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Cluster analysis is an approach to finding structure in raw data patterns. Most of the
available algorithms for finding clusters are not generally applicable, however, because
their performance varies with the shape of the cluster. This paper presents the first
stage of an approach to computing the shapes of dot clusters. It is founded on the general
principle that the concept of shape is derived from interactions with the visual world. In
particular, a relaxation process for labeling the functional roles that dots appear to be
playing in a given arrangement is presented together with many examples of its per-
formance. These labels should provide the primitive descriptions out of which global
shape descriptions can be computed. Also, since dot patterns are a simple form of binary
image, the relevance of this approach to low-level vision is described.

1. INTRODUCTION

Cluster analysis is an attempt to find structure within a collection of data
objects without a precise model for the process that produced those objects. More
specifically, given a set of objects and a set of measurements (observations) on
each object, the problem is to group the objects into one or more distinet classes.
Fach class indicates a grouping of objects that are similar in some sense, with
similarity normally expressed in terms of a metric relation defined over those
objects. One approach to cluster analysis is to define a purely mathematical
criterion for clustering, such as within-cluster variance, and then to proceed by
finding the grouping that minimizes this criterion. Another approach might
begin with a probabilistic model for clusters and then attempt to find the best
parametric description.

There is an intuitive side to cluster analysis, however, and the assumptions
necessary for a purely mathematically motivated approach can often lead to
results which are at odds with these intuitions. For instance, the visual appearance
of clusters within dot patterns represents these intuitions nicely, and Zahn [25]
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used this visually imposed structure to reveal shortcomings in many of the
classical approaches. He also argued effectively for incorporating psychological
notions, in particular the Gestalt law of proximity [13], into clustering algorithms.
Similar arguments have been advanced by other researchers in non-parametric
cluster analysis (e.g., [18, 237).

We agree with Zahn that, in the absence of detailed, a priori information about
generating processes, there should be a correspondence between the results of a
clustering algorithm and the visual appearance of clusters within the given data.
We have also attempted to extend the perceptual content of clustering algorithms
by including a Gestalt notion of good continuation. Our ideas were motivated by
our conception of how the visual system processes information. We believe that
such processing requires the construction of successively more abstract descrip-
tions of the data, and we also believe that these descriptions are symbolic. From
this point of view, our description of dot clusters is in terms of the functional
roles that individual dots can play either as parts of clusters or as outlying
(noise) points. An algorithm for labeling the dots with assertions about the roles
they appear to be playing in specific arrangements will then be presented. We
hope that the labels will eventually provide the constructive [9], low-level
framework from which general shape descriptors for dot clusters can be computed.
More recent work [267] has begun to support this conjecture.

Our data consists of two-dimensional dot patterns. These were chosen for two
primary reasons. Iirst, two-dimensional patterns are the easiest to visualize, so
their use will facilitate the evaluation of our algorithm’s performance. Secondly,
two-dimensional dot patterns can be considered as simplified binary images in
which clusters of (black) dots correspond to (dark) regions in a picture. This
suggests an important analogy between cluster analysis and scene analysis. In
particular, computing descriptions of the cluster structure in dot patterns is
analogous to computing a low-level description of the structure in an image.
Because this analogy offers some insight into the properties of clustering
algorithms, it will be discussed further in the next section.

2. AN OVERVIEW OF CLUSTERING AND SEGMENTATION

There are strong parallels between the approaches that have been developed
for segmenting images and those developed for analyzing clusters. Algorithms
based either on similarities or differences have emerged in both fields; however,
neither has attempted to combine both in a uniform fashion. Several of these
algorithms are reviewed in this section to indicate the kinds of properties on which
similarity and difference measures have been based. This, in turn, provides the
specific background out of which our approach evolved. For a more formal review
of clustering algorithms, see [4].

