Chapter Seven

Connected Component Labelling in
Image Processing with
MIMD Architectures

R. Hummel

1 INTRODUCTION

Many low-level vision tasks are ideally suited for parallel computers
configured as a large grid of locally connected simple processors executing a
single instruction stream. Such SIMD (Single Instruction, Multiple Data)
image-processing computers now exist [1-3]. Common tasks such as point
operations, thresholding, convolution, texture analysis and median filtering
are easily transferred to such an architecture. A range of other tasks, such as
morphological operations (shrinking, expanding, smoothing), region grow-
ing, and relaxation operations for segmentation are also frequently well
suited to mesh arrays. However, many of these operations are really ways of
identifying structure within the image, and to make measurements in
particular locations within the image, by treating each pixel in a uniform
way. That is, on a mesh-connected architecture, these algorithms in fact
perform useful work on only a fraction of the image pixels. Finally, for many
higher-level vision tasks, such as boundary parameterization, feature
extraction, object matching and symbolic constraint propagation, mesh-
connected architectures can at best clumsily provide the necessary data-
communication paths.

Some of the mesh-connected machines are enhanced with global oper-
ations, such as a “sum-OR”’ or even a global sum of bits, in order to give the
machine the ability to perform fast image maxima or histograms. This
increases the ability to extract Hough transforms and other image-wide
features. The difficulty here is that region-based features and local Hough

101

102 R. $Hummel

transforms can only be accomplished by masking out the relevant regions,
and operating serially on the individual regions.

Certain algorithms are necessarily nonlocal. For example, connected-
component extraction and convex-hull operations on binary images require
long-range communication, as pointed out in [4]. Although these can be
implemented on mesh-connected machines, typically a large number of
processing steps are required. For example, for connected-component
labelling, the standard algorithm is equivalent to a breadth-first-search, and
works by having pixels within each region iteratively replace a current
identifier with the maximum of identifiers within its local region. If each
pixel begins with a unique identifier, then eventually each component will
be labelled with the number representing the maximum identifier in that
component at the start of the process. An asymptotically faster approach is
available, which works by a divide-and-conquer approach [5]. Connected-
component analysis is done within each of four quadrants of the image, by a
recursive procedure, and then the components are combined by an
equivalence table analysis, done within the mesh, along the interface borders
of the quadrants. This latter algorithm can work in time O(xn) on an n by n
grid. On a pyrlamid machine, the worst-case complexity can be further
reduced to O(n?) [6].

Once components are extracted, it is usual in image processing to analyse
those components, and form complex representations, in order to perform
recognition and scene analysis. Features like moments, Fourier descriptors
of the boundary, other curvature measurements, three-dimensional shape
analysis, and graph structure of regions generally argue for a standard,
powerful processor capable of accessing all the image data. Parallel
architecture design would then suggest that if one processor with global
access is useful for higher-level vision analysis, then two processors will be
more advantageous. In fact, if the standard image has a few dozen or a few
hundred regions whose shapes, descriptions and local context require
analysis in relative isolation from the remaining portions of the image, we
would like to have available several dozen or hundreds of processors, each
capable of running an independent instruction stream, and each reconfigur-
able in the sense that it can be assigned to a variable portion of the image. We
are thus led to consider MIMD (Multiple Instruction, Multiple Data)
shared-memory architectures for image processing.

Parallelism of the order of a few hundred or thousand processors in
MIMD shared memory mode offers a number of attractive features for
image processing. Since the architecture can be considered “medium-
grained’’ (granularity is relative; here we are comparing with the number of
pixels in a typical image), each processor can be a quite capable multi-MIPS
(Million Instructions per Second) microprocessor, with a rather complete

Coymect;ad component labelling 103

instruction set. In particular, we see each processor as having registers, a
local cache memory, as well as complete access to global memory. This
compares with fine-grain, typical SIMD architectures, where the pro-
cessors have access exclusively to a few hundred bytes of local memory, and
are typically bit-serial or 8-bit processors with an extremely limited
instruction set. The use of powerful processors eases algorithm develop-
ment and enhances flexibility in design and coding. We should expect that
nearly all standard image processing algorithms can be handled with
relatively good efficiency and programming ease on a multiprocessor
shared-memory design.

Further, reconfigurability of the assignment of processors to image
regions coincides with notions of ““focus of attention” and foveal resolution
versus periphery processing. Each processor can work on a specific
component, communicating with neighbouring components through the
relevant processors by means of an ‘“‘edge adjacency list” data structure for
the dynamic graph of image regions.

Finally, since processor power can be targetted to relevant portions of the
image, we expect to increase the degree of parallelization. In grid arrays,
with fixed assignment of processors to pixels, many of the processors
perform no useful work during execution of a cycle, simply because they are
statically assigned to locations where work is not needed. Thus many
algorithms yield degrees of parallelization in the range of a fraction of a
percent. With the reconfigurability of a medium-grain architecture, we
expect to increase the usage figure, at least for higher-level image processing
tasks, to the tens of percent.

