Distributed Bayesian Object Recognition
A New Paradigm *

Isidore Rigoutsos Robert Hummel
I. B. M. Corporation Courant Institute of Mathematical Sciences
T. J. Watson Research Center New York University
P.O. Box 704 _ 251 Mercer Street
Yorktown Heights, NY 10598. New York, NY 10012.

Email: rigoutso@watson.ibm.com, Telephone: (914) 784 7968, FAX: (914) 784 7455

November 1992

Abstract

The problem of model-based object recognition is a fundamental one in the field of com-
puter vision and robotics, and we believe that it represents a promising direction for practical
applications. For the purposes of this paper, we define a “realistic” object recognition system
as a system that: (a) uses 2D intensity images, (b) can perform well with real-world inputs,
(c) can recognize objects from a large database, (d) responds within reasonable time limits,
and (e) the required processing power can be provided by readily available computational
platforms. In this paper, we offer a new paradigm for performing “realistic” object recogni-
tion. First, we show how several intuitive notions in the context of geometric hashing can be
translated into a well-founded Bayesian approach to object recognition; this interpretation,
which is a new form of Bayesian-based model matching, leads to well-justified formulas, and
gives a precise weighted-voting method for the evidence-gathering phase of geometric hash-
ing. The second contribution of the paper is the description of a computational model for
performing object recognition in a distributed fashion. Using the high-level language sup-
port provided by Concert/C, we demonstrate the validity of our paradigm by presenting a
prototype system that has been implemented on a small farm of workstations. The resulting
system is scalable, and can recognize models subjected to 2D rotation, translation and scale
changes in real-world digital imagery. This is the first system of its kind that is scalable,
can use large databases, handles noisy input data, and exhibits excellent performance with
real-world scenes. The performance of the system is superior by a factor of 2 to that obtained
for a similar system on a Connection Machine (CM - 2).
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1 Introduction

The problem of object recognition is a fundamental one in the fields of computer vision and
robotics. We believe that a promising research direction in image analysis, and the one most
likely to lead to industrial and commercial applications, is the area of object recognition where
the search is confined within a finite set of observable models.

In all of the object recognition systems, one can distinguish four stages: data acquisition,
feature extraction, matching and verification. Of these four stags, the matching is admittedly the
most crucial component of any system. In the last decade, a number of techniques have been
developed toward this end. But, in all cases there have been a trade-off between the reliability
and the computation cost: techniques that produce very reliable results are computationally
heavy, and vice versa. Most matching techniques have been based on cross-correlation ideas, tree-
or graph-search, clustering, or indexing: the technique used generally depends on the types of
features.

The matching technique should allow for partial occlusion, rotation, translation, and scale
changes, as well as for small amounts of data perturbation. The output of the matching stage is a
set of hypotheses regarding the identity of the models that are embedded in the scene. Associating
a measure of belief to the answer(s) is also desirable: this measure allows the hypotheses’ relative
ranking. Together with the set of models, the matching stage also recovers the transformation
that the corresponding model is assumed to have undergone.

Geometric hashing is a class of matching algorithms that facilitate object recognition in a
computationally advantageous way. Similar to hashing methods for data retrieval, geometric
hashing uses functions of geometric features in order to index from observed image data into a set of
geometric models. Unlike typical hashing methods, the hash functions for geometric applications
should not be random - it is important that small perturbations of the positions of features lead
to a graceful degradation in the recognition capabilities. Accordingly, geometric hashing functions
are based on transformation invariants, and depend on the class of transformations over which

recognition is desired. Errors in the position and extraction of features can lead to perturbations



1 INTRODUCTION 2

of the hash values, and degrade recognition performance.

For the purposes of this discussion, we define a “realistic” object recognition system as a
system that: (a) uses 2D intensity images, (b) can perform well with real-world inputs, (c) can
recognize objects from a large database, (d) responds within reasonable time limits, and (e) the
required processing power can be provided by readily available computational platforms.

In this paper, we describe a new paradigm for performing realistic object recognition using ge-
ometric hashing ideas and a distributed model of computation. In particular, we show how several
intuitive notions in the context of geometric hashing can be translated into a well-founded Bayesian
approach to object recognition. This interpretation, which is a new form of Bayesian-based model
matching, leads to well-justified formulas, and gives a precise weighted-voting method for the
evidence-gathering phase of geometric hashing. These formulas replace traditional heuristically-
derived methods for performing weighted voting, and also provide a precise method for evaluating
uncertainty. The second contribution of the paper is the description of a computational model
for performing object recognition in a distributed fashion. We demonstrate the validity of our
paradigm by presenting a prototype system that has been implemented on a small farm of work-
stations. The needed high-level programming language support is provided by Concert/C [1, 2]
The resulting system is scalable, and can recognize models subjected to 2D rotation, translation
and scale changes in real-world digital imagery. This is the first system of its kind that is scalable,
can use large databases, handles noisy input data, exhibits excellent performance with real-world
scenes, and makes use of readily available computational resources. Using a very coarse grain
of parallelism, the performance of the system is superior by a factor of 2 to that obtained for a
similar system on a Connection Machine (CM — 2) [51]. |

A detailed description of the analysis that leads to the Bayesian interpretation of geometric
hashing can be found in the PhD thesis of Rigoutsos [51]. The presentation here summarizes
and simplifies that analysis. Although the use of weighted voting in geometric hashing is a
logical extension, the Bayesian interpretation is startling in that it leads to well-justified formulas,
indicating precisely the manner in which weighted voting should be incorporated. It is more usual,

with fuzzy systems for example, to use heuristically-based evidence combination formulas. This
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paper presupposes a basic understanding of the geometric hashing algorithm. Summaries and
discussions of the method may be found in [34, 41, 44, 52, 51, 54, 55, 56).

In section 2 we present a survey of the most representative object recognition systems and
techniques that have been developed during the last two decades. Section 3 introduces the concept
of weighted voting in the context of geometric hashing, while section 4 presents a Bayesian formu-
lation of the geometric hashing algorithm. The density of entries in the hash space is discussed
in section 5, and the description of the resulting bayesian object recognition algorithm is given
in section 6. In section 7 we describe a distributed-computation model for performing Bayesian
object recognition, together with a brief description of the Concert/C language for programming
distributed systems. The paper concludes with a presentation of the implementation and the
experimental results (section 8). We emphasize that our system is “complete” in the sense that

the feature extraction process is automated.

2 A Survey of Object Recognition Systems and Tech-
niques

In this section, we briefly describe some of the most representative object recognition systems
that have been developed during the last two decades.