Cluster analysis begins with a given set of V objects and a vector of p measure-
ments associated with each object.! (This paper assumes p = 2). Initially, each
object is represented as a point in this vector space of measurements. By specify-
ing a notion of object similarity based on a metric in this measurement—vector

1 Scaling procedures will not be considered in this paper.
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domain, clusters can be thought of as dense regions of objects. In other words,
they can be thought of as groupings of objects which lie close to one another. This
qualitative notion is very difficult to translate into an algorithm, however, because
of the many possibilities for specifying precisely what “dense’” or “close to”
means. For example, given a starting point, one could successively link the next
nearest (with respect to the distance metric) unattached point to the current
grouping until all points are attached. Such techniques construct descriptions of
the data that are hierarchical, dendritic trees, and that are commonly found in
numerical taxonomy [247]. However, once the tree has been built, there exists the
problem of determining (from the tree) how many “natural’” clusters are in the
data. One possibility is to examine the distances encompassed by the linkages at
the various levels and to search for abrupt changes. When the clusters are globular,
these changes will often correspond to the larger spaces separating them and can
then be used to define cluster boundaries. However, this is not true for other,
more elongated distributions in which chaining may completely destroy the
natural groupings [17]. The use of the linking technique thus seems to presuppose
knowledge of the cluster shapes.

Other techniques provide more direct approaches to finding the low-density
valleys separating clusters. Zahn [25], as has already been mentioned (see also
Hubert [11]), first builds a minimum spanning tree (MST) description of the
data, and then searches either for maxima in the lengths of the edges in this MST or
for various “inconsistent edges” or “neck configurations.” Koontz and Fukunaga
[14], effectively move a boundary marker so that it lies in the valley between
clusters. However, these techniques also work best when well-defined valleys exist
between clusters.

Analogous to such valley-seeking or divisive techniques in clustering algorithms
are edge-based image segmentation techniques. Edge detectors are local operators
designed to respond strongly when they are centered over intensity differences.
While many such operators exist [207, it has been impossible to find one that
works for all intensity configurations [16, 287.

There is a second major class of techniques for cluster analysis that complement
the valley-seeking approach perfectly. These agglomerative techniques concen-
trate not on the differences between points in a local neighborhood, but rather
on their similarities. One approach, the k-means algorithm [157, begins with a
collection of k& seed points and then links each point to its nearest seed point. This
defines an initial clustering. After computing the center of gravity for each
cluster, points lying closer to a different cluster center than the one to which they
are currently assigned are reassigned. This algorithm is iterated, recomputing
the cluster centers of gravity until no further changes occur. Other examples of
algorithms with this general orientation are often described as “mode seeking”
(e.g., [5]).

The analog to such procedures in image segmentation is region growing. This
approach is complementary to edge-based techniques, and an introductory
survey can be found in [20]. The parallel between agglomerative/divisive
clustering techniques and split-and-merge segmentation techniques [107] is
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especially worth nothing, because it provides an example of the healthy interplay
that can be achieved between these two disciplines.

The problem with approaches such as the k-means technique described above,
as with the valley-seeking techniques, is that they too are sensitive to the shapes
of the clusters. While the k-means approach works well with globular clusters and
can be generalized to handle elongated or ellipsoidally shaped clusters [37], it still
may produce distorted results when spurious noise points or irregular, interlocking
clusters are present.

To produce techniques which will work on arbitrary clusters, or to determine
when a technique designed to work on a given class of cluster shapes is applicable,
Kendall [12] has pointed out the need for a theory of the shape of clusters. This
is precisely the issue to which the approach developed in the next section is
addressed. Rather than relying on a purely mathematical theory, it is motivated
by the kinds of computational modeling currently used in machine perception.
The proposed approach will make use both of edge (dissimilarity) and of region
(similarity) data. However, rather than considering these information sources
distinet as the previous approaches did, it will make use of both simultaneously.
To avoid the inherent control problem of selecting one or the other kind of process
for execution, they will be embedded in a cooperative computational (in particular
relaxation labeling) environment. Furthermore, since global perspectives can be
important in obtaining proper shape descriptions [17] but are expensive to
implement, the algorithm is formulated locally but then allowed to iterate.

3. LABELING DOT CLUSTERS

A visual examination of dot patterns reveals that, in general, there are three
primary functional roles which the dots can fulfill. They can be points interior to
a cluster, points marking the border around a cluster, or isolated points exterior
to a cluster. These isolated points, which can be thought of as either outlying
noise points or clusters consisting of only single points, will here be referred to as
noise points for simplicity. Since the three functional roles are sufficient for
characterizing most dot patterns and since they are sufficient for representing
the information sources described in the previous section, an attempt will be
made to label each dot with assertions indicating which of these roles it appears
to be playing in a specific data pattern. The labels will have measures of certainty
attached to them indicating the relative strengths of alternative possibilities

(ef. [217).

