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Abstract

We describe a viewpoint on the Dempster/Shafer
“Theory of Evidence”, and provide an
interpretation which regards the combination
formulas as statistics of the opinions of
“experts’”’. This is done by introducing spaces
with binary operations that are simpler to
interpret or simpler to implement than the
standard combination formula, and showing that
these spaces can be mapped homomorphically
onto the Dempster/Shafer theory of evidence
space. The experts in the space of “‘opinions of
experts”’ combine information in a Bayesian
fashion. We present alternative spaces for the
combination of evidence suggested by this
viewpoint.

1. Introduction

. Many problems in artificial intelligence call
for assessments of degrees of belief in
propositions based on evidence gathered from
disparate sources. It is often claimed that
probabilistic analysis of propositions is at
variance with intuitive notions of belief [1,2,3].
Various methods have been introduced to
reconcile the discrepancies, but no single
technique has settled the issue on both theoretical
and pragmatic grounds.

One method for attempting to modify
probabilistic analysis of propositions is the
Dempster/Shafer “Theory of Evidence.” This
theory is derived from notions of upper and
lower probabilities, as developed by Dempster
in [4]. The idea that intervals instead of
probability values can be used to model degrees
of belief had been suggested and investigated by
carlier rescarchers [5,6,2,7], but Dempster’s
work defines the upper and lower points of the
intervals in terms of statistics on set-valued
functions defined over a measure space. The
result is a collection of intervals defined for
subsets of a fixed labeling set, and a combination
formula for combining collections of intervals.

Dempster explained in greater detail how
these notions could be used to assess beliefs on
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propositions in [8]. The topic was taken up by
Shafer [9,10], and led to publication of a
monograph on the “Theory of Evidence,” [11].
All of these works after [8] emphasize the values
assigned to subsets of propositions (the
‘beliefs’’), and the combination formulas, and
de-emphasize the connection to the statistical
foundations based on the set-valued functions on
a measure space. This paper will return to the
original formulation by Dempster in [8] to relate
the statistical foundations of the Dempster/Shafer
theory of evidence to notions of beliefs on
propositions.

This paper has three main points. First, we
show that the combination rule for the
Dempster/Shafer theory of evidence may be
simplified by omiting the normalization term.
We next point out that the individual pairs of
experts involved in the combination formula can
be regarded as performing Bayesian updating.
Finally, we present extensions to the theory,
based on allowing experts to express probabilistic
opinions and assuming that the logarithms of
experts’ opinions over the set of labels are
multi-normally distributed.

2. The Rule of Combination and
Normalization

The purpose of this section is to show how
one can dispense with the normalization term in
the Dempster rule of combination.

The set of possible outcomes, or labelings,
will be denoted in this paper by A. This set is the
“frame of discernment’’, and in other works has
been denoted, variously, by 2, 6, or §. For
convenience, we will assume that A is a finite set
with n elements, although the framework could
casily be extended to continuous label sets.
More importantly, we will assume that A
represents a set of states that are mutually
exclusive and exhaustive.

An element (or state of belief) in the theory
of evidence is represented by a probability
distribution over the power set of A, P(A). That
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is, a state m is

m:P(A) - [0,1], ¥ m(a) =1 (1a)
ACA
There is an additional proviso that is typically
applied, namely that every state m satisfies

m(@) = 0. (1b)

Section 3.2 introduces a plausible interpretation
for the quantities comprising a state.

A state is updated by combination with new
evidence, or information, which is presented in
the form of another state. Thus given a current
state m;, and another state ms, a combination of
the two states is defined to yield a state m, & m»
which for A # & is given by

B% m(B)my(C)
AC=A
2a
- 3 m@mA)

BNC=Z
and is zero for A = J. This is the so called
“Dempster Rule of Combination.”