One of the earliest object recognition systems was developed by Roberts [57]. The system
was able to recognize convex polyhedral objects under the weak perspective transformation. It
controlled and pruned the search by considering only vertices that were connected by. an edge,
and thus could not handle occlusion. Unlike Roberts’ system, the models in ACRONYM [13] were
generalized cylinders. ACRONYM used symbolic constraints to control and effectively prune the
search, and could handle both noise and occlusion.

A related approach to that of ACRONYM'’s was taken in Goad’s system [27]. The system
used quantitative (as opposed to symbolic) constraints to control the search. Goad’s system also

introduced the notion of the two stage (off-line stage, on-line stage) recognition algorithm, where
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data precomputed during a first phase (off-line) are used during the phase of actual recognition
(on-line) in order to speed up the processing.

The use of geometric constraints (such as distance and angle) as an efficient way for pruning
the search while matching image and model features, was advocated by Bolles in his LFF and
3DPO systems [10, 11]; LFF is used to recognize 2D objects from intensity images, whereas
3DPO is used for recognition of 3D objects from range data. Geometric constraints are also used
in the RAF system of Grimson [29, 30]. In Grimson’s system, the search is structured around
an interpretation tree, and exhibits exponential time complexity if the input image (intensity
data) includes spurious data. More recently, the BONSAI system [23] exploits unary and binary
constraints to control the search of the interpretation tree, and prune the search space: the input
to BONSAI comprises range images of parts that have been designed using a CAD tool.

The HYPER system of Ayache and Faugeras [3] also belongs to the category of systems that
attempt to determine correspondences between sets of model and image features. HYPER is used
to recognize 2D objects from intensity images. However, its success is dependent on the quality of
the polygonal approximations of the input image’s contours. Furthermore, it is sensitive to noise
and does not deal with the occlusion of edges.

Lowe’s system, SCERPO [47], is a complete object recognition system that recognizes polyhe-
dral 3D objects from intensity images, under the perspective transformation. SCERPQ attempts
to reduce the complexity of the search by performing perceptual groupings of image features.
However, it typically deals with only one or two models in the model database at any given time.

More recently, work by Kak [37] shows that efficient algorithms can prove beneficial in reducing
the complexity in the case of systems that search over the sets of features. In pa.rticula,r,.Kak uses
bipartite matching in conjunction with the notion of discrete relaxation to perform recognition of
3D objects using the output of a structured-light scanner.

In addition, a number of other systems have been developed that search the space of allowed
transformations. The classic representative of this approach is the generalized Hough transform [4,
5, 65]: the method is a generalization of the Hough transform [33] and is used to detect arbitrary

shapes. In the generalized Hough transform framework, the recognition of objects is achieved by
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recovering the transformation that brings a large number of model features in correspondence with
image features. The transformation is described in terms of a set of transformation parameters,
and votes for these parameters are accumulated by hypothesizing matchings between subsets of
model and image features. The generalized Hough transform requires the quantization of a range
of values for each of the parameters, thus resulting in decreased accuracy. The space requirements
are exponential in the number of the parameters.

The system by Mundy and Thompson [48, 49] uses large Hough tables to perform recognition
of 3D objects from 2D input data, under the weak perspective transformation. To constrain
the space of possible transformations, the system uses the notion of the “vertex-pair.” A vertex
pair consists of two vertices and the two edges forming one of the vertices. An improved version
of Mundy and Thompson’s system [60] remedies the problem of fixed parameter quantization
by iteratively refining the quantization around volumes of interest (histogram peaks), until the
required precision was achieved. A similar system is the one of Linnainmaa [46] which introduced
the notion of the “triangle-pair;” triplets of vertices from the image are matched against triplets of
model vertices in order to hypothesize a transformation under the perspective projection model;
however, the system provides multiple alternatives that require examination.

The approaches of the last three systems can be considered as special cases of a more general
scheme called “alignment” [69]. In alignment, one seeks a model from the model database to-
gether with a transformation from the allowed class of transformations such that the object being
viewed and the transformed model are in correspondence; for those transformations where the
number of corresponding features exceeds a certain threshold, a verification procedure is invoked.
Another alignment-based system, RANSAC [22], is used to recognize objects under pérspective
transformation, for a known camera position. Huttenlocher’s ORA system [35] on the other hand,
performs recognition assuming the weak perspective transformation model. More recently, align-
ment ideas have been combined with efficient string matching in order to perform unoccluded
polygonal object recognition [58].

The approach of Ullman and Basri [70] is considerably different. The basic idea here is that

each topologically different model view can be expressed as a linear combination of a small number
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of 2D views of the model. The method assumes that the transformation of the model to the scene
can be modeled by an orthographic projection, and can handle 3D rigid as well as non-rigid
transformations of the models. Scene clutter causes considerable problems. The scheme has
been treated mostly theoretically. Some preliminary results indicate reasonable performance with
databases containing a handful of objects.

Another general scheme that also involves search over the space of transformations is the geo-
metric hashing scheme. Although based on the same geometric principles as alignment, geometric
hashing differs from alignment in the algorithmic approach.

The following survey is mostly limited to treatments that led directly to the geometric hashing
method or used the geometric hashing terminology. It is clear that related ideas and essentially
equivalent concepts occurred frequently in the development of object recognition systems. For
example, the “feature sphere” used in Chen and Kak’s 3D-POLY [18] is essentially a hash function
that permits indexing into a smaller set of models. Likewise, work by researchers at IBM T.J.
Watson Research Center has been based on ideas of indexing into model bases for many years [9,
14, 15].

The idea of geometric hashing, at least in its modern incarnation, has its origins in work
of Professor Jacob Schwartz [36]. The first efforts were concentrated on the recognition of 2D
objects from their silhouettes. Hence, efficient curve-matching techniques were developed. The
use of “footprints” to describe properties along the curves was later extended by Wolfson and
Hong [32] and resulted in a recognition system that was able to recognize about ten 2D objects
partially occluding each other. The objects were taken from a library of a hundred models, and
recognition was performed allowing planar rigid motion (rotation and translation). A landmark
in the application of curve matching and combinatorial optimization methods was their use to
assemble (graphically rather than physically) all the pieces of two hundred-piece commercial jigsaw
puzzles, from separate photographs of their individual pieces [72]. The assembly was based on
shape information only. In all two-dimensional curve-matching work, footprints were used to limit
the number of candidate curves accessed by the matching system.