3.1. The Relazation Process for Labeling Dots

Relaxation labeling processes (RLPs) can be considered, for the purpose of
this paper, as techniques for eliminating inconsistent (dot) interpretations on the
basis of local context [27]. When the context allows multiple interpretations, the
relaxation process should order the interpretations with respect to their con-
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sistency with the interpretations of neighboring objects. Consistency is defined
by a priori knowledge about how local interpretive labels can interact.

Abstractly, relaxation labeling processes are defined over a graph structure.
The nodes of this graph represent the underlying objects and the edges represent
pairs of objects considered as neighbors. For this application each dot will be
represented as a node in the graph. The edge set is obtained by connecting each
dot with its k nearest neighbors. Note that this edge set defines the local perspec-
tive that each point has on the other points in the pattern.?

For a clustering algorithm to be generally applicable, no restrictive assumptions
relating to the number or shape of clusters should be made. Without any such
information, it is initially possible that each point in the pattern might be acting
either as an EDGE? point, as an INTERIOR point, or as a NOISE point. Thus
all three of these possible assertions must be attached to each point. Furthermore,
EDGEs have orientations associated with them, which, for this application, were
quantized into eight possible directions. Each oriented EDGE label was indicated
as a separate assertion.? In total, then, there are 10 possible assertions (labels)
attached to each node: 8 indicating that the dot acts like an oriented edge seg-
ment (EDGE(OR1), ..., EDGE(ORS)), one indicating that it acts like an
interior (INTERIOR), and one indicating that it acts like an isolated noise
point (NOISE).

To disambiguate the label assignments, a probabilistic relaxation model was
chosen. It permits evidence to be gathered incrementally. Also, in the event that
more than one label is consistent for an object, it imposes an ordering on them
derived from neighborhood consistency.

There are two essential aspects to the formulation of a probabilistic relaxation
labeling process, one involving its symbolic structure and one involving the
functional means for representing and accumulating evidence. The symbolic
structure is specified by the label set and by the allowable interactions between
labels. The local evidence is represented by a measure of likelihood or confidence
(i.e., a probability) attached to each label. More specifically, if we let
ai,t=1,2,..., N be the set of objects (dots) and let \,,» =1,2,...,10 be
the ten labels attached to each object, then p;(\,) is an estimate of the probability
that label \, is correct for object a;.

The relaxation algorithm iteratively uses the contextual information contained
in the neighborhood around each node to update the probability estimate attached

2 The choice of building the object graph with % equal to a constant number of neighbors for
each point was an early design assumption made to simplify the programming. Some of the
consequences of this assumption are examined further in Section 5.2. For the experiments described
in this paper £ = 8 was chosen. However, many of the experiments were recomputed with £ = 4,
with effectively no change in the final results.

8 The specific assertions will be indicated by capital letters.

41t would also have been possible to include orientation as a parameter within the EDGE
assertion [207]. Then only one EDGE label would be necessary, which would both reduce the
computational cost of this system and make higher-dimensional extensions more feasible.
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to each label. This is done in parallel on every object according to the following
formula [19]:
PP M+ ¢ ]
Zalp WL + ¢ @11

PO (N) =

where

PN = 2 dy[X i\ N)pi® (V)]
g %

The (k4 1)st estimate for each probability is a normalized function of the

product of the kth estimate for that probability and the neighborhood contribu-

tion [1 + ¢#(N)].

The neighborhood contribution (¢;*(\)) is computed as a weighted sum over
all current label probabilities at every neighboring node. The contribution of each
label probability is controlled by the a priori compatibility r;;(\, \') that label A
on object a; has with label A" on object a;. These compatibilities represent the
primary interface between the symbolic and the evidential aspects of the process.
They must take values in the range [ —1, 1] according to their semantic relation-
ships and such that

(i) when N and N are highly compatible, r;;(\, \') — 1;
(ii) when X and N are independent, r;;(A\, \) — 0; and
(iii) when X and \" are highly incompatible, 7,;(\, \') — —1.

Situations intermediate to these cases will be assigned correspondingly inter-
mediate real values. Thus if N\ is highly probable for a; and is also strongly
compatible with A on a;, then p;(A) will receive a positive contiibution from
p;(\'). On the other hand, if A’ is inconsistent with X\, p;(\’) will detract support
from X\ at a;. For a discussion of the convergence properties of this algorithm,
see [297].