There are now a number of proposed and prototype MIMD shared-
memory computers [7,8]. The use of these machines for image processing
has received some attention [9,10]. However, the conversion of standard
algorithms to MIMD parallel code offers some subtleties. Very high-level
vision tasks presumably offer few obstacles, because little coordination
between processors is necessary. Sharing of data is usually minimal.
However, for lower-level vision tasks, there are difficulties related to
synchronization and assignment of processors. In this paper, we study as an
example case the graph-theory algorithm of Shiloach and Vishkin for
connected component labelling [11]. This algorithm, like most inter-
mediate-level vision tasks, is presented as an SIMD parallel algorithm. We
study how such an algorithm can be mapped to a realistic MIMD machine.
Our model for the MIMD machine is the NYU Ultracomputer [8]. Our
choice of the connected component algorithm is based on the observations
that component labelling is necessarily a non-local operation and that the
O(log N) algorithm is non-obvious but easily described and coded.

There are two main concerns that arise in converting SIMD parallel

104 R. Hummel

algorithms to MIMD medium-grain architectures. First, it is usually
possible to concentrate processors at locations where useful work will be
accomplished. We allow available processors to perform a step in the
algorithm, and simultaneously create a list of locations to be considered in
subsequent steps. In much the same way that data-flow techniques analyse
the flow of data through processing steps in an algorithm, MIMD
architectures in image processing demand a “‘task flow’” analysis. The data
can be regarded as fixed, like a blackboard, but the tasks that must be
assigned flow in a way which depends upon the initial data. Consider, as a
trivial example, an erosion operation on a binary image. Erosion, for our
purposes, can be defined as setting all boundary pixels with value “1” to
“0”’, thereby eroding the border or regions. The SIMD approach to this
operation is to replace each pixel’s value with the minimum in the local
neighbourhood. However, in the SIMD approach, we note that “useful”
work is accomplished only on the border of regions. The MIMD approach
would therefore be to create a list of points on the borders of regions, and to
assign processors to the tasks of resetting those pixels to the value “0”. At
the same time, processors can determine a new list of boundary points,
where the next iteration of an erosion operation will create new pixel values.
The new list might contain redundancies, but it is nonetheless a consider-
ably smaller list than the set of all pixels. In this algorithm, we see that the
tasks are assigned to border pixels, and that the border flows in a predictable
way, such that a new list of border points can be constructed from an
iteration applied to previous border pixels.

A second concern is one of synchronization. The SIMD algorithms
assume that many tasks are accomplished concurrently, and normally
assume that concurrent reads are allowed and yield identical information.
Frequently, concurrent writes are also permitted, and it is generally
assumed that exactly one write to a specific location at a given time is
successful. When we convert to an MIMD environment, in image-
processing applications we are normally in a processor-poor situation. Thus
tasks that were meant to be done concurrently will be at least partly
serialized. Standard issues of data concurrency arise: if early serialized
subtasks change the values of data, then later tasks may access data that is
different from what would be expected in a synchronous application of all
tasks. These problems can be handled by one of three methods: (i) read from
a fixed copy of the data, and write a new copy with appropriate changes; (ii)
read from the data, writing changes as a list of tasks to be performed later,
after all of the serialized analysis tasks are finished; or (iii) show that
asynchronous operation of the steps, which is what partial serialization with
early writes to the data constitutes, is a satisfactory approach for the
algorithm in question. For the erosion example, the third alternative is

-

Conneczéd component labelling 105

probably not appropriate, since changing a border pixel from a “1”* to a *“0”
changes what might be considered a border pixel, so that if the list of tasks
contains border candidates that are not border points, a subsequent task
might change a pixel which otherwise would be considered an interior point.
Of course, if the list of points is always known to be a (possibly redundant)
list of border points, then the tasks amount simply to setting values to zero,
and determining new border points, and asynchronous operation will work.
Otherwise, the second approach, of creating a list of border points to be
converted to “0”’s and to enqueue new candidate boundary points on a new
list, will be necessary.

2 APARALLEL ALGORITHM FOR CONNECTED COMPONENTS
OF A GRAPH

Shiloach and Vishkin [11] give an algorithm to find connected components
of an undirected graph using a computational model which allows simulta-
neous reads and writes by multiple processors to a common memory. In the
case of simultaneous writes, the model specifies that one of the writes
succeeds, but does not specify in advance which processor will be successful.

