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1 Introduction

Abstract. The effects of compression on image utility are assessed
based on manual exploitation performed by military imagery analysts
(IAs). The original, uncompressed synthetic aperture radar imagery and
compressed products are rated for the Radar National Imagery Interpret-
ability Rating Scale (NIIRS), image features and sensor artifacts, and
target detection and recognition. Images were compressed via standard
JPEG compression, single-scale intelligent bandwidth compression
(IBC), and wavelet/trellis-coded quantization (W/TCQ) at 50-to-1 and
100-to-1 ratios. We find that the utility of the compressed imagery differs
only slightly from the uncompressed imagery, with the exception of the
JPEG products. Otherwise, both the 50-to-1 and 100-to-1 compressed
imagery appear similar in terms of image quality. Radar NIIRS indicates
that even 100-to-1 compression using IBC or W/TCQ has minimal impact
on imagery intelligence value. A slight loss in performance occurs for
vehicle counting and identification tasks. These findings suggest that
both single-scale IBC and W/TCQ compression techniques have ma-
tured to a point that they could provide value to the tactical user. Addi-
tional assessments may verify the practical limits of compression for
synthetic aperture radar (SAR) data and address the transition to a field
environment. © 2002 Society of Photo-Optical Instrumentation Engineers.
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ing the original, uncompressed image. Images were com-
pressed using the Joint Photographic Experts Group (JPEG)

The utility of compressed imagery has become increasingly
important as improvements in sensor technology yield im-
agery at data rates that far surpass the bandwidth of most
available non-line-of-sight communication channels. The
Defense Advanced Research Projects Agency (DARPA)
has developed compression algorithms, such as intelligent
bandwidth compression (IBC), to compress synthetic aper-
ture radar (SAR) imagery. The compressed imagery must fit
the bandwidths of one or a few T1 data links provided by
commercial satellite communications while preserving the
fidelity of imagery as required by tactical users. Recent
studies have evaluated the impact of compression on the
human imagery analyst (IA) in the exploitation of nonlit-
eral, digital SAR imagery.

This study evaluated the utility of compressed imagery
by addressing two aspects of the compressed image prod-
uct:

1. changes in image quality associated with image com-

pression

2. differences in IA performance associated with com-

pression

The IAs evaluated several versions of each image, includ-

algorithm, the IBC algorithm, and the wavelet/trellis-coded
quantization (W/TCQ) algorithm.

2 Approach

The impact of compression on image quality and utility
was assessed comparatively using several renditions of the
test imagery. Performance metrics quantified image quality
and A performance differences as a function of image
compression. Image quality was graded using the Radar
National Imagery Interpretability Rating Scale (NIIRS), as
well as subjective NIIRS-like ratings for image features
such as sidelobes, shadows, contrast, etc. Image utility was
determined by the interpretability of context information
and of target information, and was quantified by the accu-
racy of vehicle counting, vehicle classification and identi-
fication, and identification of military activity.

3 Imagery Requirements

3.1 Image Selection

The robustness of any evaluation depends on the breadth
and size of the imagery sample set in the assessment. The
imagery should span a range of conditions and collection
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Table 1 Imagery selected for this evaluation, a mixture of desert
and temperate environments and various grazing angles.

Image Source Grazing Angle (deg) Number of Images
Desert environment 10-15 5
Temperate environment 10-15 3
Temperate environment 15-45 4
Total 12

parameters, including resolution (i.e., impulse response or
IPR), grazing angle, scene content, and target densities,
with multiple background types and a variety of target ori-
entation, terrain, vegetation conditions, and cultural clutter.
To capitalize on existing data that span a range of condi-
tions, this study used SAR imagery from a desert environ-
ment with relatively benign clutter, and from a temperate
climate with higher natural clutter.

3.2 Sample Size

The total number of scenes must balance the trade-off be-
tween the desired level of precision for a statistical analysis
and the amount of time required to complete the evaluation.
Statistical power calculations and historical experience
drove the decision to use 12 original scenes. Generating the
various compression products yielded 72 images that each
IA viewed during the evaluation (Table 1). Each IA trained
on a 13th image.

3.3 Image Truth

The subjective image quality questions, such as NIIRS rat-
ings, cannot be quantified against “image truth.” Image
truth relates only to the objective image questions, such as
vehicle counts, vehicle classification and identification,
background identification, and identification of military ac-
tivity. Wherever possible, ground truth was extracted from
the record for the image collections. When certain objects
in the image were not mentioned in the ground truth record,
then an expert IA determined the correct answers, using
available collateral data.