The computational complexity of an RLP is bounded by both the number of
objects (N) and the number of labels per object (). On a sequential machine
the total amount of computation is O (KM N), where K is the number of iterations
required for convergence. However, the complexity on a machine capable of
updating the N objects (dots) in parallel would only be O (K M), while the K may
be reduced by noniterative algorithms for accomplishing the same computation
as relaxation [317].

8.1.1. The Compatibility Functions

The compatibility functions provide the means for embedding our intuitive
model for dot clusters into the relaxation process. This model is general purpose in
the sense that it requires no specific assumptions other than that clusters have
some spatial extent. Analyzing this assumption more closely, we see that clusters
consist of groupings of interior points surrounded by edge points. Isolated points
(trivial clusters of one point) are considered as noise points. This general model
is consistent, with other intuitive descriptions of clusters, e.g., to quote Kendall
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[12, p. 2927,

When we refer to a cluster in ordinary colloquial speech we have in mind a collection of
members which are all close together; and further that the members in the middle are
usually more densely distributed than those on the periphery.

Such models imply that interior points will often be surrounded by other, nearby
interior points and that edge points should see interior points on their inside,
occasional noise points on their outside, and other edge points oriented appro-
priately with respect to them. Also, interior points should never lie outside of
edge points, nor should noise points fall inside edges. It is these basic local condi-
tions which are translated into the compatibility relations that are treated
individually below.

(i) InTeERIOR-INTERIOR. Since INTERIOR points will often be surrounded by
other nearby INTERIOR points, the compatibility function defined between the
INTERIOR label on a point and the INTERIOR label on a neighboring point
should be a function of the distance d separating them. For a very small d the
support should be large and positive. As d increases the support should decrease
monotonically until it becomes slightly negative. This negative contribution
reflects our assumption that neighboring INTERIOR points within the same
cluster will never be far apart. A general functional form for this compatibility
can be obtained by imagining that support propagates in straight lines through
the dot cluster space. If this space were filled with a uniform, viscous medium,
then the amount of support for a separation of d units would be Wiee1d),
arr is a decay constant that controls the rate at which support falls off with
distance and Wiy is the maximal support for d = 0. To force this function to
become negative for large d, it is necessary to add a small negative quantity.
Therefore, the complete INTERIOR-INTERIOR compatibility function is

rij(INTERIOR, INTERIOR) = Wii(e—*1¢ — Cpy).

An initial value of W1 = 1.0 was chosen because of the restriction that r;; have
an upper bound of 1. ar; = 0.5 was selected so that all of the points located
within a radius of two normalized distance units would exert the strongest
influence. (Note that this includes the eight nearest neighbors on an integer
Cartesian grid.) Finally, C1; = 0.1 was selected for the small negative shift.
Empirical tests indicate that this process is sufficiently stable so that other
functions which approximate the form of this compatibility (e.g., linear or
piecewise-linear approximations) would yield equally good results; see the dis-
cussion of coefficient variations in the next section and also the related discussions
in [28, 31]. Furthermore, it has recently been shown that as long as these
heuristically chosen compatibilities are (or can be approximated by) a linear
function of the true ones, they will behave as if they were the true ones [31].
(i) InTERIOR—-EDGE. The model for clusters presupposes that INTERIOR
points are on the inside of EDGE points. To include this relationship explicitly
in the compatibility function, an angular difference term between the orientation
of the EDGE label and the vector connecting the two points is necessary. (See
Fig. 1.) In particular, let ORVEC (¢, j) be a vector directed from the current
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Fic. 1. Diagram indicating angular relationships for INTERIOR-EDGE compatibility function.

point ¢ to the neighboring point j and let EDGE(OR;) be the EDGE label at j
which is clockwise perpendicular to ORVEC (7, j). Then the support of the
INTERIOR label at ¢z from EDGE labels at j will be proportional to cos (6),
where 8 is the angle of rotation for the EDGE orientations relative to EDGE(OR;).
For example, each of the adjacent quantized edge elements, EDGE(OR;_;) and
EDGE(OR_1) contributes cos (7/4) less support then EDGE(OR;). As in the
previous compatibility, the support that INTERIOR receives from EDGE also
decreases exponentially with distance. In summary, then,

rii;(INTERIOR, EDGE) = cos fe—*1E4,

Since edge points need not be as tightly packed as interiors, the power of the
exponential was decreased slightly, i.e., we initially chose a1z = 0.4. Also, for
implementation, a straight line approximation to the cosine was used.