However, hash functions (still called footprint information) were much more essential when
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used for 3D curve matching obtained from depth data of objects. Using depth data obtained from
a fast but approximate depth sensor [16], Wolfson and Kishon developed a practical method for
locating and matching curves on rigid 3D objects [38], and extended the work by using a different
hashing technique [59]; all 3D curve-matching systems used measures of the local curvature as
index values into a table.

Application of the geometric hashing idea as an approach to model-based vision object recog-
nition was introduced by Lamdan, Schwartz, and Wolfson. Much of the work is summarized in
the dissertation of Lamdan [40]. Algorithms were developed for recognition of flat rigid objects
assuming the affine approximation of the perspective transformation [44, 45] and the technique
was also extended to the recognition of arbitrary rigid 3D objects from single 2D images [42].

Stein and Medioni [63] present a system for the recognition of planar objects from intensity
images. The system uses a hash table that contained the gray-encodings of groups of consec-
utive edge segments (“supersegments”), of varying cardinalities. For recognition of general 3D
objects from single 2D images, promising results have been obtained in the dissertation of Lam-
dan [40], where many viewpoint-centered models are generated of simple 3D models, and the
work of Gavrila and Groen [26], who generate viewpoint-centered models based on experiments
that determine limits of discriminability. Stein and Medioni’s TOSS system [64] uses “structural
hashing” to recognize 3D shapes from dense range data from which characteristic curves and local
differential patches are extracted. The method allows only for rigid transformations (rotation and
translation), and despite the use of high-dimensional indices, the verification stage is very costly.

Forsyth et al. [25] present and use descriptors based on pairs of planar curves; the descriptors
are invariant under affine and perspective transformations. They obtain good results, but their
method is sensitive to occlusion and its performance depends strongly on the quality of the
segmentation.

For the recognition of rigid 3D curves extracted from medical imagery, Guéziec makes use of
hashing methods to speed matching based on spline curve approximations [31]. For recognition
of 3D objects from range data, Flynn and Jain [24] use hashing and local feature sets to generate

hypotheses (without a voting procedure), and report a more efficient search than a constrained
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search (hypothesize and verify) approach, when applied to two dozen models. Representing 3D
objects by means of their characteristic view, and regarding object recognition as a graph matching
problem, Sossa and Horaud [61] develop hash functions for graphs to provide improved matching
capabilities.

All of the systems that have been described so far, as well as those based on the geometric
hashing scheme, typically represent the database models using a small number of homogeneous,
local features. These features “define” the objects. Furthermore, the objects under consideration
are treated in isolation from the rest of the scene. Unlike these systems, CONDOR [66] is the first
system that takes the approach of performing context recognition first, and then instantiates the
individual components. Natural objects such as sky, ground, foliage are included in the system’s
vocabulary. A speci‘al-purpose database contains all the necessary information about the world.
The introduction of context results in increased flexibility at the expense of a major increase of the
computational complexity. The input to the system can be any combination of intensity, range,
color or other data modalities. The output is a labeled 3D model of the input image, with the
labels referring to the object classes that can be recognized by the system.

The system by Swain [67] can recognize deformable objects and substances described by mass
nouns by making use of color information. Thus it is similar in flavor to CONDOR. However, its
use of precomputed invariants for the different database models in a two-stage algorithm, brings
the system closer to the ones that are based on hashing/indexing ideas. Notably, Swain’s system
can recognize objects independent of background and viewpoint variations, occlusion, scale, and
lighting conditions.

Vayda and Kak’s INGEN system [71] performs object classification based on the ovefa.ll shape
of the object. For certain object recognition tasks it suffices to categorize the objects based on
their general shape (e.g. parallelepiped, cylinder, etc.) and independently of their size. Because
of the large variations in size, feature-based object recognition techniques are not easily appli-
cable. INGEN uses a hypothesize-and-verify approach to determine the pose and generic shape
of objects from range data. Hypothéses generated for each region in the segmented range data

can be combined using either information contained in a combinability graph, or proximity and
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continuity heuristics. Use of the combinability graphs controls the combinatorial explosion by
efficient pruning of the search space.

Another system with no knowledge of a geometric or structural model for each of the database
objects is the one by Stark and Bowyer [62]. In their system, object classes are described in terms
of the functional properties shared by all the 3D objects in the class. The various functional
properties are represented using procedural knowledge. The system has been successfully tested
with a database of 100 objects belonging to the “chair” class; the output of a CAD tool was used
to provide the test input to the system.

Dickinson [20] presents yet another approach to 3D object recognition from intensity images.
His system uses a small set of volumetric primitives which can be assembled to form the objects
that can be recognized. An important component to the system is a hierarchy of 2D features (such
as contours, faces, groups of faces) that are generated by projecting the primitives based on a set
of viewer-centered orientations; conditional probabilities capture the relation between nodes at
different levels of the hierarchy, and can be computed off-line. The number of orientations is fixed
and thus independent of the number of models the system can recognize. During recognition, the
system uses a bottom-up approach and precomputed conditional probabilities to extract primitives
in the input image, as well as the connectivities of the primitives. Using the primitive and
connectivity information, the system indexes into the model database to recover the identity of
the viewed object. Bergevin’s PARVO system [6] takes a similar approach to that of Dickinson’s
but makes use of “geons” [7] as the modeling primitives.

Kriegman and Ponce’s approach [39] also exploits the relation between the shape of intensity
image contours and the models of 3D objects of revolution. Under the assumption that the image
contours are the projections of either surface discontinuities or occluding contours, Kriegman and
Ponce use elimination theoryto construct the implicit equations of the contours under perspective
and weak perspective projections; the equations are parameterized by the object’s position and
orientation. In the current system, edge segments are grouped into contours manually, and no
extraneous data are fed into the algorithm. Also, contours that are neither surface nor occluding

discontinuities are manually removed. Although they obtain good results, the suecess of the
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approach relies heavily on the quality of segmentation.

In an effort to further the improve response time, parallel implementations of geometric hash-
ing, for a Connection Machine, have been attempted by Medioni [12] and by Rigoutsos [52, 56].