4 Image Compression Products

This study evaluated imagery compressed by 50-to-1 and
100-to-1 (Table 2). The IBC, W/TCQ, and JPEG algo-
rithms, all of which are lossy, were applied to each scene,
producing three versions of 50-to-1 compression. The IBC
and W/TCQ algorithms also were applied for 100-to-1
compressed products. JPEG was not used for 100-to-1

Table 2 Compression algorithms and ratios of compression.

Compression Algorithm Compression Ratio

None 11
JPEG 50:1
W/TCQ 50:1
w/TCcQ 100:1
IBC 50:1
IBC 100:1

'BiT farﬁét'betail -

Fig. 1 One of the uncompressed SAR images evaluated by imag-
ery analysts: (a) full scene showing multiple targets and several
revetments at the left side of the image and (b) example target chip,
showing the detail of the bright target and its shadow.

compression because of the obviously poor quality of the
result. Including the original, uncompressed image, each IA
viewed six renditions of the same scene. Figure 1 shows a
sample image and a target chip, i.e., a subset of the full
image.

The three image compression algorithms differ with re-
spect to the type of data they process and, consequently, are
applied at different stages in the image chain. In all cases,
the starting point is the 32-bit complex radar image and the
product displayed to the IA was an 8-bit detected image.
IBC operates directly on the complex data to produce a
compressed product. Following the decompression, the data
are mapped to an 8-bit detected product for display. For the
W/TCQ algorithm, the first step is the formation of a 16-bit
magnitude image, which W/TCQ compresses. Again, fol-
lowing decompression the image is mapped to 8 bits for
display. The JPEG method employed in this study operated
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A, UNCOMPRESSED TARGET CHE

TCQ COMPRESSION

Fig. 2 Target chip from Fig. 1 before and after 50-to-1 compression, showing image compression
artifacts from the various compression algorithms: (a) original, uncompressed target chip; (b) target
chip after 50-to-1 IBC; (c) target chip after 50-to-1 W/TCQ compression; and (d) target chip after

50-to-1 JPEG compression.

on 8-bit data, so the conversion from complex to detected
data and the mapping to 8-bits occurred prior to compres-
sion.

4.1 IBC Products

In IBC, a focus of attention algorithm identifies image re-
gions that possibly contain militarily significant targets and
labels them as regions of interest.'™ Small regions of pix-
els including the targets are extracted from the total image
and are minimally compressed by quantizing the Fourier
coefficients to yield modest data compression over the tar-
get region. Speckle noise is filtered from the remaining
background image. The resulting smoothed image is then
highly compressed using a wavelet-based technique. The
result is compression ratios potentially exceeding 100-to-1
while preserving at relatively high fidelity the targets of
interest and providing the scene context via the compressed
background regions.

Figure 2(b) shows a target chip after 50-to-1 IBC com-
pression. Comparison to Fig. 2(a) (the uncompressed target
chip) indicates that compression has increased the ringing
on the bright area of the target in this example. IBC also
altered the speckle properties of the image.
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4.2 W/TCQ Compression

The W/TCQ technique uses a combination of wavelet com-
pression with trellis-coded quantization. Wavelet compres-
sion breaks down the image into many interrelated smaller
components that are ranked in a hierarchy, so that each
level contains more details than the next.5~® The hierarchy
is a pyramid of repetitive application of frequency scaling
to wavelet functions. The high-frequency bands contain the
detailed information.

Trellis-coded quantization establishes a book of code-
words for a given image.” The codebook is divided into
four subsets using the criterion that the Euclidean distance
between codewords in a subset is minimized. The image is
then encoded using the codewords and trellis path (i.e.,
codeword sequence) that minimize the cumulative distor-
tion of the encoded product.

Figure 2(c) depicts the target chip after 50-to-1 W/TCQ
compression, showing that the image has lost detail. Edges
are not as sharp, and the background variance has de-
creased and become smoother. Also, the speckle on the ob-
ject itself has increased, although the W/TCQ processing
smoothes the background speckle.
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4.3 JPEG Compression

This study used the discrete cosine transform (DCT) JPEG
algorithm to compress imagery by 50-to-1. JPEG divides®
the 8-bit image into 8 X8 minimum coding units or neigh-
borhoods, and computes the forward discrete cosine trans-
form (FDCT) of each neighborhood. The quantizer rounds
off or smoothes the FDCT coefficients, and then encodes
the result. For decompression, JPEG recovers the quantized
FDCT coefficients from the compressed data stream, takes
the inverse transform, and displays the image. The image is
then upsampled using interpolation to restore the image to
its original size.