(my @ m2)(A) =

The problem with this definition is that the
denominator in (2a) might be zero, so that
(my® mj)(A) is undefined. That is, there exist
pairs m, and m, such that the combination of m;
and m; is not defined. This, of course, is not a
very satisfactory situation for a binary operation
on a space. The solution which is frequently
taken is to avoid combining such elements. An
alternative is to add an additional element mg to
the space:

my(A) =0 for A # &, my(J) = 1.

Note that this additional element does not satisfy
the condition m(J) = 0. Then define, as a
special case,

m@ms = mg if my(BYma(C) = 1.
1 0 ang'-g 1(B)m2(C) (2b)

The binary operation is then defined for all pairs
my, ma. The special element mg is an absorbent
state, in the sense that mg@m = meémy = mg for
all states m.

Definition 1: We define (M,®), the space of
belief siates, by M ={m satisfying (1a) and (1b)}
U {mg}, and define @ by (2a) when the
denominator in (2a) is nonzero, and by (2b)
otherwisc. ®

The set M, together with the combination
operation &, constitutes a monoid, since the
binary operation is closed and associative, and
there is an identity element. In fact, the binary
operation is commutative, so we can say that the
space is an abelian monoid.

Still, because of the normalization and the
special case in the definition of @, the monoid M
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is both ugly and cumbersome. It makes better
sense to dispense with the normalization. We
have

Definition 2: We define (M’,®'), the space of
unnormalized  bellef  states, by M'=
{ m satisfying (1a) } without the additional
proviso, and set

(m1@' m)(A) = 32’ mi(B)myC)  (3)

NC=A
for all ACA and for all pairs m;,m€EM’'. B

One can verify that m®'m,€M’, and that @’ is
associative and commutative, and that there is an
identity element. Thus M’ is also an abelian
monoid. Clearly, M’ is a more attractive monoid
than M.

We define a transformation V mapping M’ to
M by the formulas

- _m(@)
(Vm)4) = T

if m(@) # 1, and Vm = m otherwise.

(Vm)(@) =0 (4)

A computation shows that V preserves the
binary operation;i.e.,

V(m@'m;) = V(mpeV(my).

Thus V is a homomorphism. Further, V is onto,
since for méM, the same m is in M’, and
Vm = m. The algebraic terminology is that V is
an epimorphism of monoids, a fact which we
record in

Lemma 1: V maps homomorphically from
(M',@') onto (M,s). ®

A ‘““representation” is a term that refers to a
map that is an epimorphism of structures.
Intuitively, such a map is important because it
allows us to consider combination in the space
formed by the range of the map as combinations
of preimage clements. Lemma 1 will eventually
form a small part of a representation to be
defined in the next section.

In the case in point, we see that combination
can be done without a normalization factor. If it
is required to combine elements in M, one can
perform the combinations in M’, and project to
M by V after all of the combinations are
completed. In terms of the Dempster/Shafer
theory of evidence, this result says that the
normalization in the combination formula is
essentially irrelevant, and that combining can be
handled by Equation (3) in place of Equation
(2a).

3. Spaces of Opinions of Experts

In this section, we introduce two new spaces,
based on the opinions of sample spaces of
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experts, and discuss the evaluation of statistics of
experts opinions. Finally, we interpret the
combination rules in these spaces as being a form
of Bayesian updating. In the following section
we will show that these spaces also map
homomorphically onto the space of belief states.
Thus our intent is to show that the
Dempster/Shafer space of belief states can be
interpreted as the statistics of experts updating
their opinions in a Bayesian fashion. The reason
why the formulas don’t look like Bayesian
updating is that instead of having a single expert,
there are collections of experts, updating in
pairs. Thus instead of keeping track of the
opinion of a single expert receiving evidence
from different sources, we will see that the space
of beliefs can be viewed as the statistics of
collections of experts, combining their opinions
in a Bayesian fashion, where each collection of
experts represents an independent source of
information. We begin by giving a formal
introduction to the spaces of expert and their
methods of combination.