Some general observations can be made with regards to the characteristics of the above de-
scribed systems. Typically, all of them make, use of small model databases. With the exception
perhaps of CONDOR, the test inputs are simple scenes, where the number of extraneous fea-
tures typically does not exceed the number of features belonging to the embedded model. Almost
no system exploits the parallelism that may be inherent in the employed algorithm, whereas a
number of systems do not allow for any level of occlusion. In almost all cases, there is a lack
of a natural way to quantify the confidence the system has in the reported answer. Very few
systems make use of Bayesian reasoning, e.g. SCERPO, CONDOR. Finally, an observation that
applies to practically all of the systems is that segmentation is the limiting factor: all of the
systems/techniques perform well with ideal input data but their performance degrades more or
less gracefully in the presence of input noise. The PhD thesis of Rigoutsos [51] presents a first
attempt to successfully deal with all of these issues: a complete object recognition system able
to recognize aircraft and automobile models in real-world photographs is described therein. The
system is implemented on a Connection Machine (CM — 2).

There have been numerous efforts to add an error model to geometric hashing, and to in-
vestigate its performance in the presence of positional noise of the features. Costa et al. [19]
investigate the variation of the standard hash functions in the presence of noise, and suggest a
weighted-voting scheme. Lamdan and Wolfson [43] investigate both analytically and empirically
the false-alarm rate, and conclude that acceptable filtering is possible, although a degra;dation in
performance can be expected for affine-invariant matching. Grimson and Huttenlocher [28] give
rather pessimistic predictions for affine-invariant matching using geometric hashing. Gavrila and
Groen [26] report good filtering capabilities of similarity-invariant model matching in the pres-
ence of noise. Rigoutsos and Hummel [53, 54] look at error rates in the presence of noise for both
similarity and affine invariance, and conclude that use of weighted voting can greatly improve

performance.
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3 Weighted Voting in Geometric Hashing

We suppose that we are given m models M;, Mz, Ms,...,M,,, each consisting of a pattern of n
points, say Qx1,--.,qkn for model My, with each qx; € R% For similarity-invariant recognition,
the hash table consists of a collection of mn(n—1)(n—2) entries, each of the form (z,y, Mk, 1, j, £).
Each entry means that model M, using basis (qx,, Qx,;), gives rise to a hash value at location (z,y)
when the coordinates of qi, are computed in the appropriate coordinate system. We typically
use the hash function and coordinate system as depicted in Figure 1. There will be a separate

entry in the hash table for every ordered triple of distinct points (z, 5,£) and every model Mj.

30

o

.....
L

Figure 1. Hash coordinate computation using a two-point basis.

During the recognition phase, a collection of scene points py,...ps, are observed, with each
p¢ € R2 Candidate basis pairs are selected, say p, and p,, and the remaining scene points are
used to compute hash locations in the coordinate system determined by the basis (p,, p,). When
a point hashes to a location (u,v), we desire to locate all entries in the hash table that lie nearby
the point (u,v), and register a weighted vote for each such entry. That is, every hash table entry
of the form (z,y, My, ,j) should receive a weighted vote when (z,y) is close to (u,v). The weight
of the vote should depend on the distance between (u,v) and (z,y). Generally, the weight of
the vote should drop as the distance increases. This process is more fair than the simple-minded
binning strategy which registers a single vote whenever (u,v) lands in the same quantized bin
as (z,y). There is a more graceful degradation in the total number (i.e., weight) of votes for a

model/basis combination as noise corrupts the positions of the hash locations.
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What weight should we give to a vote for a record (z,y, M, 1,7,£€) given a hash to location
(u,v)? Several heuristic functions are easy to define. We could choose some decreasing function of
the Euclidean distance between (z,y) and (u,v), such as the inverse of the distance, to determine
the weighted vote. To simplify the process, the weighted vote could be a linear function of the
Euclidean distance, dropping to and being clipped at zero beyond some threshold distance. Alter-
natively, and closer to our actual practice, we could analyze the expected distribution about (z,y)
of the expected hash location of a noise-corrupted model My, using basis pair (4,7), embedded
into the scene, based on expected variations in the positions of the basis points and the point
that is being hashed, to define a statistical covariance C. The weighted vote in response to a
hash to location (u,v) can then be related to the Mahalanobis distance (d.,d,)C~*(d;, d,), where
(deydy) = (u = 2,0 — y).

What is startling, and what we will show in the next section, is that a Bayesian formulation
may be used to provide a precise formula, using an exponentially decreasing function of a scaled

Mahalanobis distance, providing a well-justified weighted voting formula.

4 A Bayesian Formulation

Recall that the model database consists of models {M;}, for k = 1,...,m, and that we are also
given a scene with a set of s points, S = {p¢}7-,. We assume that two points of S are chosen as
a basis pair, say, B = {p,,p.}. Thus, given S and B, we wish to determine if a model is present
with B as a basis.

Throughout, we assume that B is fixed. Thus our formulation depends on a fixed chosen basis
set in the scene. If an adequate model is not found by a verification step as a result of using B as
a basis, then the entire analysis must be repeated with other choices for the basis pair. Further,

we set .

S'=8-B;

i.e., 8’ comprises the points of the scene less the two points in B. The set S’ provides the evidence

that will be used to determine if a model is present.
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We pose the following query: What is the probability that model M, is present, with points 2
and j of the model respectively matching p, and p, of the chosen basis set B in the scene based

on the information given by §’? We use the following notation:

o (My,%,j) means that model M is present with point 7 of M} matching basis point p, and

point 7 of M matching point p,;
o B means that the basis pair B = {p,,p,} C S has been chosen and fixed;

e &' means that a collection of hash values (corresponding to the points of set S’) are computed

and present, corrupted by noise, relative to the fixed basis set B.
Using this notation, we wish to compute
Pr ((Mk’ Z,]) lBaS’) (1)

which is the probability that model My is present, with points ¢ and j of the model respectively
matching p, and p, of the basis set B, based on the information from the hash locations as
computed by the scene points &’ relative to the selected basis set.

A maximum likelihood approach to object recognition results if we ask to find the maximum
of Eqn. (1) over all possible My, i, and j. The resulting model/basis combination is the most
likely match given the basis B and the collection of hash values generated from S’. If there is
no match, then the probability value of even the maximum winner will not be large. If there
are several possible matches, then several model/basis combinations will share a large part of the
total probability. Because we intend on passing winning combinations to a verification phase, it
suffices to find the féw combinations that lead to the largest probabilities. We will determine the
relative probabilities, and not the actual values.