Each vertex in the graph is assigned a parent pointer. The algorithm uses
these pointers to construct a forest of root-directed trees, also called a pointer
graph; each tree is composed of vertices known to reside in the same
connected component. Initially each vertex is its own parent, i.e. each vertex
comprises a rooted tree with only one node. At termination, the parent
pointers of all vertices in the same connected component point to the same
root vertex. :

In the Shiloach/Vishkin parallel algorithm, each vertex is assigned a
processor. Each edge is assigned two processors; in effect, a processor in
each direction of edge traversal. Two operations are performed in the
algorithm. The shorrcur operation redirects a vertex’s pointer to the parent
of its parent, reducing the height of the trees. Shortcutting is mediated by
the vertex processors. The hook operation directs the pointer of the root of a
tree (self-directed before the operation) to point to some node in another
tree. Hooking is mediated by the edge processors. We let 7 be the set of
vertices and E the set of directed edges, one for each edge processor.

Atintermediate stages of the algorithm, the trees in the pointer graph can
be classified as live, stagnant and dead. A live tree has been shortcut or
hooked in the current iteration. A stagnant tree has not been shortcut or
hooked in the current iteration. A dead tree has not been shortcut or hooked
in the previous iteration.

In the algorithm that follows, each vertex is assigned an age value, which is

106 R. Hummel

used to determine when trees are stagnant or dead. Further, we assume that
each vertex v is denoted by a distinct integer. Thus if v is the integer value
for a vertex, parent[v] is the integer value of v’s parent vertex, and age[v] is
the integer value of the last iteration in which v was shortcut or hooked.

/* initialize */
0) (Vv)[v € V] cobegin
parent[v]«v;
age[v]«0;
coend
1<0;
While (3v){age[v]=1] begin
I+ +;
/* Shortcutting */
1 (¥Yv)[v € V]cobegin
old-parent« parent|v];
parent[v]« parent[parent[v]];
if (old-parent # parent[v]) age [parent[v]]«I;
coend
/* Ordered Hooking */
2) (Y &xy)Ilx,y) € E] cobegin
If parent[x] = parent[parent[x]] /* x points to a root */
and parent[x] < parent[y] then begin
parent[parent[x]]« parent[y];
age[parent[y]]«I;
end
coend
/* Stagnant Hooking */
3) (Y (x%y)Ix,y) € E] cobegin
if parent[x] = parent[parent[x]] /* x points to a root */
and age[parent[x]] < I /* root is stagnant */
and parent[x] # parent[y] then begin
parent[parent[x]]« parent[y];
age[parent[y]j«I;
end
coend
/* Shortcutting */
4) (Vv)[€ V] cobegin
old-parent« parent[v];
parent[v] « parent[parent[v]];
if (old-parent s# parent[v]) age[parent[v]]«I;
coend
end

Connected component labelling 107
3 TIME COMPLEXITY OF THE ALGORITHM

The correctness of the algorithm is easily established. We shall concentrate
on the time bound. The proof sketched below differs only slightly from that
of [11]. In [11] a bound on the cardinality of the trees is related to the
iteration counter I. Here, we show instead a bound on the height of the live
trees in the forest formed by the parent pointers. We define height as the
maximum number of pointers that must be traversed in a simple path from
any vertex in the tree to the root, with the additional proviso that tree height
isalways at least one. In particular, a tree consisting of only a single node (the
root node with a self-loop) is considered to have height one, as is a tree where
all vertices point to the root.
We first quantify the effect of shortcutting with the following Lemma.

Lemma 1

Shortcutting a tree of height 2> 1 reduces its height by at least a factor
of 3/2.

Proof For any tree of height 2 > 1 shortcutting yields a height of [h/2]
But for any 2>2 we have

L
[2/2]

We shall also need a rather technical lemma.

>3/2.

Lemma 2

Ifu > parent[u] after any step in the algorithm then either « is a leaf node or
all of u’s predecessors in the pointer graph are leaf nodes.

Proof The proof is by induction on the steps in the algorithm. Initially,
since parent[u] =u for all vertices, the lemma holds true vacuously. If the
lemma holds true at the start of a shortcutting step (Steps 1 or 4), then the
shortcutting operation of pointing u to w where there were links from # to v
and v to w can create a new link with « > w. However, in this case, either u >
v or v > w before the shortcutting. In the former case, either « is a leaf or all
its predecessors are leaves. In the later case, v’s predecessors, including ,
must be leaves. In either case, after the shortcutting, # must be a leaf.

Ordered hooking (Step 2) can never create a link from a larger to smaller
vertex.

Stagnant node hooking (Step 3) can link a node u to a node v with u > v.