3.1. Opinions of Experts

We consider a set & of “experts’, together
with a map p giving a weight or strength for
cach expert. It is convenient to think of £ as a
large but finite set, although the essential
restriction is that £ should be a measure space.
Each expert w€¢ maintains a list of possible
labels: Dempster uses the notation I'(w) for this
subset; i.e., I'(w)CA. Here we will assume that
cach expert w has more than just a subset of
possibilities I'(w), but also a probabilistic opinion
P, defined on A, such that p(\) is a probability
distribution over A€A. The value p,(\)
represents expert w’s assessment of the
probability of occurrence of the label . Except
in the case that o has no opinion (see below), we
necessarily have

Epw(x) =1
N€EA

If an expert w believes that a label \ is possible,
i.e., N€I'(w), then the associated probability
estimate p ,(\) will be nonzero. Conversely, if @
thinks that M\ is impossible (A€ (w)), then
Pu(A) = 0. We also include the possibility that
expert w has no opinion which is indicated by the
special element p, = 0. This state is included in
order to ensure that the binary operation, to be
defined later, is closed. We denote the collection
of probabilistic opinions { p, | w€£& } by P.

It will turn out that the central point in the
theory of evidence is that the p (\) data is used
only in terms of test for zero. Specifically, we
set
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1 if p,(A) >0
o(M) = [o if pu(A) = 0.

Note that x,, is the characteristic function of the
set T(w) over A, ie., x,(A) = 1iff A€T (o).
The collection of all x,’s will be denoted by X,
and will be called the boolean opinions of the
experts €.

&)

If we regard the space of experts & as a
sample space, then each x,(\) can be regarded as
a sample of a random (boolean) variable x()\).
In a similar way, the p,(\)’s are also samples of
random variables p(\). In the next section, we
will define the state of the system will be defined
by statistics on the set of random variables
{x(M)}rea. These statistics are measured over the
space of experts. If all experts have the same
opinion, then the state should describe that set of
possibilities, and the fact that there is a
unanimity of opinion. If there is a divergence of
opinions, the state should record the fact. The
essential idea here is that we measure uncertainty
in a probabilistic or boolean opinion by sampling
a variety of opinions among a collection of
experts, and observe the spread in those
opinions.

A key aspect to the spaces of opinions of
experts is that collections of experts are
combined by taking product sets of experts. That
is, suppose £; is one set of experts with their
opinions, and £, is another set of experts with
their opinions. The combination element will
have as its set of experts the product set £;X¢,.
It might seem more desirable to make use of the
disjoint union of ¢; and &, but then the
connection with the Dempster/Shafer combination
formula would not hold. The statistics of the
combination element will depend on the statistics
of the constituent elements because combination
is defined by taking a product set of experts.

Pairs of experts combine their opinions in an
essentially Bayesian fashion. Under fairly
standard independence assumptions, two experts
should update their probabilistic assignment for a
given label by taking the product of their
individual probabilities, and dividing by a prior
probability. The resulting values have to be
normalized so that they remain probabilities. In
terms of the boolean opinions, Bayesian updating
with the same independence assumption asserts
that two experts agree that a label is possible
only if both experts believe the label to be
possible.

We are now ready to introduce the spaces
which we will term “opinions of experts.” The
central point is that the set of labels A is fixed,
but that the set of experts £ can be different for
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distinct elements in these spaces.

Definition 3: The space of boolean opinions of
experts, (N',0), is defined by:

N' = {(&,n,X)| #& < =, p is a measure on ¢,

X={xw}w6£ y Xy o A~ {0,1} Vw}

If (£1,1,X1) and (€2,p2,X5) are elements in X',
define their product

(& m,X) = (Enn1pX) © (E2,m2,X2

by
= 6%x& = {(opw2) | ©1€6), wa€&}
p({(wpw)})) = pi({eld) r2({wd),
and
X = {x(wl.wz)}(wl.wz)ib