Next, we make certain conditional independence assumptions. Let p¢ be one of the points of

S’, and let S” be any nonempty subset of &’ not containing p;. We make the assumption that

Pr(p¢|S”, (My,1,7), B) = Pr(p¢| (M, 1, 5), B) , (2)
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for every possible (My,1,7). These are conditional independence assumptions, and the meaning
can be summarized as follows. Under the assumption that some model M) matches points in
a scene with points ¢ and j in the model matching the basis B in the scene, then the expected
probability distribution of a hash point relative to the basis B is independent of any collection of
other hashed values, whether they corroborate the model or not. That is, once the assumption
is made that a match occurs, then the density function for hash values is fixed; namely, there is
a large expectation of hash values near the points in the hash table where (Mg, ,j) hash entries
occur, and a uniform density (or some fixed density) elsewhere, regardless of what other hash
values are known to occur.

With the above assumptions, and using standard probabilistic derivations based on Bayes’

theorem [17], the probabilities of Eqn. (1) may be rewritten as

Pr ((Mk,l,]) IB’ pf)

Pr((Mhi’j)IBvsl):K : Pr((Mk,Z,])IB) H PI‘((Mk,i,j) IB) . (3)

Pe€ES’

The constant of proportionality K will be independent of (Mj,%,7), and it is noteworthy that
only the conditional independence assumptions (Eqns. (2)) are necessary, and not unconditioned
independence assumptions. Applying Bayes’ theorem once more, each term in the product of the

right hand side of Eqn. (3) can be written as

Pr (pel (Mai, ), B)
PrpclB) @

Since the logarithm function is monotonic, maximizing the probabilities (1) over model/basis

combinations is equivalent to maximizing the logarithms of those probabilities. We can thus
apply the logarithm to both sides of (3), noting that the constant of proportionality becomes a
constant additive factor, whence we see that we must maximize

Pr(pEI(Mk’iaj) aB)
( Pr (pelB) ) ©)

log (Pr ((Mi,4,7)1B)) + > log
p¢€S’

over all possible model/basis combinations.
This is in essence what geometric hashing does. We first posit a basis set B from the scene

points. Each and every model/basis combination then accumulates votes, looking at individual
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points from the scene and their hash locations in the hash table computed relative to the basis
B. The model/basis combinations receiving a lot of votes (or a large weighted vote) is a probable
instance of a model with the basis combination from that model matching the chosen basis B.
We see from Eqn. (5) that the contribution that a particular hash value based on a point p; in
the scene lends to a model/basis combination (M, ,j) should be equal to a log-probability ratio

Pr(pfl (Mkai’j)vB)
l°g( Pr (pelB) )

The ratio compares the probability of obtaining a hash to the location where p¢ hashes using the

basis B, under the assumption that model (My,1, ) is present with the basis (z,j) matching the
chosen basis B, to the probability without this assumption. The log-probability ratio essentially
measures the logarithm of the factor by which the probability increases or decreases due to the
conditioning hypothesis. It will be based on the unnormalized density functions of hashes of scene
points in the hash space. By unnormalized, we mean that the integral of the expected density
functions will give the total number of points, and not unity. In our case, clearly the probability
increases by a large factor in the regions near hash locations of the points of M} computed using
the basis (z, 7).

We also note from the first term of Eqn. (5) that initially each model/basis combination should
have a bias amount equal to the logarithm of its a priori probability. If every model and basis

combination is equally likely, then this term may be dropped.

5 Density of Entries in Hash Space

The previous section shows that geometric hashing, with weighted voting, can be interpreted as
a Bayesian maximum likelihood object recognition system. However, the weights that should
be used depend on the unnormalized density functions of hash values in the hash space, under
assumptions of a particular model/basis combination and a particular basis set selection in the
scene. Accordingly, in this section, we compute those density functions for similarity transform

hashing, using the hash function computation indicated in Section 2.
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Our concern here is to compute the log-probability ratio

. (Pr(pel(Masi, ), B)
‘g( Pr(p¢B) )

We denote by (u,v) the location in the two-dimensional hash space to which p¢ hashes; we

use the similarity transform invariant hash function of the point p¢ under the basis B. We may
assume that the two points of B correspond to points ¢ and j of model M;, possibly corrupted
by noise. The probability ratio will depend on the density functions, which will be given below.
However, it is important to note that the probabilities depend on the existence of some point pg,
which happens to hash to a location (u,v), and not the probability that a given, specific point
hashes to a particular location. In the latter case, the integral over all space will give a unit value.
In the former case, the integral of the values over space will give the expected number of points
in the scene.

Let us denote the n —2 points in the hash table corresponding to entries due to model M with
basis (z,7) by {(zq,¥,)}o=i. If (u,v) is distant from all of the points (z,,y,), then in all likelihood
the point p¢ has nothing to do with the model My, and thus the assumption that model My is
present has no influence on the probability of a hash to location (u,v). Thus the probability ratio
is close to one, and the log-probability ratio is close to zero. Thus we will be able to discard hash
points (u,v) that do not lie close to any of the (z4,y,). We will define “close” more precisely soon.

If we assume there is no noise and no occlusions, then the assumption that model Mj is present
makes it certain that points will hash to each of the (z,,y,) locations. In this case, the probability
ratio will be infinite at those points, and one elsewhere. However, if we assume that every point
of the model embedded in the scene is subject to random perturbation, then the probai)ility of a
hash is merely increased in a region about each hash location (z,,y,)-

Consider three points from model M}, namely basis (%,j) and a third point £. An entry in
the hash table is recorded for this set of data; the entry will be at a location (z,y) and contain
the data (Mx,1,5). Suppose that the model is rotated, translated, and scaled into the scene,
and that the points are perturbed by.' Gaussianly-distributed location inaccuracies with variance

o?. The three points give rise to three corresponding scene points, p, = (u1, #2), Pi = (v1,v2),



5 DENSITY OF ENTRIES IN HASH SPACE 17

pe = (&, €2), respectively. If the first two points are chosen as basis points, and the third point is

used as the point for hashing, the resulting hash location (u,v) will satisfy the matrix equation

(Vl-ﬂl —V2+#2)(U)=(€1—(#1+V1)/2). (6)
vo—p2 v — v b2 — (p2 +12)/2

Although we will not prove it here, the Gaussian perturbations of the three points lead to
an approximately Gaussian distribution of the hash location (u,v), centered at (z,y), and with

covariance C given by
_ 4=+ +3) -0’
2 |lps — p. |’
where [ is the identity matrix (see [54, 55]). (Note that the covariance function is diagonal, and

I (7)

depends on both the location of the hash point (z,y), and also the separation distance between
the basis points in the scene.)