108 R. Hummel

However, in this case, # must be a root of a stagnant tree. A stagnant tree
cannot have a height greater than 1, or else it would have been shortcut in
Step 1. Thus at the start of Step 3, u is either a leaf, or all of its predecessors
are leaves. During Step 3 no other stagnant root can hook onto u, since
otherwise in Step 2 one of the two roots would have been eligible to hook
onto the other. Thus in Step 2 either # would have succeeded in hooking
onto something, in which case it is not a root, or something succeeds in
hooking onto u, in which case it is not stagnant, Further, during Step 3, any
of ©’s predecessors will remain leaves, since nothing can hook onto a leaf.
Thus at the end of Step 3 the lemma holds for node «. This establishes the
induction for steps 1, 2, 3 and 4. 0

Lemma 3

If ntrees of height 4;,i=1, . . . ,n, are hooked together, the result is a tree of
height no more than XA,

n
S

1=1

Proof The first part of this lemma is to show that the result is a tree; that
is, we must show that no cycles are created. Suppose that a cycle is created
after some step. Then somewhere along the cycle there must be a pair of
consecutive nodes # and @ such that u > v and u points to v. According to the
previous lemma, either u is a leaf, or all of «’s predecessors are leaves. Either
way, ¥ cannot be part of a cycle.

Consider hooking 7 into T}, assuming both trees have more than one
node. et their heights be % and A, respectively. After hooking, the
maximum height % of the new tree is no more than the sum of the heights of
the old trees, plus one for the new link, less one since we could not hook to a
leaf in T%; thus

h<hi+1+hy—1=h +h,.

If either or both trees has one node, that node can contribute at most 1 to the
height of the resulting tree, so the result follows. The result easily
generalizes when # trees are hooked together. 0O

Definition

A root u is eligible if there exists an edge (x,y) € E and a node v+#u with
parent[x] =« and parent[y] = v, such that either » > u or age[u] < I.

Connected component labelling 109

Lemma 4

Eligible roots are always hooked.

Proof Suppose u is an eligible root, and (x,y) is the edge with
parent{x] =u and parent{y]=v. If v>u then in Step 2 the edge processor
(x,y) will attempt to hook u onto v. Either (x,v) succeeds or some other
processor succeeds; in either case, # will hook onto some node. If age[u] < I
and u does not hook in Step 2 then u is a stagnant root by Step 3, so the
processor (x,y) will attempt to hook u to v. Once again, some such processor
succeeds, and so # hooks.]

Lemma 5
Dead trees stay dead.

Proof Recall that a dead tree is one that has not been shortcut or hooked
in the previous iteration. Clearly the height of a dead tree must be 1, or it
would have been shortcut. Also, its root must not be eligible, or it would
have been hooked (Lemma 3). Thus it can only be brought back to life if
another tree is hooked into it, which implies the existence of some edge (x,y),
where x is in the dead tree and y is not. But then the root would be eligible,
since u must point the root, which is stagnant by Step 3 of the iteration in

which the tree dies, and we have a contradiction. Thus if a tree is dead, it
cannot be hooked into or shortcut, so it stays dead.]

We can now present the key

Time bound

The sum of the heights H; of all live trees at the end of iteration 7 is bounded

by
2 i
H.< <§> N,

where N is the number of vertices in the graph.

Proof By induction on i. Initially (i =0), each vertex forms its own tree,

110 R. Humwmel

of height 1, so Hy=N. The induction hypothesis states that after /—1
iterations the sum of the heights H;_; of the live trees is bounded by

2\ i
Hi—1§(§> N.

We show that a tree in the forest of height 4 at the end of iteration i —1
contributes no more than % hto H;. If =1 and the root is not eligible, the
tree dies, and it contributes nothing to H;. If 2> 1 and the tree is neither
eligible nor hooked into by some other tree, it is shortcut in Step 4, and its
contribution to H; is at most %—h If the root hooks or is hooked, then the
height of the new tree to which it belongs is no more than the sum of the old
heights of the individual trees which have hooked together. However, since
the new tree has height greater than 1, and Step 4 will shortcut the tree, its
height will be at most% the height of the sum at the end of the iteration. Thus
each participating tree contributes no more than %— its height in the previous
iteration to H;. O

As a direct consequence of the bound above, we see that after more than
logsj, N iterations, we must have H; = 0, which is to say that all trees are dead,
and the algorithm terminates.

Note that the Step 1 shortcutting is necessary to define eligibility of a node
(a stagnant node). Since Step 1 may be applied to trees of height 1 which do
not reduce in height and yet do not die because they can hook, we cannot
claim a 3/2 factor total height reduction on account of Step 1.

4 NECESSITY OF THE STEPS

Asnoted in [11], Step 4 is unnecessary, and omitting it will at worst double
the number of iterations required for termination. Its inclusion simplifies
the proof, and less than doubles the amount of work required per iteration
while halving the number of iterations that will be needed in the worst case.
Whether the trade-off is reasonable in the average case is best judged by
empirical studies.