Xawy(V) = 2D xE0),

where X; = {xﬂ}lw,é{i}, fori=12. =

Definition 4: Let X = {k,} be a set of positive
constants indexed over the label set A. The
space of probabilistic opinions of experts (N,K,8)
is defined similarly, except that N consists of
triples (&,w,P), where P contains probabilistic
opinions (as introduced earlier), and that
combination of those probabilistic opinions is
defined by

MNP M)k
P DR EO T

P (wl,wz)()‘) =

providing the denominator is nonzero, and
p(wllwz) =0

otherwise. Here, P; = {p{I} for i=1,2, and
w Jw €

the «,’s are a fixed set of positive constants
defined for N€A. ®

To interpret this combining operation,
consider two sets of experts £; and £;, with each
set of experts expressing opinions in the form of
P, and P;. We form a new set of experts, which
is simply the set of all committees of two,
consisting of one expert from ¢);, and another
from ¢;. In each of the committees, the
members confer to determine a consensus
opinion. In the probabilistic case, one can
interpret the formulas as Bayesian combination
(where k) is the prior probability Prob (11 ) on
A). In the boolean case, the consensus is simply
the intersection of the composing opinions (see
Figure 1).
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Figure 1. A depiction of the combination of two boolean
opinions of two experts, yielding a consensus opinion by the
element in the product set of experts formed by the committee
of two.

3.2. Statistics of Experts

It will turn out that the Dempster/Shafer
theory of evidence can be viewed as a mechanism
for tracking statistics in the space of opinions of
experts. We accordingly now define what is
meant by the statistics of an element
(&, X)EN'".

Statistics will be computed by summing the
weights of experts in subsets of £. If the experts
have equal weights, this is equivalent to counting
the number of experts. In general, we will sum
the weights of experts in a subset 7C¢&, and
denote the result by w(7). Thus u is in fact a
measure on ¢, although it is completely
determined by the weights of the individual
experts p({w}) for ® €. (We are assuming that
¢ is finite.)

For a given subset ACA, the characteristic
function X4 is defined by

Wy o [0 ifrea
Xa®) = 11 if aea.

Equality of two functions defined on A means,
of course, that the two functions agree for all
NEA.

Given a space of experts £ and the boolean
opinions X, we define

p'{“’ee l X = XA} (5)
w{é}

for every subset ACA. Itis possible to view the
values as probabilities on the random variables
{x(\)}. We endow the clements of £ with the
prior probabilities p({w})/n(€), and say that the

W(A) =
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probability of an event involving a combination
of the random variables x(\)’s over the sample
space £ is the probability that the event is true
for a particular sample, where the sample is
chosen at random from ¢ with the sampling
distribution given by the prior probabilities. This
is equivalent to saying

Prob (Event) = p({w€E& | Event is true for w})
£ r{é}
With this convention, we see that

m(A) = Pr?b(x(x) = Xa(A) for all ).
In fact, all of the priors and joint statistics of the

x(\)’s are determined by the full collection of
m(A) values. For example,

Prob(x(Ag) = 1) = 3 m(A)
(AI)\OQA}

and

Prob(x(Ag) = landx(A\) = 1) = 3 si(4).

{AIGA, €4}

Further, the full set of values ni(A) for ACA
defines an element méM’. To see this, it
suffices to check that >n(A) = 1, which
amounts to observing that for every w, x, = Xa
for some ACA.

Many of the quantities in the theory of
evidence can be interpreted in terms of simple
conditional probabilities on the x(\)’s. For
example, the belief on a set A,

Bel(A) = %Am (B)

is simply the joint probability that
x(\) = 0 for A€A conditioned on the assumption
that x(A\) # O for some A€A. In a similar way,
plausibility values

Pl(A) = T m(B) = 1-Bel(A)
BrAmg
can be interpreted as disjunctive probabilities,
and the commonality values

Q(A) = Y m(B)
ACB

are a kind of joint probability.