Accordingly, if we know that model Mj is in the image, and that the positions (z4,y,) are
the hash locations due to the n — 2 non-basis points of the model, then the expected density
function in hash space is simply the superposition of n — 2 gaussian distributions, each centered

at a distinct point (z4,y,) and each with an appropriate covariance:

n-2

f(u,v) = Z 1 exp (--l-(u - Zq, 0 — yq)C;'l(u —Zq,V — yq)‘) . (8)
g=1 27:\/@ 2
Here, C, is the covariance matrix at (z4,y,) given by Eqn. (7). Note that the total mass of the
density function is n — 2, reflecting the fact that n — 2 points are expected based on the knowledge
' that M, is present.

Next, suppose that three random scene points are chosen, with two points as the basis pair, and
the third point is used for hashing to a location, using again Eqn. (6). The distribution function
of the hash location (u,v) will depend on the distribution of points in the scene. Suppose that
the scene points are distributed according to a Gaussian distribution with a fixed but unspecified
variance. Using the analysis in [52], we can find that the expected distribution of hashes in hash

space is independent of the actual variance value, and is given by

12 1

™ (4(u? +v?) +3)7 ®)

9(u,v) =
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Since there are roughly S expected scene points, then the expected density function, without any
other assumptions, is S - g(u, v).

We are now ready to compute the log-probability ratio. We already know that the density
function in hash space, due to hashes from scene points, is S - g(u,v). If we know that the
model M, appears, then this adds n — 2 points, and adds to the expected density function with
Gaussian distributions centered at the locations (z4,y,), by means of the function f(u,v). Thus
the resulting density function is S - g(u,v) 4+ f(u,v). The log of the ratio gives us the formula

P 4,7 U, v
or (C8 a2 =1oe 1+ 570 o
where point pe hashes to location (u,v) using basis B, f is given by Eqn. (8), and g is given by
Eqn. (9).

6 The Bayesian Geometric Hashing Algorithm

We now summarize the algorithm that allows us to view geometric hashing as a Bayesian maximum-
likelihood model-matching system.

First, in the preprocessing phase, every model and every basis pair within that model computes
the hash locations of every other point within the model. Each such hash location (z,y) is
accompanied by the information of a model My, a basis pair (, j), a model point £ other than the
basis points, and a predicted normalized covariance radius, which is simply 7 = (4(z%+y?)+3)-02.
Records containing this information are organized in such a way that given a location (u,v), all
such records having an (z,y) value lying nearby are easily accessed. We find it convenient to
include the value 7 in the record.

In the recognition phase, feature points are extracted from the scene, and then a pair of these
points are chosen as a trial basis, say p, and p,. For every other point in the scene, the coordinates
of the point are computed relative to the basis set, and a hash takes place to a location (u,v)
in the hash domain. All nearby records of the form (z,y, Mk,1,7,£,7) are accessed. For each

such nearby record, we record a weighted vote for the model/basis combination (Mj;1,5). From
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Eqn. (10), the amount of the vote should be equal to

(1 B0+ 3P Ip =l (=) = @I
z‘lg(” T 12ar p( T )) (1

By nearby, we simply mean that z is greater than some threshold. Note that the formula incor-

porates the value of o, the expected error in positioning of the scene points, the number of scene
points, s, and the basis-pair separation distance.

As a simple enhancement, we can make sure that no scene point contributes more than one
vote for a particular model/basis combination, by the following method. When a point hashes
to location (u,v), and an increment z is to be recorded for a particular record (z,y, M, 1, 1,4, 7),
we record the value z along with the location (u,v) of the hash point. If another hash (u',v’)
results in a competing increment z’ to the same entry, then we compare the positions of (u,v)
and (u,v') with the entry location (z,y), and update the recorded increment corresponding to
the hash that lies closer. After all scene points are processed, then the vote for a particular
model/basis combination (Mj,, %0, jo) is determined from the sum over £ of increments z recorded
for entries of the form (z,y, My, %0, jo, ¢, 7).

When all weighted votes are tallied, model/basis combinations whose total accumulated evi-
dence exceeds some threshold are passed onto a verification process. The algorithm continues by

iterating through different candidate basis pairs from the image.

7 A Distributed-Computation Model

It is clear from the description of the previous section that the Bayesian geometric h;ashing al-
gorithm is inherently parallelizable. The granularity of parallelizability is potentially very fine.
Indeed, observe that the a priori information that we have stored in the database is in the form of
records (,y, Mk, 1, j,£,7): there is one record for each 3-tuple one can form using distinct features
from the set of features for model M. There is a total of Mn (n — 1) (n — 2) such records.
During recognition, we will need to accéss all these records that lie nearby locations (u,v) to

which hashes are generated. For each nearby record, the expression of Eqn. 11 will have to be
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evaluated.

One can envision the following fine grain mapping of the computation to processing elements.
Each processing element knows of exactly one record (z,y, Mk, 1, 7,1, 7); for each of the generated
hashes (u,v), the processing element evaluates the expression of Eqn. 11 using the entries of its
local record.

Progressively coarser grains of parallelism are also possible. For example, a processing element
could maintain locally the (n — 2) records having identical values for Mg, 7, and j. Or, a processing
element can maintain locally the (n — 1) (n — 2) records having identical values for My, and ¢,
etc. At the limit, the processing element maintains locally the records for the entire database
(uniprocessor implementation).

It should be clear that the communication requirements between the various processing ele-
ments incre;ases as the grain of parallelism becomes finer. Also, one needs to program in progres-
sively lower-level languages as the grain becomes finer.

For models that are represented by 16 features, there is a total of approximately 3K such
records generated per model. If the number of features extracted in the scenes under considera-
tion is in the order of 100 features, each processing element will have to perform roughly 6 Mflops
for each basis-pair selection and for each model. The resulting storage and computational require-
ments are certainly within the capabilities of modern workstations. It thus appears reasonable to
assign the records corresponding toa given database model to a single workstation.

The above design decision introduces the need for means of communication between the various
workstations. Let us examine in greater detail the communication requirements. For the purposes
of the discussion that follows we assume that one of the workstations has been decia.red the
“master” whereas the remaining workstations operate as “servers.”

