 2 @, cos na + ba,sin na.
S
Then since
1 14 )2 4r?
_— = 2#[ — cos? a:l,
fla) 1—rt 1=
we have
'
¢ i(a) 27 (1 + r2)2
= {————-—— [—na, sin na 4+ nb, cos na]
 f(a) . nodd 1—nr

8mr?

; [na, cos? & sin na — nb, cos?x cos na] .
1—r
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Using cos’ a sin na = §sin (n — 2)a + 3 sin na + 2 sin (n + 2)a and cos? « cos na
= 1cos (n — 2)a + § cosna + % cos (n + 2)a, after combining we obtain

’
¢i(e) 2r(1 4+ 1)
( = —L——— [—nan. sin na + nb, cos na]
f(a) nodd 1 —r
2mxr?

] ; [na, sin (n — 2)a 4+ na, sin (n + 2)a
-7

— nb, €08 (n — 2)a — nb, cos (n + 2)a]{.

Letting o = 2x(1 + r9)/(1 — 19, and = = 2m2/(1 — 79, and differentiating, we
obtain

(¢'i(@)/f(@) = X {s[—na, cos na — n?b, sin na]

nodd
+ r[n(n — 2)a. cos (n — 2)a + n(n + 2)a, cos (n + 2)a
+ n(n — 2)basin (n — 2)a + n(n + 2)b, sin (n + 2)a]}
= (—e¢ — 71)aicosa + (—o + 7)by sin a + 37a; cos a + 3rbs sin a

+ 2 [mn(n — 2)ans — onfan + m(n + 2)anp] cos na
n odd
n>3

+ [mn(n — 2)baz — on?, + n(n + 2)b,,+g] sin ne.

Adding 4¢i(a)/\;, and setting the result equal to 0, since each term must be 0,
the vector a = (a1, as, as, ...) satisfies the matrix equation da = (4/\)a,
where

(@+7) —3r 0 0...7]
A —-37 3% —35r 0... |
0 —357 B —57¢|°

”

and b = (by, b3, b5, ...) satisfies the matrix equation Bb = (4/2)b, where

(0 —1) —3r 0 0...)
—37 3¢ —-357 O...

B = 0 —35r B¢ —57r|"

4

For r 5 0, the eigenvalues will be distinct, so that a simultaneous solution for a
nonzero ¢;(a) will have either a = 0 or b = 0 (that is, ¢;(a) will be a pure cosine
series or pure sine series).

A Rayleigh-Ritz method was used to find eigenvalues and eigenvectors of these
matrices, although more sophisticated procedures may be employed for greater
accuracy. Once an eigenvector for one of the matrices is found, the corresponding
eigenfunction of the integral equation can be obtained from the expansion for
ei(a).
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For example, the functions in Fig. 2 were obtained by finding eigenvalues and
eigenvectors of finite versions of the matrices 4 and B. For matrices of size
20 X 20, all values had converged to machine precision. The smallest two eigen-
values of matrix B (corresponding to 4/A; and 4/A;) have approximate values
3.625 and 76.415, with corresponding eigenvectors (0.971, —0.230, 0.056, —0.012,

, 0), and (0.217, 0.769, —0.546, —0.080, ..., 0). If we call these vectors
(bil, bal, bsl, ..., bo') and (b2 ..., bao?), respectively, the corresponding eigen-
functions for the integral equation are very nearly

©s,1(0) = %0: bal-sin ((2n —- 1)6),

n=1

@s,2(0) = 220 b.2-sin ((2n — 1)8).

n=1

The two smallest eigenvalues of a 20 X 20 version of matrix B have approximate
values 16.324 and 77.291, and give rise to two eigenfunctions ¢.: and ¢,
from the corresponding cosine series. Since the basis eigenfunctions (1, ¢s, ¢s,
@4, ...) should be ordered so that 4/x; < 4/\, < ..., the appropriate order
of the basis functions is (@s,1, @c.1, s,2 Cc.2y «+ )
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