Figure 2(d) presents the product of 50-to-1 DS-DCT-
JPEG compression. The zoomed object in this compression
product is smaller and has a somewhat different morphol-
ogy compared to the original, uncompressed image. Addi-
tionally, the nature of the background has changed. The
neighborhoods or coding units are visible, as evidenced by
the patchwork pattern in the background region.

5 Image Evaluation Metrics

5.1 Image Quality Evaluation Criteria

Image quality metrics were designed to assess SAR-
specific image artifacts and features. Thus each 1A rated the
radar NIIRS, as well as shadows, contrast, sidelobes,
speckle, and motion blurring. The same image quality ques-
tions were asked for all 12 images.

5.1.1 Radar NIIRS

A primary measure of image interpretability is the Radar
NIIRS, a task-based scale that standardizes the quantifica-
tion of the interpretability or potential usefulness of
imagery.lo‘13 This approach to quantifying image quality is
necessary because of the inability of simple physical image
parameters, such as resolution, to adequately predict image
interpretability.

The NIIRS consists of 10 graduated levels, from 0 to 9,
with several interpretation tasks or criteria defining each
level. Radar NIIRS level 1 imagery, for example, can be
used to detect the presence of aircraft dispersal parking
areas, a large cleared swath in a densely wooded area, the
presence of piers and warehouses (at a port facility), and
the presence of road or railway lines of communication
(LOCGs). Some of the tasks possible with high quality NI-
IRS level 8 imagery are the identification of an SA-6 trans-
loader when other SA-6 equipment is present or differen-
tiation between the fuselages of a HIND and HIP
helicopter. Appendix A describes the Radar NIIRS criteria
for levels O through 9. The IAs rated the Radar NIIRS of
each image.

5.1.2 Ratings of SAR image characteristics

The IAs rated each image on SAR characteristics using
nine-point subjective scales, similar to the radar NIIRS ap-
proach. The definitions for the extrema of these scales
were:

1. shadows: 1, shadows not visible; 9, clear crisp shad-
ows clearly showing target information

2. contrast: 1, scene is severely “washed out;” 9, excel-
lent contrast, clearly showing image features

3. sidelobes: 1, extreme sidelobes or blooming obscures
the targets; 9, minimal sidelobe evidence; target de-
tails are clear

4. speckle: 1, severe speckle; no distinction among
background types; 9, no speckle problems, back-
grounds clearly distinguishable

5. blurring: 1, severe blurring renders scene unexploit-
able; 9, no evidence of blurring, scene is clearly fo-
cused

5.2 Image Exploitation Evaluation Criteria

The ability of the IAs to detect, classify, and identify im-
portant targets and features established the utility of the
imagery. These objective measures of image utility were
quantified using ground truth information. For example,
each IA was asked to count the vehicles in a region of the
image, determine whether an object is a wheeled or tracked
vehicle, and identify a vehicle.

Subjective questions assessed the ability of an IA to ex-
tract information related to certain essential elements of
information (EEI). These questions included identifying the
military activity in the scene, rating background quality and
LOC extraction on a NIIRS-like scale, and identifying fea-
tures in the background.

The specific exploitation questions differed for each of
the 12 images, based on scene content. Every image in-
cluded one question on LOC extraction confidence and at
least one question on background quality. Certain images
had two and three background quality and identification
questions. Some scenes did not ask for a vehicle count,
whereas others requested vehicle counts in one or two
boxes indicated on the image. Similarly, the number of
questions on vehicle classification and identification varied
with image, and only a few images required the IAs to
identify military activity.

6 Image Evaluation Procedure

6.1 Software Tools

This evaluation used the VITec Electronic Light Table
(ELT) software hosted on Sun workstations. Figure 3 shows
the VITec screen display for one of the images. The ques-
tions on image quality, i.e., rating Radar NIIRS, shadows,
contrast, sidelobes, speckle, and blurring from 1 to 9, ap-
plied to the entire image. Similarly, the LOC confidence
question applied to the entire image. Most image utility
questions, however, were asked for designated regions
within the image. The boxes and circles on the image de-
lineated the regions for these specific questions. For ex-
ample, boxes 1 and 2 correspond to the two questions on
the background quality and identification. Circles 3, 4, and
5 correspond to vehicle classification and identification
questions.