Step 2 is needed to prevent cycles from forming. If Step 3 is omitted then
the algorithm will still work well—however, the O(log N) titme bound is no
longer valid. Dropping Step 3 is appealing, however, since it is the only step
that introduces pointers to smaller vertices. Without Step 3, the final
labelling will be components with vertices pointing to the maximum vertex
within each component. If the vertices are numbered according to some
labelled value, this provides an algorithm for simultaneously labelling
connected components and finding maximum values within components. If

Connected component labelling 111

the O(log N) connected components algorithm is performed first, and then
maxima found within each component, the result for an Ultracomputer is an
O(C log N) method, where there are C components. If the Ultracomputer
_ permits parallel maxima, in the same way that it permits parallel adds, then
" the method is O(C+log N). Thus if omitting Step 3 retains the O(log N)
performance of the algorithm, we have a better component maximum
method; although the advantage to the case where parallel maxima are
allowed is very slight.

Unfortunately, as is shown in [11], the algorithm without Step 3 can result
in O(N) time performance. The situation arises with a star graph. We might
conjecture that for subgraphs of images, which are planar graphs with
bounded in-degree, such examples will not arise. However, Fig. 1 shows a
comb graph, which when numbered as shown, and under somewhat perverse
conditions, will require O(INV) iterations. The first hook operation can yield
the pointer graph shown in Fig. 2. The only eligible root is n+ 1, which in
the next iteration might hook to n+ 2. Continuing in this way, a possible
sequence of n/2 stagnant node hooks will be needed.

y%%///%/%/%

............. n+2 n+1

\\A

Fig. 1. A comb graph.

f — 2 —3 3 —3 + — o > /7
n+2 nd+1

VDLV VOLOLVVLUL LU

Fig. 2. The pointer graph after the first min-neighbour hook operation. If stagnant node
hooking is omitted, then after a couple of short-cut operations, the only eligible root is
“n+ 17, which might then hook to “n+ 2. This process can continue, vielding nj2
iterations before termination.

If the graph is ordered in raster-scan fashion, instead of with malicious
intent as was done in the example above, it is still possible to construct an
example which needs linear time. In this case, however, the comb has to be
laid out in one dimension across the image, and so an # by # image is limited
to O(n) complexity.

112 R. Hummel

The perverse nature of these counterexamples leads us to conjecture that
an expected time of O(log N) would be obtained by the simplified algorithm
omitting Step 3 if all hooks are equally likely.

5 TASK FLOW OF THE ALGORITHM

The proof of the algorithm allows us to make some immediate observations
about when processors will be needed for useful work.

Observation 1
All vertices in a dead tree and all edges adjoining vertices in a dead tree will

be inactive for the remainder of the procedure.

This follows immediately for Lemma 5. O

Observation 2
Once it is known that two neighbouring vertices x and v point to nodes in the

same tree, then the edge processor (x,y) will no longer be needed.

This follows because edge processors are only used for hooking roots to
other nodes, and since cycles are never created (I.emma 3), roots never hook
to nodes within the same tree. (W

As a corollary to Observation 2 we have the following.

Observation 3

If parent[x] = parent[y] then (x,y) will thereafter be inactive.

Observation 4

If (x,») succeeds in hooking the root parent[x] onto the vertex parent[y] in
either Step 2 or 3 then the processor (x,y) will be inactive thereafter.

Connected component labelling 113

Given the inclusion of Step 4, we can identify yet another situation when
processors will be inactive:

Observation b

If, during Step 4, parent{u] is set to point to a root then the vertex u need not
be considered in the subsequent Step 1.

Of course, shortcutting is unnecessary if u points to a root. However, it takes
as much time to check whether u points to a root as it does to execute the
shortcutting step for . Thus this observation would not seem to help much.
But if a vertex points to a root at the start of Step 4, then it will be among
those vertices that point to roots after Step 4, and this information can be
obtained essentially for free (i.e., parent[«] does not change in Step 4). These
nodes need not be considered in the following Step 1.

Note that, owing to the possibility of hooking in Steps 2 and 3, all vertices
except those in dead trees must be subjected to shortcutting in Step 4.

We see that for the most part, tasks to be performed by steps in the
algorithm are pruned as processors become inactive. The only exception is
that shortcutting a node in Step 1 can be omitted if the node is known to
point to a root on that iteration; it may happen that the root will
subsequently be hooked and so the processor will be reactivated. Nonethe-
less, we might be tempted to maintain a list of active processors, and remove
items from the list as processors die according to the observations above.
However, for purposes of synchronization, we need to form a new list for
each step, and to read from the current list when assigning tasks in the
current step. Thus it is easier to enqueue tasks that will be necessary in
subsequent steps as they are discovered in the current step. We discuss the
enqueuing and processor assignment methods in the implementation
section.