To recapitulate, we have defined a mapping
from P values to X values, and then
transformations from X to it and m values. The
resulting element m, which contains statistics on
the X variables, is an clement in the space of
belief states M of the of the Dempster/Shafer
theory of evidence (Section 2).
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4. Equivalence with the Dempster/Shafer
Rule of Combination

At this point, we have four spaces with
binary operations, namely (N,8), (N',0),
(M",®'), and (M,®). We will now show that
these four spaces are closely related. It is not
hard to show that the binary operation is, in all
four cases, commutative and associative, and that
each space has an identity element, so that these
spaces are abelian monoids. We also have

Definition 5: The map T:N - N', with
(&,1n.X) = T(&,n,P), is given by equation (4),
i.e., x,(\) =1 iff p,(\)>0, and x,(\) =0
otherwise. ®

There is another mapping U, given by

Definition 6: The map U :N' - M’ with
m = U(f,n,X) given by equation (5), i.e.,
m(A) = p({w€llx, = XaD/n({é}).

We claim that T and U preserve the binary
operations. More formally, we show that T and
U are homomorphisms of monoids. However,
proofs are omitted here; we refer the interested
reader to the larger report [12].

Lemma 2: T is a homomorphism of ¥ onto ¥'.
Lemma 3: U is a homomorphism of ¥’ onto M’.

Recall from Section 2 that the map V:M'~M
is also a homomorphism. So we can compose the
homomorphisms T:N-N' with U:N'-M’' with
V:M'-M to obtain the following obvious
theorem.

Theorem: The map VeUeT:N-M is a
homomorphism of monoids mapping onto the
space of belief states (M,9). ®

This theorem provides the justification for the
viewpoint that the theory of evidence space M
represents the space N via the representation
VeUoT.

The significance of this result is that we can
regard combinations of elements in the theory of
evidence as combinations of elements in the
space of opinions of experts. For if my, - - - ,m;
are clements in M that are to be combined under
@, we can find respective preimages in ¥ under
the map VeUeT, and then combine those
elements using the operation ® in the space of
opinions of experts N. After all combinations in
N are completed, we project back to M by
VoUoT; the result will be the same as if we had
combined the elements in M. The advantage to
this procedure is that combinations in N are
conceptually simpler: there are no funny
normalizations, and we can regard the
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combination as Bayesian updatings on the
product space of experts.

§. An Alternative Method for Combining
Evidence

With the viewpoint that the theory of
evidence is really simply statistics of opinions of
experts, we can make certain remarks on the
limitations of the theory.

(1) There is no use of probabilities or degrees of
confidence. Although the belief values seem to
give weighted results, at the base of the theory,
experts only say whether a condition is possible
or not. In particular, the theory makes no
distinction between an expert’s opinion that a
label is likely or that it is remotely possible.

(2) Pairs of experts combine opinions in a
Bayesian fashion with independence assumptions
of the sources of evidence. In particular,
dependencies in the sources of information are
not taken into account.

(3) Combinations take place over the product
space of experts. It might be more reasonable to
have a single set of experts modifying their
opinions as new information comes in, instead of
forming the set of all committees of mixed pairs.

Both the second and third limitations come
about due to the desire to have a combination
formula which factors through to the statistics of
the experts and is application-independent. The
need for the second limitation, the independence
assumption on the sources of evidence, is well-
known (see, e.g., [13]). Without incorporating
much more complicated models of judgements
under multiple sources of knowledge, we can
hardly expect anything better.

The first objection, however, suggests an
alternate formulation which makes use of the
probabilistic  assessments of the experts.
Basically, the idea is to keep track of the density
distributions of the opinions in probability space.
Of course, complete representation of the
distribution would amount to recording the full
set of opinions p, for all w. Instead, it is more
reasonable to approximate the distribution by
some parameterization, and update the
distribution parameters by combination formulas.