6.2 Image Evaluation Process

The evaluation process began each morning with a briefing
to the IAs explaining the overall purpose of the assessment,
orienting them to the VITec ELT program, and explaining
the types of questions that would-be asked. Each IA re-
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Fig. 3 Typical ViTec ELT screen display of an image used in this evaluation, showing the numbered
and circled targets that the imagery analysts were asked to identify.

ceived a hardcopy packet of image evaluation question-
naires that had been sorted for the correct order for viewing
the imagery.

The IAs then viewed the images in the pseudorandom-
ized order, answering the questions related to each image
on the hardcopy form. They had no a priori information on
whether a particular rendition of a scene was compressed.

The IAs were allowed as much time as they desired for
each image. Once all of the images had been viewed, the
IAs completed a short questionnaire on their background
and experience. All IAs completed the evaluation within a
single day.

6.3 Image Sequence

The order in which IAs view the imagery may subcon-
sciously bias their responses. To address this, two different
pseudorandom viewing orders were established for the im-
agery. Image order was random, with the exception of the

“original, uncompressed image, which was always the last
one of that set seen by the IA. By forcing the uncompressed
image to be the last one viewed, this pseudorandom order
minimized the learning that an IA may unconsciously apply
to the compressed renditions of a particular scene. The 1As
did not know the image viewing order.

1266 Optical Engineering, Vol. 41 No. 6, June 2002

7 1A Selection

This study focused on the ability of military IAs to extract
intelligence value from the compressed imagery. These
analysts receive specialized training in image interpreta-
tion, target detection, and target identification for different
classes of military targets or orders of battle, such as
ground order of battle and electronic order of battle, and for
different imaging sensors, such as SAR and electro-optical
sensors. They are also trained to evaluate imagery very
quickly. Although many military IAs may not have the for-
mal, academic training of many contractor/civilian IAs,
these military IAs are often highly skilled. However, their
tenure as IAs may only be for a few months or for a few
years, so they may not have the depth of experience that a
civilian IA accrues during his or her career.

The IAs selected for this evaluation represented a cross
section of the military IA population, with varying back-
grounds and levels of experience. A total of 12 IAs partici-
pated in the evaluation. Four analysts were from the En-
hanced Tactical Radar Correlator 525th Military Brigade,
Fort Bragg, North Carolina. Four analysts were from the
Air Force Contingency Airborne Reconnaissance System
Deployable Ground Segment (CARS/DGS), Langley Air
Force Base, Virginia; and four analysts trained at the Na-
tional Ground Intelligence Center (NGIC), Washington
Navy Yard, Washington, D.C. Each of the three groups of
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Table 3 Image quality statistics, showing the average rating and standard error for each of the image

metrics.

Average = Standard Error Radar Characteristic

Image and Blurring and LOC Background
Compression NIIRS Shadows Contrast Sidelobes Speckle Motion confidence Quality
RAW 11 3.5+0.1 3.6x0.2 4.0+£0.2 4.7+0.2 42+0.2 4.3+0.2 5.1+0.2 4.1+0.1
JPEG 50:1 3.0+0.1 3.3+0.2 3.2+x0.2 4.2+02 34*0.2 3.3+x0.2 4.4+0.2 3.6+0.1
wW/TCQ 50:1 3.6+0.1 3.8x0.2 4.0x0.1 5.0+0.2 4.6+0.2 4.3+0.2 5.0£0.2 4.1x0.1
IBC 50:1 3.2+0.1 32+0.2 3.6+0.1 4.5+0.2 3.9+0.1 3.9+0.2 46:02 3.9+0.1
W/TCQ  100:1 3.3+x0.1 3.4+0.2 3.5+0.1 4.6+0.2 4.0+0.2 3.6+0.2 4.7+0.1 3.7+0.1
IBC 100:1 3.3x0.1 3.6+0.2 3.7+x0.1 4.0+0.2 4.2+0.2 4.1+0.2 4.6+0.2 3.8+0.1
Average Difference*+Standard Error