How should task requests be represented when enqueued on a list? For
Steps 1 and 4, tasks will be represented as a list of vertices to be subjected toa
shortcutting step. For Steps 2 and 3, tasks are given as a list of edges between
vertices. Strictly speaking, the edges are directed. However, if (x,) is
inactive, then (y,x) is also inactive, since our only criterion for inactivating
edge processors is Observation 2, which is symmetric in x and y. So the entry
(%,y) can stand for two edge tasks: namely (x,y) and (v,x). Further, Steps 2
and 3 can be recoded to perform both of the directed tasks at once as a single
task. Initially, all vertices in all components are on the vertex list, and the
edge list consists of all edges (x,y) with v as a south or east neighbour of x,
and x and y both are vertices in the vertex list. The initial lists can be formed
by a raster scan of the image, which can be done in parallel. (See the

114 R‘. Hummel

pseudocode for Step 0 in the Appendix.) Processors are assigned to
successive pixels in raster-scan order. A processor assigned to pixel x
enqueues the south and/or east edges (x,v) if the edge connects vertices in
regions.

Step 1 is performed for all vertices on the vertex list. No new lists are
formed during Step 1.

For Step 2 we examine all edges on the edge list. During Step 2, (x,v)
attempts to hook parent[x] onto parent[y] or vice versa, under the
conditions that one node is a root and the other has a larger numerical value.
A new edge list is formed, and (x,y) is enqueued on that list unless (1) it is
observed that parent[x] = parent[y] when checking the order relationship on
the parents, or (2) the task (x,») is successful in hooking parent[x] onto
parent[y], or (3) the task (v,x), which is performed as part of the (x,y)
request, is successful in hooking parent[y] onto parent[x]. It appears as
though a slight bit of additional work is needed to perform these checks:
ordinarily, parent[y] does not have to be accessed by (x,y) if parent[x] is not
a root. The objection is moot, however, since the symmetric (y,x) operation
must check parent[y] to see if it is a root, so that both parents will be accessed
anyway. There is, nonetheless, a slight time penalty to determine whether a
request to hook is successful, and also to perform the enqueue step, as we
will discuss in the implementation section.

Step 3 then uses the new edge list, and can form yet another edge list. If a
new list is formed, the process is identical with the edge list formation in
Step 2: for each edge (x,3), parent[x] and parent[y] will both be accessed (to
see if either is a stagnant root). The edge (x,y) is not enqueued if
parent[x] = parent[y], or if parent[x] succeeds in hooking onto parent[y], or
vice versa.

It is not clear that forming a new list (which will be used for Step 2 in the -
next iteration) is worth the extra expense during Step 3. Instead, one can
simply retain the edge list formed during Step 2, and use it for the next
iteration’s Step 2. Some edges will not be pruned that are otherwise
unnecessary, but they are likely to be rare, and will be pruned during the list
formation in the subsequent Step 2. Empirical studies are needed to judge
whether creating a new list in Step 3 is justified.

Finally, Step 4 uses the vertex list, and creates two new vertex lists. One
vertex list will be used for the subsequent Step 1, and the other vertex list
will be held for Step 4 of the next iteration. The Step 1 list is formed of all
vertices that change parents during the Step 4 shortcutting. The remaining
vertices are known to point to roots, and so need not be considered in the
subsequent Step 1. The Step 4 list is formed of all vertices except those in
dead trees. A member of a dead tree can be recognized in Step 4 by noting
whether the vertex points to a root which has not been shortcut or hooked in

Connected component labelling 115

Steps 1, 2, or 3. That is, the vertex v is enqueued on the next Step 4 list
unless parent[v] does not change and age[parent[v]] <[in Step 4.
Pseudocode for the modified steps is presented in the Appendix.

6 SYNCHRONIZATION

In a processor-poor environment we cannot execute all of the necessary
tasks within a step at once. Since we wish to avoid copying the entire pointer
graph and age labels to a separate output graph in each step, we must either
queue the requests for changes to the pointer graph, and execute the changes
after completing the analysis for the step, or suffer the consequences of
asynchronous operation of each step. Since we have a list of tasks to be
performed, we could enqueue the results of those tasks to a separate list,
being sure to request a hook on a root no more than once (the first request to a
node should block all further requests), and storing with all shortcut
requests the node to which the new parent should point. The request list
could be performed after the task list is exhausted (synchronizing between
scans on the lists). It turns out, however, that in the case of the Shiloach/
Vishkin connected-components algorithm, it is sufficient to operate each
step asynchronously.

Within Steps 1 and 4, if shortcut requests operate asynchronously, trees
will still reduce in height. The final tree may be different than the tree
resulting from a synchronous shortcut step. For example, a four-node linear
tree of height 3, if shortcut by 4 separate (sequential) tasks, starting from the
root and propagating to the leaf, will result in a rooted star. The same tree,
when shortcut by a parallel operation, results in a tree of height 2. However,
in this example and all other examples, asynchronous shortcutting can only
lead to more height reduction as compared to synchronous shortcutting.
This is because a node’s parent’s pointer may have already been shortcut, in
which case it can only point closer to the root. Thus the shortcut on the
current node will yield a parent pointer that goes close to the root.
Unfortunately, an improvement cannot be guaranteed, since it may happen
shortcut tasks occur from the leaf nodes toward the roots, rather than the
other way around.