(iii) INTERIOR-NOISE. Interior points are affected by noise points oppositely
to the way they are affected by other interior points. That is, they should only
receive support from noise points which are very far away; nearby noise points
should detract support. Thus,

rij(INTERIOR, NOISE) = Wix(e~4¥¢ — (ry),
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F1a. 2. A bottle-shaped cluster with a nearby blob-shaped cluster. (a) the initial probabilities;
(b)—(f) 1 to 5 iterations; (g) 10 iterations; (h) 20 iterations.

with Wix = —1, airx = 0.4, and Cix = 0.3. The somewhat stronger negative
shift was selected because of the relative sparsity of NOISE points.

(iv) Epge UppaTing. Since all interior/edge compatibility relationships are
symmetric, the EDGE-INTERIOR compatibility is defined analogously to the
INTERIOR-EDGE compatibility. The EDGE-EDGE compatibilities must
depend on two angular relationships as well as on the distance separating the
labeled points. The first angle describes the relative EDGE orientations, and
the second describes the relative positions between the two points. Rather than
evaluating the contribution from all of the angular components individually
([297; see also [227), an approximation to the total EDGE probability at point j
was used. This was an average EDGE label computed as a weighted sum of the
individual labels. Now only one cosine term involving the angle between the
average EDGE orientation and the relative point directions is necessary and the
compatibility becomes analogous to the INTERIOR-EDGE compatibility.5

(v) NoistE UppaTinG. The updating of NOISE labels is analogous to the up-
dating of INTERIOR labels, with the signs on the compatibilities reversed ; that
is, NOISE points must be on the outside of EDGEs and should be relatively far
away from one another. This latter condition suggests that the NOISE com-
patibilities should change more slowly than the INTERIOR compatibilities, so
that the value for the exponential decay constant was initially set to 0.4.

3.1.2. The Initial Probabilities

We have specified the underlying graph structure, the label set, and the com-
patibility relations for a relaxation process. Now we must specify a procedure for
obtaining the initial label probabilities. Several different approaches are possible,
all of which should eventually lead to the same results.

The simplest possible approach to initialization would be to sidestep the design
of an initialization operator completely and to assign to each label the same
initial probability. These totally uninformed estimates would be disambiguated
by the relaxation process, which would first rely on the distance conditions
embedded in the compatibilities. After the distance relationships begin to focus
on the proper interpretations for each dot, the remaining symbolic structure of

5 A second implementation that used all of the individual label contributions appeared to yield
effectively the same results as the approximate version.
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Fi1a. 3. A bottle-shaped cluster with a noise point. (a) initial probabilities; (b) 10 iterations;
(c) 20 iterations.

the process would exert a more discriminating influence. This uniform initial
probability approach was in fact taken for one of the examples in [257], which
revealed that on the order of 2 to 3 iterations were required to obtain probability
distributions comparable to those from the operator discussed next.

A second possibility would be to make use of the interpoint distance relation-
ships to obtain initial probability estimates. Since most of the clustering algo-
rithms in existence are based primarily on these distance propetties, any whose
results can be interpreted into label probabilities could in principle be adopted.

For the current implementation, a compromise between these two extremes
was adopted: The initial probabilities were determined by operators that made
use of a subset of the conditions described for the compatibility functions.® This
choice allowed a close examination of the power of the relaxation labeling process
(RLP) together with some of the computational savings obtained by using
reasonable initial values. More specifically, the INTERIOR label probability is
obtained by summing the distance contributions of a point’s & nearest neighbors.
This contribution is positive within a fixed radius (taken as 3 to 5 times the
average dot spacing) and negative outside, and is determined by a linear function.”
Thus, if most of the neighbors of a point were very close to it, a high initial
INTERIOR probability is obtained. On the other hand, if most neighbors are
distant, a small value is obtained.

The initial EDGE probabilities are obtained by summing the EDGE-
INTERIOR compatibilities over the k-nearest neighbors. This process functions
much like a center of gravity detector, in the sense that, if the center of gravity
(or average position) of the & nearest neighbors is displaced in one direction, the
EDGE label whose orientation is perpendicular to that direction is given the most
weight. The initial NOISE probabilities are obtained from NOISE-INTERIOR
compatibilities modified so that INTERIOR points outside the predefined radius
of influence contribute most strongly.