JPEG 50:1 -0.6+0.1 -0.3+0.2 -0.7+£0.2 —-0.5+0.2 -0.9+0.2 -1.1x0.2 -0.7+0.1 —-0.6+0.1
w/TCQ 50:1 0.1+0.1 0.2+0.2 0.0*+0.1 0.2+0.2 0.3+0.2 0.0+x0.2 —-0.1+0.1 —0.1+£0.1
IBC 50:1 —0.2+0.1 -0.3+x0.2 -0.4+0.2 -0.1x0.2 -0.2+0.2 -0.4+0.2 -0.4+0.2 —0.1x0.1
W/TCQ 100:1 —-0.2+0.1 -0.2+0.2 —-0.4x02 —0.1x0.2 -0.2x0.2 -0.7x0.2 —-0.4+0.2 —0.4x0.1
IBC 100:1 -0.2+0.1 0.1x0.2 -0.3+x0.2 0.2x0.2 0.1+x0.2 -0.2x0.2 —-0.4+0.2 —0.1x0.1

Statistics are listed for uncompressed images, imagery compressed at 50-to-1, imagery compressed at 100-to-1. The average difference is the
difference of each compression product from the uncompressed image’s rating, with negative values indicating a degradation in image quality

with respect to the uncompressed image.

IAs possessed comparable experience levels, ranging from
6 months to 6 years.

8 Analysis of Results

A variety of techniques were used to process14 the re-
sponses of the IAs. Statistical screening of individual re-
sponses determined whether responses were atypical for
each specific IA. Any outliers were excluded from subse-
quent analyses that examined the differences associated
with the compression algorithms and compression ratios.

8.1 Compression Effects on Image Quality

A statistical analysis of the IA responses characterized the
relative performance of the different compression algo-
rithms. Table 3 shows the average and standard error sta-
tistics for the subjective measures (i.e., NIIRS, shadows,
contrast, sidelobes, speckle, blurring and motion, LOC con-
fidence, and background quality) as a function of image
compression. The top portion of this table shows the simple
averages. The standard error ranged from approximately
0.1 to 0.2. The lower portion of this table shows the aver-
age change in image rating, or A statistics, for each com-
pression scheme, where negative values indicate a reduc-
tion in image quality. The A statistics were computed from
the change in quality that each IA observed for the com-
pressed renditions of each scene relative to the uncom-
pressed version of the same scene.

Surprisingly, the uncompressed rendition was not always
the highest performer. Instead, the 50-to-1 W/TCQ images
rated slightly higher for Radar NIIRS, shadows, sidelobes,
and speckle, although in most cases the difference was not
statistically significant. The same was true for the few cases
(shadows, sidelobes, and speckle), where 100-to-1 IBC
rated higher than the uncompressed imagery. The slightly
higher ratings for certain compressed products may reflect
the fact that the compression processing results in some

smoothing of the background and changes in speckle,
which the IAs may find more visually pleasing. Further
investigation is needed to fully understand this issue.
Figure 4 illustrates the NIIRS and shadows results.

The JPEG imagery always rated the lowest by a signifi-
cantly larger amount. The 50-to-1 W/TCQ imagery was
overall the best performer of the compressed products, rat-
ing slightly higher than the 50-to-1 IBC imagery. Note,
however, that the differences were statistically significant in
all cases. An interesting result is that the 100-to-1 IBC of-
ten rated higher than the 50-to-1 IBC imagery, and also
rated higher than the 100-to-1 W/TCQ in all but one case.

The quality of the JPEG imagery was lowest for blurring
and motion artifacts (ABlur equal to —1.1), whereas most
differences were —0.4 or less. The lower rating for JPEG
imagery is probably due to the nature of JPEG compres-
sion, which creates a patchwork pattern of compression ar-
tifacts [Figure 2(d)].

Although IBC compression adds speckle to the com-
pressed product, the speckle statistics for IBC imagery
were very close to the statistics of the uncompressed imag-
ery (within about *0.1). Table 3 shows that, on average,
the speckle in 100-to-1 IBC is rated as higher quality than
the uncompressed image, but this is not a statistically sig-
nificant difference. In some instances (shadows, sidelobes,
speckle) the ratings for IBC at 100-to-1 are higher than for
IBC at 50-to-1 and the differences border on statistical sig-
nificance. These findings appear counterintuitive, but might
be a result of the greater smoothing implicit in the IBC
100-to-1 product. Further investigation will be required to
test this hypothesis.