For a database of M models, we will need a total of M + 1 workstations. At the beginning
of the computation, each of the servers will be assigned a rank: the i-th server will store locally
and maintain the records corresponding to the i-th database model. These records can either be

communicated to the i-th server via a message from the master, or directly accessed by the server
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MASTER

SERVER #1 SERVER #2 SERVER #3 ©co0o0o0o0o0 SERVER #M

NFS NFS NES NFS NFS NFS NFS NFS NF§ NFS NFS NFS NFS NFS NF§ NFS NFS NFS NFS NFS NFS NFS NFS NFSNFS NFS NFS NFS NFs

DATABASE

Figure 2. A block-diagram of the master-server model that we use in the implementation of our system.
Although the diagram shows a particular grain selection (one database model per server), our paradigm does
not impose any restrictions: the size of the grain is decided by the amount of available processing power (i.e.
workstations), and the size of the used database.
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via NFS.! Either way, this transfer of information need only happen once, and before the actual
recognition begins.

Once the master is presented with the test scene (i.e. a digitized photograph), the master will
need to extract the S features in the scene, and subsequently communicate them to each of the M
servers. At this stage, the master can begin the iterative part of the recognition process by selecting
pairs of point features from the test scene. For each selected pair, the master communicates the
four coordinate values to each of the servers. Using the coordinates of the selected features, each
server computes the S — 2 many hits (u,v), to hash space that the remaining scene features
generate; the server then proceeds to evaluate Eqn. 11 for each hit and each record that is nearby
(u,v). When all the nearby records have processed, each server sends back to the master the top
T model/basis combinations, in order of decreasing accumulated evidence, which corresponi to
the given basis selection. The master then histograms the (M - T') model/basis combinations it
received from the M servers and decides whether to select a new basis pair and repeat the process.

It is clear from the above description, that during the actual recognition, the communication
requirements are minimal. Indeed, the messages that the master and the servers need to exchange
are not longer than a few tens of numbers. The messages travel along the existing LAN connections
between the master and the servers. In Figure 2, we graphically show the computational model
we just described.

Built around the so-called “process model”, Concert/C [1, 2] language for programming dis-
tributed applications. Concert/C is the C language augmented with a small number of extensions,
and supports process creation and termination, asynchronous and synchronous interprocess com-
munication, and inter-process interaction. In the context of our distributed-computatbn model
above, Concert/C allows the user to generate C-like code for both the master and the servers, and
also define the contract that determines the way in which the master and servers will interact.
During run-time, the master begins by creating “copies” of the server code on each one of a set
of named workstations. Then the computation proceeds as we described above. The master has

the additional responsibility to send “terminate” signals to each of the server copies upon suc-

1This alternative is expected to prove more preferable in the case of large databases.
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cessful completion (i.e. recognition). [1] contains a more detailed description of the capabilities

of Concert/C.

8 System Implementation and Results

In this section, we describe in more detail the automatic feature extraction, the basis selection
mechanism, and the actual implementation. We also present some experimental results.

We incorporated an automatic feature extraction mechanism, making use of a boundary fol-
lowing algorithm (eight-connectivity is assumed) applied to the output of the edge detection
stage (the Cox-Boie edge detector), followed by a divide-and-conquer polygonal approximation
algorithm [21]. The output of the edge detection stage is typically a collections of curves, and
polygonal approximations for each of those curves are determined. Curves shorter than 30 pixels
are not considered. The vertices of the different approximating polygons comprise our feature set.

More sophisticated approaches, such as spline fitting, could be used to determine the point
feature set. The above choice for the feature detection mechanism reflects our desire to determine
the limitations of the proposed object recognition system, and proved sufficiently stable to provide

robust point locations.

A-4 Skyhawk A-6 Intruder A-10 Thunderbolt
F-14 Tomecat F-15 Eagle F-16 Falcon
F/A-18 Hornet Mig-21 Fishbed = Mig-23 Flogger
Mig-29 Fulecrum Mig-31 Fozhound Mirage 2000

Sea Harrier Panavia Tornado JA37-Viggen

Table 1. The models of the database.

In order to select among basis sets during the recognition phase, we simply chose randomly
among the different bases: the two basis members are selected, with replacement, uniformly from
the point feature set. A basis set may be discarded if the basis separation is too small or too
big; the cut-off values for our experiﬁlents were 150 and 550 pixels respectively. The experiments

indicate that for our scenes of approximately 100 points, this simple randomized algorithm requires
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‘approximately 35 basis selections before recognition occurs.

The database used for our experiments with the prototype system contained the models of
fifteen military aircraft: the profile drawings of fifteen military aircraft from [50] were scanned
using a Microtek 300 color/gray-level scanner. These drawings are not photographs: they are
schematic drawings that we presume are drawn roughly to scale. The scanner is capable of a
resolution of 300 dpi, however, we used 120 dpi resolution to digitize the drawings. The fifteen

aircraft types contained in our database appear in Table 1.

Figure 3. The edge maps and the selectéd feature points for the database models of the F-16 Falcon, and the
Sea Harrier.
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The digitized images were then processed using the Cox-Boie edge detector; the value of the
filter’s o was typically equal to 2.0 [8]. We will call the result of this stage the edge map. No
other filtering or preprocessing was performed. Example edge maps of the models are shown in
Figure 3.

Next, 16 points were selected from each model. The points were chosen to coincide with either
points of discontinuity in the tangent direction of the model’s contour (i.e., vertices or points of
very high curvature), or points of maximum curvature. The model point selection is performed
manually during the construction of the database, and thus performed off-line. Candidate feature
points may be presented by means of the edge tracking algorithm, but it is not generally required.
Figure 3 shows the selected points for two of the database models: the F-16 Falcon, and the Sea
Harrier.

We then selected a number of photographs of the same military aircrafts, but from a different
source [68]. The photographs were chosen on the basis of being taken from approximately the
same viewpoint as the drawings in the model database. That is, since the model drawings are
side views, and since our recognition algorithms use only similarity invariance, recognition will
only be possible with views taken generally from the side. Notably, finding such photographs is
not easy, since the pictures must be taken by chase-planes. However, we emphasize that the test
images are real photographs, and not drawings nor simulated data. Nor are the models taken
from the same source as the photographs. The only thing that the test images and the model
database have in common, other than the chosen viewpoints, is the aircraft types.

All the test photographs were digitized using an uncalibrated CCD camera. The result was
that distortions and warpings were introduced, not only from the perspective projection of the 3-D
plane onto the photograph, but also from the digitization process. However, such distortions might
be typical of a working vision system, and all such distortions are approximable by a similarity
transformation. Edges were extracted from the resulting gray level images, using the Cox-Boie
edge detector that was also used with the models. Again, no preprocessing or other filtering of
the test images was performed. A polygonal approximation of the different edge maps provides

the points of the feature set. Figures 4 through 7 show the digitized photographs for two of our
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test inputs together with the corresponding edge maps and extracted point features.