Represented in this fashion, the local metric data are first scaled into positive
numbers and then normalized into the range [0, 1]. Finally, since any label is
possible initially, the resultant probabilities are smoothed slightly so that no
label begins with a zero probability.

6 Experimental results have indicated that the initial values obtained using this scheme are in
fact very similar to those obtained from the uniform probabilities after one or two iterations. This
suggests that the initialization process can be considered a modified RLP run for one iteration.

7The linear function was chosen as an approximation to the exponential function in the
INTERIOR-INTERIOR compatibility because it allows more influence from the very distant
points.
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4. EXPERIMENTS: CONSTANT-DENSITY CLUSTERS

Our first experiments for investigating the operation of the relaxation process
were carried out with constant-density point distributions. Figures 2 and 3 show
two of these experiments. The first contains two distinet clusters and the second
contains an isolated noise point. To display the iterative results of the RLP,
INTERIOR labels are shown as solid squares, EDGE labels as oriented line
segments (with an extra dot in the middle to indicate the ‘““dark’ or interior side
of the edge), and NOISE labels as hollow squares. For each point in the pattern,
only the label with the highest probability is displayed with an intensity propor-
tional to this probability.

In the figures, we can see that, although several labels were initially given
incorrect high probabilities (Figs. 2a and 3a), by the end of the iteration process
(Figs. 2h and 3c), the point distributions were correctly labeled. After 10 to 15
iterations, all the points had unique labels (i.e., p:(N) = 1.0), except for the two
neck points in the bottle-shaped cluster. The ambiguity of these points derives
from the coarse quantization of both the grid and the edge orientations. After 10
iterations, the probability was approximately 0.4 that the points were INTERIOR
and 0.5 that they were EDGE. In the figure, these points are displayed as
INTERIOR because the EDGE probability is distributed between the two
orientations adjacent to the intermediate smooth curvature.

Figures 2 and 3 also provide evidence for the stability of the RLP with respect
to compatibility coefficient variations. IFor Fig. 2, the coefficients are as described
in the text; for Fig. 3, all of the coeflicients have been decreased by various
amounts up to a maximum of 509, with the support given to INTERIOR points
by EDGE points increased by 259, There is virtually no change in the final
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pattern. The process is, within reasonable bounds for this input pattern, invariant
to changes in the coefficients. The important factor is to keep the coefficients in
proper proportion to each other [287].

5. EXTENDING THE RLP FOR VARIABLE-DENSITY CLUSTERS

In the previous section, the compatibilities were specified for uniform clusters.
Realistic clusters, however, normally contain point distributions of varying
density. These density differences are reflected in the distribution of the distances
separating neighboring points. An examination of this distribution suggests a
scheme for converting d into a relative distance parameter. In Fig. 4, there is a
plot of the Euclidean distances that separate a point from each of its &k nearest
neighbors. The points were all chosen from a single cluster (Fig. 8), and were
selected from increasingly less dense areas. The important information for the
labeling process is contained in the shape of these curves and not in their absolute
value. In particular, a typical point in the interior of a dense cluster will have a
number of immediate neighbors at approximately the same distance, and then
there will be a jump in distance to the next nearest group of neighbors. This was
the case for the points in the previous example and it is also the case for curve 1
in Fig. 4. The other curves, shifted upward toward larger values, derive from
neighborhoods which are more and more sparse. However, they do not show a
substantial difference in shape; all of these curves are for INTERIOR points.

If the distance scales for the neighborhood around each point were normalized
to a standard amount (for a given k), then the compatibilities would be more a
function of the relative shapes of these curves than their absolute height. One
normalization technique is to scale the distance of the farthest neighbor to a
standard amount, thus superimposing the distance curves. For our examples, the
maximum neighborhood distance was chosen to be 2.4 relative distance units
(for £ = 8), with the remaining (k — 1) distances scaled by the same factor for
each point. The specific value of 2.4 was selected so that, with the scaled values
resembling distributions on a unit grid, most INTERIOR-INTERIOR support
initially comes from within 2.4 distance units. Without this scaling, the distance
components of the compatibility functions would have an overpowering effect
since the angular terms are also based on a unit grid.