We present a formulation based on normal
distributions of logarithms of updating
cocfficients. Other formulations are possible. In
marked contrast to the Dempster/Shafer
formulation, we assume that all opinions of all
experts are nonzero for every label. That is,
instead of converting opinions into boolean
statements by test for zero, we will assume that
all the values are nonzero, and model the
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distribution of their strengths.

In a manner similar to [14], set

Prob()\
L(\]sy) = log[%&;‘)- ,

where Prob(\|s;) is a probability of label A being
the correct labeling, among labeling situations,
conditioned on some information s; shared by the
collection of experts £;. (Note, incidentally, that
the L(A|s;) values are not the so-called “‘log-
likelihood ratios’’; in particular, they can be both
positive and negative). Using some fairly
standard assumptions in Bayesian updating, (see
[14]), we obtain

log[Prob(\|sy, - - - ,50)] =

¢ + log[Prob(A\)] + iélL(M:i),

where c is a constant independent of N (but not
of 5y, ¢+ ,5).

The consequence of this formula is that if
certain independence assumptions hold, and if
Prob(\) and L(\|s;) are known for all \ and ¢,
then the approximate values Prob(A|sy, - - - ,s¢)
can be determined.

Accordingly, we introduce a space which we
term “logarithmic opinions of experts.” For
convenience, we will assume that experts have
equal weights. An element in this space will
consist of a set of experts £;, and a collection of
opinions Y; = {y,ff)},,,“‘. Each y{) is a map, and

the component y{)(\) represents expert w’s
estimate of L(\|s;):

yP:A-R, yOO) =LQ]s).

Note that the experts in &; all have knowledge of
the information s;, and that the estimated
logarithmic coefficients L(\|s;) can be positive or
negative. In fact, since the experts do not
necessarily have precise knowledge of the value
of Prob(\), but instead provide estimates of log’s
of ratios, the estimates can lic in an unbounded
range.

Combination in the space of logarithmic
opinions of experts is defined much the same as
our carlier combination formulas, except that
now consensus opinions are derived by adding
component opinions. Specifically, the
combination of (£1,Y;) and (£,,Y7) is (£1X €2,Y),
where

Y = Dwpulaeee

and
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Yooy = 3P0 + ).

Next, in analogy with our map to a statistical
space (Section 3.2), we can define a space which
might be termed the “parameterized statistics of
logarithmic opinions of experts.”” Elements in
this space will consist of pairs («,C), where &
will be a mean vector in IR” and C is a symmetric
n by n covariance matrix. To project from the
space of logarithmic opinions to the space of
parameterized statistics, define u; to be the
average value of y,(\;) over w€f, where

A={\y, * -+ ,\,} is a fixed ordering of the
clements in the label set. Then the vector u is
defined by w = (uy, * * * ,u,). Likewise, define
cij as the average value of

o) —u) (yu(Nj)—u;) over w€, and set C
equal to the matrix whose {,j-th component is
given by c;;.

Combinations in the space of statistics must
be defined in such a way that the map from the
collections of opinions to the mean and
covariances forms a homomorphism. We are
led, after some calculation, to the definition:

@D,cV) @ (@,cP) = @V+aD,cW+cD).

That is, since the components are added on the
product space of experts, the means and
covariances separately add. An extension to the
case where £, and £; have nonequal total weights
is straight-forward.

To interpret a state (u,C) in the space of
parameterized statistics, we must remember the
origin of the logarithmic-opinion values.
Specifically, after k updating iterations combining
information s; through s, the updated vector
y = (Op - ,yn)€R" is an estimate of the sum
of the logarithmic coefficients,

k

yj = ‘EII-(H-V)-
The a posteriori probability of a label ); is high
if the corresponding coefficient y;+log[Prob( )]
is large in comparison to the other components
y;+log[Prob(x)].