If hooking operates asynchronously, the first time a root u is hooked to a
node v, it ceases to be a root, and so will receive no more hook requests
during that step (or, for that matter, in subsequent steps). However, the new
edge from u to v might be responsible for causing another node u’ to attempt
to hook to v during the same step. Alternatively, if the node v happens tobe a
root, it might happen that it will attempt to hook onto a node «’ on account of
the new edge from u to v during that step. In either case, the situation arises

116 R. Hummel

if » has some neighbour x such that x points to #’. However, an analysis of the
proof of the time bound shows that the only requirement of Steps 2 and 3 is
that all eligible roots going in to a hooking step are in fact hooked.
Asynchronous operation does not defeat this property, since asynchronous
hooks only add possibilities for new hooks. None of the new hooks are
harmful, since they only connect trees that comprise nodes in the same
connected component. Some of the hooks may speed up the algorithm, by
combining trees that otherwise would not be combined until later iterations.

We conclude that asynchronous parallel processing of the steps will at
worst speed up the algorithm in terms of numbers of iterations.

The algorithm as given requires synchronization between the steps.
Synchronization between Steps 2 and 3 is essential to properly define
stagnant roots, and to prevent cycles. Synchronization between Steps 3 and
4 is needed to define dead trees, and to ensure that Step 4 does the useful
work of reducing the height of combined trees. That is, if some shortcutting
steps of Step 4 were to precede stagnant node hooking in Step 3,
shortcutting might be attempted on a stagnant tree which is later hooked,
and thus the combined tree height is not reduced by the requisite factor of 3/2.
Of course, the tree height would be reduced in the next Step 1, and so
eliminating synchronization between these two steps is at worst equivalent
to eliminating Step 4 entirely, which simply slows the algorithm by a
multiplicative factor. Between Steps 4 and 1, synchronization is needed to
properly test for termination, and again to ensure that Step 4 accomplishes
all the work credited to it. The iteration counter is increased in a serial
section between these two steps, and the test for termination is also done by a
single serial processor. However, we could make the iteration counter a local
variable, updated by each processor, and observe vertices not pointing to
roots in Step 4, feeding them into processors which then execute the Step 1
shortcutting. This of course assumes a partly asynchronous operation of the
steps, and means that a Step 1 shortcut on a node v will access v’s parent,
who may not yet have been shortcut by its Step 4 operation. The result is
that Step 4 may be partly ineffectual, which as noted before at worst slows
down the algorithm by a constant factor.

There is a minor penalty involved in requiring synchronization. Espe-
cially if the number of processors P is a large fraction of the number of
vertices N, there will be a point at which all tasks for a step have been
assigned and many completed, and available processors have nothing better
to do than wait for completion of the remaining uncompleted tasks. Thus
the degree of parallelism is hurt by the need to keep some processors idle.

Connected component labelling 117
7 IMPLEMENTATION

The Appendix contains pseudocode for performing the Shiloach/Vishkin
algorithm on an MIMD machine. We have written the program assuming
synchronization between all steps, although as noted in the previous section,
synchronization is necessary only between Steps 2 and 3. We also assume
asynchronous operation within each step.

In our C-like language, variables declared as ““shared’ are stored in the
common memory, and so are accessible to all processors. The address of a
shared variable (denoted by &v for the variable v) is also available to all
processors. We have avoided declaring automatic or static shared pointers
for clarity’s sake; we could otherwise declare shared pointers (or variables in
common memory containing addresses) pointing to shared variables, or
local copies of addresses pointing to shared variables, or even perhaps
pointers in common memory pointing to local variables, and it is not so
obvious how the syntax should differentiate between these cases. In our
algorithm, some of the procedure parameters are pointers to shared integers,
and it is understood that the addresses of those shared integers are available
to all processors within that procedure. That is, in

sub(pN)

shared int *pN;
{...

}

all processors operating during { . . } have access to the integer *pN, and a
copy of the address pN will also be located in common memory, but may
well be cached by individual processors in their local memory if the
processors handle the pointer as a read-only variable.

A block-structure language such as ADA or PASCAL might be more
appropriate for coding these kinds of parallel algorithms, since the scoping
rules for nested blocks would make the visibility of variables explicit.