To summarize, the subjective measures of image quality
and image interpretability indicate universally poor perfor-
mance for the standard JPEG product (Table 3). At 50-to-1
compression, the IBC product performs slightly, but statis-
tically significantly, below the uncompressed imagery for
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Fig. 4 Statistics of imagery analyst ratings of Radar NIIRS and shadows, for uncompressed images,
imagery compressed at 50-to-1, and compressed at 100-to-1. Each column indicates the average
rating for each image type. The vertical bar centered on the top of each column indicates +1 standard
error. The A statistics illustrate the average difference of each compression product from the uncom-
pressed image’s rating, with negative values indicating a degradation in image quality with respect to

the uncompressed image.

certain image quality metrics. The W/TCQ 50-to-1 com-
pression is statistically indistinguishable from the original
imagery. For 100-to-1 compression, IBC and W/TCQ are
comparable, with both exhibiting some slight loss in quality
compared to the uncompressed original.

8.2 Compression Effects on Image Exploitation

The preceding section addressed the metrics that character-
ize image quality and image interpretability for the various
compression products. Although these metrics can be reli-
able indicators of the potential utility of the imagery, they
rest on the analysts’ perceptions of features within the im-
age. This section presents objective measures of image util-
ity derived from the actual performance of the imagery ana-
lysts for specific image exploitation tasks. The IAs’
responses were compared to image truth to derive the ob-
jective performance for

1. target detection, as measured by the ability of the IA
to count military vehicles in a designated region of
interest

2. target classification and identification for designated
vehicles in the images

3. identification of common background features in des-
ignated regions of the images

Objective performance was analyzed similarly to image
quality. First, the data were screened to flag possible outli-
ers. In this case, only two observations for vehicle identifi-
cation were set aside because the observed values exceeded
the allowable range. All remaining data were used to assess
the performance differences as a function of compression
product, compression ratio, and IA, using a standard analy-
sis of variance. The analysis of variance tested for differ-

1268 Optical Engineering, Vol. 41 No. 6, June 2002

ences due to compression while controlling for other fac-
tors, namely, IA and compression ratio.'> When significant
effects were found, post hoc testing indicated the statistical
relationship among the compression products.

8.2.1 Object count

The ability to count military vehicles was scored by com-
paring the observed count to the image truth for each scene.
IAs were penalized for both undercounting and overcount-
ing. The performance metric, however, is slightly asymmet-
ric, particularly for small numbers of targets. This is con-
sistent with many military missions where undercounting
of enemy targets could be more serious than overcounting.
The object count performance metric M was

M=|log

observed—0.001
truth )

The logarithm down weights extreme observations, to
avoid undue influence in the analysis of variance. The ad-
dition of the small constant, while introducing a slight
asymmetry, avoids taking a log of zero for the rare cases
where reported vehicle counts were zero. A perfect score is
0 (zero).

The analysis revealed a significant difference only
among the 50-to-1 compression products (Table 4). In this
case, the ranking of products, from best to worst, is

1. original image
2. W/TCQ

3. IBC

4. JPEG
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Table 4 Objective measures of image quality.

Vehicle Measures

Background Features

Image and Compression Count Accuracy Classification: Wheeled/Tracked ID by Type Accuracy Completeness
RAW 1:1 0.50 0.41 0.28 0.63 0.46
JPEG 50:1 1.32 0.23 0.09 0.64 0.48
W/TCQ 50:1 0.54 0.32 0.22 0.63 0.48
IBC 50:1 1.00 0.30 0.17 0.69 0.47
W/TCQ 100:1 0.60 0.32 0.24 0.66 0.47
IBC 100:1 0.87 0.35 0.21 0.64 0.45

Vehicles were used to measure count accuracy M, the proportion correctly classified (wheeled versus tracked), and the proportion correctly
identified by type. The count accuracy is O for a perfect score and penalizes for both undercounting and overcounting. Background features are
quantified using accuracy, i.e, the ratio of the number correct to the number reported, and by completeness, i.e., the ratio of the number correct

to the total in the image.

The differences were statistically significant, and this is
the only instance where IBC and W/TCQ differed signifi-
cantly. For the 100-to-1 compression, the differences in per-
formance, while suggesting a similar pattern, were not sta-
tistically significant. One possible reason for the difference
with IBC could be the additional speckle in the IBC rendi-
tion, which may have confused the vehicle counting pro-
cess.

8.2.2 Vehicle classification and identification

The vehicle classification and identification tasks were per-
formed in two steps. The IA’s attention was directed to a
particular vehicle or group of vehicles in the image. The IA
first was asked to determine if the vehicles were wheeled or
tracked. Then the IA was asked to determine the type of
vehicle; e.g., tank, armored personnel carrier (APC), truck,
if possible. The IA’s answer was scored against ground
truth. The performance metrics were the proportion cor-
rectly classified (wheeled versus tracked) and the propor-
tion correctly identified by type.