Since the state (u,C) represents a
multinormal distribution in the log-updating
space, we can transform this distribution to a
density function for a posteriori probabilities.
The vector u represent the center of the
distribution (before bias by the priors). The
spread of the distribution is given by the
covariance matrix, which can be thought of as
defining an ellipsoid in IR” centered at «. The
exact equation of the ellipse can be written
implicitly as:
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G-ofcTir-a) = 1.

- This ellipse describes a “‘one sigma’ variation in

the distribution, representing a region of
uncertainty of the logarithmic opinions; the
distribution to two standard deviations lies in a
similar but enlarged ellipse. The eigenvalues of
C give the squared lengths of the semi-major
axes of the ellipse, and are accordingly
proportional to degrees of confidence in the
corresponding directions. Bias by the prior
probabilities simply adds a fixed vector, with
components log[Prob(:,)], to the ellipse, thereby
translating the distribution. We seek an axis j
such that the components y; of the vectors y lying
in the translated ellipse are relatively much larger
than other components of vectors in the ellipse.
In this case, the preponderant evidence is for
label A;.

Clearly, the combination formula is extremely
simple. Its greatest advantage over the
Dempster/Shafer theory of evidence is that only
0(n?) values are required to describe a state, as
opposed to the 2" values used for a mass
distribution in M. The simplicity and reduction
in numbers of parameters has been purchased at
the expense of an assumption about the kinds of
distributions that can be expected. However, the
same assumption allows us to track probabilistic
opinions (or actually, the logarithms), instead of
converting all opinions into boolean statements
about possibilities.

6. Conclusions

We have shown how the theory of evidence
may be viewed as a representation of a space of
opinions of experts, where opinions are
combined in a Bayesian fashion over the product
space of experts. By ‘‘representation”, we mean
something very specific — namely, that there is a
homomorphism mapping from the space of
opinions of experts onto the Dempster/Shafer
theory of evidence space. This map fails to be an
isomorphism (which would imply equivalence of
the spaces) only insofar as it is many-to-one. In
this way the state in the theory of evidence
represents a corresponding collection of
clements.

Furthermore, combination in the space of
opinions of experts, as defined in Section 3, leads
to combination in the theory of evidence space.
This allows us to implement combination in a
somewhat simpler manner, since the formulas for
combination without the normalization are
simpler than the more standard formulas, and
also permits us to view combination in the theory
of evidence space as the tracking of statistics of
opinions of experts as they combine information
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in a pairwise Bayesian fashion over the product
space of experts.

From this viewpoint, we can see how the
Dempster/Shafer theory of evidence accomplishes
its goals, and what independence assumptions are
needed. Degrees of support for a proposition,
belief, and plausibilities, are all measured in
terms of joints and disjunctive probabilities over
a set of experts who are naming possible labels
given current information. The problem of
ambiguous knowledge versus uncertain
knowledge, which is frequently described in
terms of “withholding belief,” can be viewed as
two different distributions of opinions. In
particular, ambiguous knowledge can be secen as
observing high densities of opinions on particular
disjoint subsets, whereas uncertain knowledge
corresponds to unanimity of opinions, where the
agreed upon opinion gives many possibilities.
Finally, instead of performing Bayesian updating,
a set of values are updated in a Bayesian fashion
over the product space, which results in non-
Bayesian formulas over the space of labels.

In meeting each of these goals, the theory of
evidence invokes compromises that we might
wish to change. For example, in order to track
statistics, it is necessary to model the distribution
of opinions. If these opinions are probabilistic
assignments over the set of labels, then the
distribution function will be too complicated to
retain precisely. The Dempster/Shafer theory of
evidence solves this problem by simplifying the
opinions to boolean decisions, so that each
expert’s opinion lies in a space having 2"
clements. In this way, the full set of statistics
can be specified using 2" values. We have
suggested an alternate method, which retains the
probability values in the opinions without
converting them into boolean decisions, and
requires only O(n?) values to model the
distribution, but fails to retain full information
about the distribution. Instead, our method
attempts to approximate the distribution of
opinions with a Gaussian function.
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