In Figure 4, we can see that the original photograph of the F-16 was taken with the camera
positioned below the airplane’s midline and towards the back of the aircraft. Further, the airplane
is banking to the left.

The original photograph of the Sea Harrier (Figure 6) was very small; a juxtaposed pencil
helps estimate the actual size of the original. The original picture was taken with the camera
positioned in the front of the aircraft, as evidenced by the visible interior of the left engine intake.
The airplane appearing at the bottom of the photograph is a Hunter T-8M.

The experiments were run using a group of 16 workstations (IBM RS/6000). One workstation
served as the “master” and there were fifteen “servers”, i.e. one per database model. The
workstations were connected via a local area network, but they were not all physically located
at the sa,me; place: several of the servers were at the Yorktown site of the T. J. Watson center,
whereas the remaining as well as the master were 12 miles away, at the Hawthorne site of the
center. The experiments took place in the middle of a typical working day while the workstations
were being used by their regular customers: the server processes shared the CPU with the other
processes running on the workstation. As the timing results in each of the experiments indicate,
the network delay was not noticeable. In terms of performance, and for a given basis-pair selection,
the processing required =~ 15 wall — clock milliseconds (not CPU milliseconds) per scene point and
this figure included both the actual CPU and LAN requirements. This represents an improvement
in performance by almost a factor of 2 over a Connection Machine (CM — 2) implementation of
similar size database (see [51]). The small differences between the elapsed time on the master
and the slowest of the servers show how much time the master spends in bookkeeping. This
performance can be further improved by an appropriate decrease of the grain of parallelism.

A final point can be made based on the diagram of Figure 8. The diagram depicts the time
required to process a scene point as a function of the models a server is controlling. Although,
one would anticipate a linear increase, the actual diagram indicates that this is not the case.
This can be explained by the fact that the server processes are light-weight: they do not use
but a small percentage of the corresponding CPU power; doubling the models assigned to a
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Figure 4. A test
of [68].
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image for the recognition algorithm. The photograph of the F-16 is taken from page 183
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Figure 5. The edge map extracted by the Cox-Boie edge detector (the value of & was 2.0) for the F-16 test
image. Also shown are the 111 automatically extracted features.
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Figure 6. The image of a Sea Harrier. The airplane at the bottom of the picture is a Hunter T-8M.
From page 365 of [68]. .
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Figure 7. The edge map extracted by the Cox-Boie edge detector (the value of o was 2.0) for the Sea Harrier
test image. Also shown are the 208 automatically extracted features.




8 SYSTEM IMPLEMENTATION AND RESULTS 31

seconds
0,045 r
“tinings’
0,04
0,035
0,03 4
0.025
0,02
0.015
0.01 s " N N 2 -

models/wrksttn

Figure 8. The time required to process a scene point, as a function of the models a signle server (workstation)
is controling.

given workstation simply results in the use of twice as much CPU time on that workstation: the
performance remains unchanged. This observation has the following ramifications: (a) one can
use the distributed recognition algorithm without imposing any observable burden on the server
workstations; and (b) as long as the main memory size of the server workstations allows, one can
at least double the size of the database without incuring any slowdown.

In Figures 9 and 10 we show the output of our system’s implementation for two test inputs.
The retrieved database model appropriately scaled, rotated, and translated is shown overlayed
on the test input. In the bottom half of each screendump, the 9 top retrieved database models
are shown in order of decreasing accumulated evidence (column-major order). For each of the 9
models, its name, and the retrieved basis are also indicated. The point features corresponding
to each basis are marked along the contour of the corresponding model. Above each model,
bars providing a length-encoded representation of the evidence accumulated for each model/basis
combination are also shown. It should be noted here that the recovery of the transformation was
based solely on the basis pair, and noi on a best least-squares match between all the corresponding

model and scene feature pairs.
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Figure 9. The output of the implementation of our system using 15 servers. The test input (F-16) is shown on
the top left. The edge map together with the automatically extracted point features is shown on the top right;
the basis selection that led to recognition is also marked. A total of 13 basis selections was required, and the
elapsed time was 27.2 seconds (NB. this figure does not include the edge detection and feature extraction stages).
The bars above each of the 9 top retrieved models provide a length encoding of the total accumulated evidence
for the corresponding model/basis combination. The retrieved database model appropriately scaled, rotated and

translated is shown overlayed on the test input.
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Figure 10. The output of the implementation of our system using 15 servers. The test input (Sea Harrier) is
shown on the top left. The edge map together with the automatically extracted point features is shown on the
top right; the basis selection that led to recognition is also marked. A total of 8 basis selections was required, and
the elapsed time was 25.6 seconds (NB. this figure does not include the edge detection and feature extraction).
The bars above each of the 9 top retrieved models provide a length encoding of the total accumulated evidence
for the corresponding model/basis combination. The retrieved database model appropriately scaled, rotated and

translated is shown overlayed on the test input.
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In all our experiments, the true model/basis combination was always discovered as the pair
with the largest weighted vote, i.e., evidence. However, even if the correct model were not found
as the maximum winner, it is assumed that a postprocessing stage would be used to verify a
number of possible matches. For example, with our database of 15 models, there are 3600 possible
model/basis combinations. If the first 9 or so matching model/basis combinations from the
hashing algorithm are checked, we have still achieved a considerable speedup over the alternative
of checking all possible matchings. Accordingly, the fact that the accumulated evidence for the
ninth model/basis combination is considerably less than the evidence for the winning model/basis

combination indicates that the method is robust.

9 Conclusion -

We have presented a new paradigm for performing object recognition. We believe that this
paradigm makes the concept of realistic object recognition more tangible.

We described a new framework that explicitly takes into account the fact that the input data
have been distorted by noise, and which uses a Bayesian approach to combine evidence that has
been accumulated from the various scene points.

We also suggested the use of an alternative computational model, one that takes the distributed
approach to computing and makes use of a farm of readily available, low-cost workstations, instead
of more expensive, less accessible, specialized hardware.

We demonstrated the validity of the resulting paradigm by describing a prototype system
that was implemented on fifteen workstations, and which can recognize aircraft models that have
undergone similarity transformations, from real-world photographs. The system scales readily,
can use large databases, handles noisy input data, and exhibits performance that is superior by a
factor of 2 over that obtained for a similar system using a Connection Machine (CM — 2).

We beleieve that appropriate selection of the grain of parallelism will allow the straightforward
realization of systems that will achiéve recognition results in sub-second times, and which need

only use clusters of public workstations.
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