For both vehicle classification and identification, perfor-
mance differed significantly among the three 50-to-1 com-
pression products (Table 4). Post hoc testing revealed that
the significant effect was due to the poor performance by
JPEG. Performance differences among IBC, W/TCQ, and
the original product were not statistically significant. Simi-
larly, for the 100-to-1 compression, performance differ-
ences between the two compression products were not sta-
tistically significant.

8.2.3 Context information

The background areas of the evaluation imagery consisted
of common features, such as rocks, dirt, low vegetation,
forests, roads, and streams. The IAs were asked to indicate
all such features found in the designated regions. The im-
agery analysts’ responses were compared to the image truth
to determine both the accuracy and the completeness of this
exploitation task. The performance metrics were defined by

number correct

accuracy= ————————,
Y™ Ttotal reported

and

number correct

completeness= trath total
The results indicated that identification of background fea-
tures is relatively unaffected by the compression algorithms
(Table 4). The differences among the compression products
are small and not statistically significant.

9 Summary and Conclusions

The image quality metrics (Radar NIIRS, shadows, speckle,
etc.) show that some aspects of image quality are statisti-
cally significantly different from the uncompressed imagery
(Table 5). In particular, the 50-to-1 JPEG algorithm consis-
tently rated much lower for all metrics. Evaluation of the
50-to-1 JPEG product indicates that JPEG compression
should not be used at higher compression ratios, and 100-
to-1 JPEG was not evaluated in this study for this very
reason.

Statistically significant differences among the compres-
sion products were observed only for the 50-to-1 compres-
sion for the vehicle detection and identification tasks (Table
6). In general, IAs performed slightly better on vehicle de-
tection and recognition tasks using the original imagery.
Performance using the IBC and W/TCQ products was gen-
erally similar, while performance on the JPEG product was
universally worse. For identification of background fea-
tures, performance was essentially constant across the full
set of imagery products, including the original uncom-
pressed imagery.

These results indicate that, with the exception of JPEG
compression, even 100-to-1 compression had minimal im-
pact on the intelligence value of the imagery as assessed by
human IAs. Both IBC and W/TCQ compressions seem to
preserve target information, and the nature of background
degradation depends on the compression algorithm itself.
These results indicate that image compression at even
higher ratios will probably preserve intelligence value, at
least for some military missions.

This study demonstrates that tactical SAR imagery can
be highly compressed (up to 100-to-1) with negligible loss
in imagery quality or utility. Furthermore, the concept of
differential compression rates, as embodied in IBC, appears
viable. These findings suggest that a hybrid compression
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Table 5 Summary of results for subjective image quality ratings, indicating whether statistically sig-
nificant results occurred for the different image features and for different compression algorithms and

ratios.

50-to-1 Compression

100-to-1 Compression

Performance Metrics Result Source of Difference Result Source of Difference
Radar NIIRS Significant JPEG Significant IBC

Shadows Significant JPEG, IBC Not significant

Contrast Significant JPEG, IBC Significant W/TCQ

Sidelobes Significant JPEG Not significant

Speckle Significant JPEG, IBC Not significant

Blurring and motion Significant JPEG Significant wW/TCcQ

LOC confidence Significant JPEG, IBC Significant IBC, W/TCQ
Background quality Significant JPEG Significant IBC, W/TCQ

algorithm could be implemented that uses W/TCQ with dif-
ferential compression rates for regions of interest versus
background. In principle, such an algorithm should exhibit
the strengths of both approaches. Future analysis should
investigate the performance associated with such algo-
rithms. Furthermore, future evaluations should explore the
practical limits of SAR compression, to determine the com-
pression rates at which substantial loss in intelligence in-
formation occurs.

10 Appendix: Radar National Imagery
Interpretability Rating Scale*

Rating Level 0
Interpretability of the imagery is precluded by obscuration,
degradation, or very poor resolution.

Rating Level 1

Detect the presence of aircraft dispersal parking areas.
Detect a large cleared swath in a densely wooded area.
Detect, based on presence of piers and warehouses, a port
facility.

Detect lines of transportation (either road or rail), but do
not distinguish between.

Rating Level 2

Detect the presence of large (e.g., BLACKJACK, CAM-
BER, COCK, 707, 747) bombers or transports.

Identify large phased array radars (e.g., HEN HOUSE,

Table 6 Summary of results for objective performance metrics, in-
dicating whether statistically significant results occurred for the dif-
ferent image features and for different compression algorithms and
ratios.