5.1. Experiments: Variable-Density Clusters

The first example of a variable density dot pattern (Fig. 5) was obtained by
copying the “touching clusters” figure from Zahn [25, Fig. 3e]. The RLP labeled
this figure correctly, and in the process exhibited two interesting features of its
behavior. The first can be seen in the lower right corner of Fig. 5. The initialization
operator incorrectly placed most of the weight upon the NOISE label for the two
most distant points. As the iterations proceeded, the INTERNAL labels became
more certain of their interpretation and began to group into regions. These
regions then established a more consistent overall interpretation which, in turn,
propagated its influence outward to rectify the two incorrect labelings. Thus,
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Fr1c. 5. Figure-eight shaped cluster; (a) Original point distribution; (b) initial probabilities;
(c) 5 iterations; (d) 10 iterations

although the RLP is operating in parallel over the entire pattern, the primary
changes appear to take place in a best-first fashion [26].

The second feature involves a fundamental ambiguity in the interpretation of
the neck points of the pattern. This ambiguity derives from the fact that the
pattern can be seen either as two clusters which are just touching or as one
cluster with a thin neck. Zahn attempted to resolve this ambiguity by employing
an algorithm for finding cut sets in the minimal spanning tree. This was an
extremely difficult problem, and Zahn’s method is not generally applicable. On
the other hand, the relaxation process does not attempt to resolve the ambiguity
in terms of local features. Rather, it terminates with a labeling that makes the
ambiguity explicit. This labeling can then be passed to a more informed, global
process for a resolution. In particular, after 10 iterations most of the points in
Fig. 5 were labeled uniquely. However, for the neck points the RLP placed a
weight of approximately 0.5 on the INTERIOR label and left the rest of the
weight on the appropriate EDGE labels. To show that this kind of ambiguity was
inherent in the structure of the pattern and is not an artifact of the current
compatibilities, the contribution that EDGE points get from the INTERIOR
points was increased 25% ; the result was unchanged (Fig. 6).

The next example (Fig. 7) contains two intertwined C-shaped clusters which
are linearly inseparable. The relaxation process correctly labeled these clusters
with distinet EDGES surrounding extremely thin INTERIORS. This result
remained effectively invariant over changes in the exponential coefficients (in-
creasing all the « coefficients 259 so that they become equal to arr) and over 259,
increases in the EDGE-EDGE and EDGE-INTERIOR weights. The only
ambiguities resulted from quantization effects. This example does begin to indicate
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the limitations of purely binary compatibilities, however. The EDGE around
the thin, concave portions of these clusters is weak in places where neighboring,
quantized EDGEs seem to encompass them. To detect these extreme situations,
ternary compatibilities would seem to be necessary.

5.2. Touching Gaussian Clusters

Defining the neighborhood of a point as its k nearest neighbors can lead, for
certain variable-density patterns, to an improperly skewed local perspective.
This phenomenon is illustrated in Fig. 8, the ‘“touching Gaussian clusters”
example in Zahn [257]. It receives a highly ambiguous initial labeling, mainly
because the initialization operator is based on Euclidean distance measurements.
Since the density decreases toward the EDGE, the k-neighbor set associated with
each point is concentrated on the side nearest to the cluster center. Thus, as the
iterations proceed, each point acts as if it were the most outlying point in a region
of decreasing density, and becomes labeled as an EDGE point. After 15 iterations
there are three concentric EDGE rings around the tight cluster centers.

O’Callaghan [187] has criticized the standard k nearest neighbor definition for
the “neighborhood of a point’” and has proposed a visually more satisfying one.
His new definition tends to decrease the asymmetries induced by the k nearest
neighbor rule by eliminating points obscured from the view of a central point.
Thus the neighborhood set is defined dynamically according to the relative
positions of nearby points as well as the local density.

This more symmetrical neighborhood definition can be incorporated into the
relaxation process when the underlying graph structure is built. However, it is
possible to simulate its effect more simply by increasing the influence exerted by
sparse points located behind EDGE points. This compensates for the deficiency
of points toward the edge of the cluster and, after the normalizing component in
the updating rule is taken into account, has the effect of making the neighborhood
contribution more symmetrical. The results of this change are shown in Fig. 9.
Note that now the clusters are labeled much as those in Fig. 5, and that, again,
ambiguities are retained in the neck region.

6. CONCLUSIONS

Cluster analysis techniques are often employed to discover structure within
raw experimental data. At such times, clustering algorithms must not presuppose
specific structural classes for the dots or models for generating them. Rather, the
algorithms must rely on more general principles. The basic general principle for
the work presented in our paper is that the concept of shape should, at least in
part, be a visual one. This position has two immediate consequences. The first is
that the kinds of information processing which take place in the visual system
can be applied to the development of cluster analysis algorithms. Since we believe
that visual information processing involves the construction of successively more
abstract descriptions of the data, we developed a relaxation algorithm to provide
a low-level description of the roles which dots can play in cluster patterns. In
particular, dots which acted as portions of the edge around a cluster or as points
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F1a. 7. Intersecting C-shaped clusters: (a) Original point distribution; (b)-(g) 0, 5, 10, 15, 20,
and 25 iterations.

interior to a cluster were labeled appropriately. Also, isolated points outside of
clusters were identified. The final assignments of these interpretive labels were,
furthermore, in exact agreement with the visual appearance of the patterns. This
brings us to the second consequence of our position—the general evaluation
criterion for the algorithm. More specifically, when detailed, a priori information
is lacking, the cluster structure imposed by an algorithm on a collection of data
should agree with the visual appearance of clusters in that data.
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Fig. 8. Touching Gaussian clusters: (a) original point distribution; (b)-(d) 0, 5, 10, and 15
iterations.

Since dot patterns approximate a class of binary images, the study of relaxation
processes for labeling dots is also relevant to the design of vision systems. Low-
level vision, like dot labeling, is plagued with many sources of ambiguity and
noise. Examples of noise in this paper were seen to arise from both poor initializa-
tion operator responses and from quantization errors. To counteract these noise
effects, a closed-loop feedback configuration is required. RLPs provide one
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structure in which this feedback can be accomplished to reduce noise while, at
the same time, making certain implicit pattern ambiguities explicit (e.g., the neck
points in I'ig. 6). If we consider the RLP as a system of concurrent cooperating
and competing subprocesses [267], the partial results from each subprocess are
defined in part by the compatibilities, and, for this application, they include

Fia. 9. Touching Gaussian clusters with neighborhood correction. (a)-(g) 0, 5, 10, 15 20. 25.
and 30 iterations.
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region-based interior and noise processes and an edge-based border process. It
should be noted that only binary compatibilities were used in this paper, which
indicates how locally determined the description for dot clusters really is. The
modular nature of these compatibilities readily permits the inclusion of additional
sources of structural information, such as the linear arrangements which appear
in many dot patterns [17], as well as more subtle, higher-order compatibilities.

The relevance of this design for vision systems is that edge-based and region-
based processes can be designed to operate together and that the control of these
processes can be data-directed. Predetermined strategies such as the ones in
[6, 16] are not absolutely necessary. In the portions of the dot patterns where
the proper labeling was obvious, the RLP converged rapidly. In other, more
ambiguous positions, convergence was slower and apparently was dependent on
improved contextual support. On the basis of the output displays, such behavior
could be interpreted as resulting from a “best-first” labeling strategy [2, 8.
However, this strategy was only implicitly defined; hence processing constraints
arising, for example, from sequential implementations need not restrict the power
of these techniques.

The cost of implicit control is, of course, very expensive computationally.
However, the main points of this paper with regard to cluster analysis were the
isolation of the important information sources within dot patterns and their use
in computing low-level cluster descriptions. RLPs provided a convenient frame-
work for implementation. In the future as the precise computation that is per-
formed by relaxation becomes better understood, more efficient algorithms for
accomplishing it can be devised [29]. This should bring the computational
complexity more in line with other approaches to clusting.

The labeling of the functional roles which dots can play in clusters is only half
of the cluster analysis problem. The actual linking of these dots into identified
clusters still remains. While the design of an algorithm for tracking edge points
seems to be straightforward for the examples presented in this paper, the possi-
bility of ambiguous situations still exists. Thus a more elegant solution might
have another RLP designed to label the links between points. This second RLP
could use the label information provided by the process described in this paper
(for a preliminary design see [26]). Such a solution is also relevant to computer
vision systems, in which many kinds of grouping algorithms must cooperate with
one another. The approach to clustering in this paper has already led to a new
approach to labeling edge, interior, and noise points is gray-level images [30],
while the dot and link process in [26] has led to a new result about scheduling
algorithms in complex systems. We hope that the further study of multiple
hierarchical RLPs and their interactions in cluster analysis will provide the
experience necessary to confront the remaining and more difficult vision problems.
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