Performance Metrics 50-to-1 Compression 100-to-1 Compression

Vehicles
Count Significant Not significant
Classification Significant Not significant
Identification Significant Not significant
Background
Accuracy Not significant Not significant
Completeness Not significant Not significant
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DOG HOUSE) by type.

Detect a military installation by building pattern and site
configuration.

Detect road pattern, fence, and hardstand configuration at
SSM launch sites (missile silos, launch control silos) within
a known ICBM complex.

Detect large noncombatant ships (e.g., freighters or tankers)
at a known port facility.

Identify athletic stadiums.

Rating Level 3

Detect medium-sized aircraft (e.g., FENCER, FLANKER,
CURL, COKE, F-15).

Identify an ORBITA site on the basis of a 12-m dish an-
tenna normally mounted on a circular building.

Detect vehicle revetments at a ground forces facility.
Detect vehicle/pieces of equipment at a SAM, SSM, or
ABM fixed missile site.

Determine the location of the superstructure (e.g., fore,
amidships, aft) on a medium-sized freighter.

Identify a medium-sized (approximately six track) railroad
classification yard.

Rating Level 4

Distinguish between large rotary-wing and medium fixed-
wing aircraft (e.g., HALO helicopter versus CRUSTY
transport).

Detect recent cable scars between facilities or command
posts.

Detect individual vehicles in a row at a known motor pool.
Distinguish between open and closed sliding roof areas on
a single bay garage at a mobile missile base.

Identify square bow shape of ROPUCHA class (LST).
Detect all rail/road bridges.

Rating Level 5

Count all medium helicopters (e.g., HIND, HIP, HAZE,
HOUND, PUMA, WASP).

Detect deployed TWIN EAR antenna.

Distinguish between river crossing equipment and medium/
heavy armored vehicles by size and shape (e.g., MTU-20
versus T-62 MBT).

Detect missile support equipment at an SS-25 RTP (e.g.,
TEL, MSV).
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Distinguish bow shape and length/width differences of
SSNs.

Detect the break between railcars (count railcars).

Rating Level 6

Distinguish between variable and fixed-wing fighter aircraft
(e.g., FENCER versus FLANKER).

Distinguish between the BAR LOCK and SIDE NET an-
tennas at a BAR LOCK/SIDE NET acquisition radar site.

Distinguish between small support vehicles (e.g., UAZ-69,
UAZ-469) and tanks (e.g., T-72, T-80).

Distinguish between the raised helicopter deck on a
KRESTA II (CG) and the helicopter deck with main deck
on a KRESTA I (CG).

Identify a vessel by class when singly deployed (e.g., YAN-
KEE I, DELTA I, KRIVAK 1I FFG).

Detect cargo on a railroad flatcar or in a gondola.

Rating Level 7

Identify small fighter aircraft by type (e.g., FISHBED, FIT-
TER, FLOGGER).

Distinguish between electronics van trailers (without trac-
tor) and van trucks in garrison.

Distinguish, by size and configuration, between a turreted,
tracked APC and a medium tank (e.g., BMP-1/2 versus
T-64).

Detect a missile on the launcher in an SA-2 launch revet-
ment.

Distinguish between bow mounted missile system on KRI-
VAK 11 and bow mounted gun turret on KRIVAK III.
Detect road/street lamps in an urban, residential area or
military complex.

Rating Level 8

Distinguish the fuselage difference between a HIND and a
HIP helicopter.

Distinguish between the FAN SONG E missile control ra-
dar and the FAN SONG F based on the number of parabolic
dish antennas (three versus one).

Identify the SA-6 transloader when other SA-6 equipment
is present.

Distinguish the limber hole shape and configuration differ-
ences between DELTA I and YANKEE I (SSBNs).
Identify the dome/vent pattern on rail tank cars.

Rating Level 9

Detect major modifications to large aircraft (e.g., fairings,
pods, winglets).

Identify the shape of antennas on EW/GCI/ACQ radars as
parabolic, parabolic with clipped corners, or rectangular.
Identify, based on presence or absence of turret, size of gun
tube, and chassis configuration, wheeled or tracked APCs
by type (e.g., BTR-80, BMP-1/2, MT-LB, M113).

Identify the forward fins on an SA-3 missile.

Identify individual hatch covers of vertically launched SA-
N-6 surface-to-air system.

Identify trucks as cab-over-engine or engine-in-front.
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