We have used the “fetch-and-add” instruction as our principal coordina-
tion primitive. This instruction accesses a shared variable, returns the value,
and increments the stored amount by a specified increment. That is, the
instruction is equivalent to

fetch&add(pV, inc)

int *pV;

int inc;

{
int val
val=*pV
*pV =val+inc
return(val)

118 R. Hummel

The important point is that concurrent fetch-and-adds to the same shared
variable behave as though they had been requested serially, in some
arbitrary order. Thus ten simultaneous ‘“fetch&add(&v,1)” requests will
increment v by 10, and return ten distinct consecutive integers, one to each
calling processor. -‘An important property of the Ultracomputer is that
simultaneous fetch-and-adds to a single variable incur no time penalty. That
is, all processors can issue a fetch-and-add to the same variable in the same
amount of time as it would take for one processor to execute a fetch-and-add.

We use the construct ““cobegin . . . coend” to allocate processors. The
2 p
“cobegin nomorethan N>’

line denotes a request to the operating system to assign as many processors as
are available, but no more than the integer value in the variable N, and put
those processors to work executing the following code. The processors use
the “fetch-and-add” primitive to dynamically allocate unique identifiers,
which leads to data variability and hence execution variability amongst the
processors. The multiple processors thus execute the intervening code in an
asynchronous fashion. The “coend” line is interpreted as requesting that all
but the last assigned processor reaching the “coend” statement be yielded
back to the operating system, and perhaps put into an idle loop. The last
processor to reach the “coend” statement proceeds to execute the code
following the “coend”.

The operating system might implement the ““cobegin . . . coend’’ con-
struct by spawning exactly the requested number of processes upon
reaching the cobegin, leaving it to the scheduler to share processors among
requested processes. A shared variable is loaded with the number of active
processes. As a process completes, by reaching the “coend” statement, a
“fetch-and-add’ instruction with an increment of — 1 is issued to the shared
variable representing the number of active processes. The last process will
receive the value 1 from the fetch-and~-add instruction, and thus will know
not to die, but instead to continue by reading instructions following the
“coend”’.

An alternative approach allows the ‘“‘cobegin’ to instantiate available
processors to the intervening code, along with a shared variable which
counts the number of assigned processors. As processors reach the “‘coend”,
they issue fetch-and-adds with an increment of — 1. Once again, the last
processor will receive a value of 1, and thus know to continue with the
remaining code.

Within each “cobegin . . . coend” block, we consider each step as a set of
independent and potentially parallel subtasks. The subtasks are given by the
processing of each vertex or edge. We organize the vertices and edges into
lists, which are represented by arrays indexed by a shared variable. In the

Connected component labelling 119
fully parallel case, if a sufficient number of processors are available, we use a
processor for each vertex or edge element on the list. A processor requests a
new subtask by executing a fetch-and-add to the shared index with an
increment of 1. The value returned is a pointer to the element (edge or
vertex) that is to be processed in the subtask. The nature of the fetch-and-
add instruction ensures that no two processors will receive the same
element. The guarding “while” loop ensures that all tasks are assigned
before any processor is yielded to the “coend” statement, and that any
available processor requests the next unassigned task.

Note that if the allocation of processors is done with a fixed unique process
identification number for each, then that number can be used to coordinate
the allocation of tasks so that no two processors are assigned the same task.
However, the dynamic allocation of tasks becomes much more difficult
without a fetch-and-add instruction. The time penalty for synchronization
between steps is likely to be much greater if the task allocation is based on
static processor identification numbers.

In our code for the Shiloach/Vishkin connected-component algorithm,
we assume that the image is a globally available raster-scan array of binary
values (1s and 0s). We construct the pointer graph, which will also be global.
We structure the pointer graph as an image of indices in registration with the
input image: at a given pixel, the value of “Parent(i)”’ at that pixel is the
index of the pixel pointed to by that node in the pointer graph. This
structure makes the code more clear, but wastes a lot of space, since Parent(i)
is undefined for pixels i that are not within regions in the binary image (i.e.
where Img(i) = 0). Instead, the pointer graph should be a set of nodes, with
each node containing fields specifying the coordinates of the corresponding
pixel, the Age field, and a pointer to the parent node in the pointer graph.
Since our pointer graph is in registration with the image, and indexed by the
pixel coordinate, the Age field is also a registered image. We also use a
“Hooked” tag on each node, which is used to determine whether a node is
successful in hooking onto another node in Steps 2 and 3.

The vertex and edge lists are simply arrays of indices and pairs of indices
respectively. We use the fetch-and-add primitive to enqueue elements onto
the lists. Initially, all vertices within regions in the image are placed on the
vertex list, and all south and east edges in regions are placed on the edge lists,
as built up in Step 0. Step 1 shortcutting is unnecessary during the first
iteration, and so is skipped. In all of the steps, a fetch-and-add is issued to an
index in order to allocate elements on the list to processors. In Steps 2 and 3
the current edge list is scanned, and a new edge list is formed. Step 2 creates
Step 3’s edge list, while Step 3 creates the edge list for the next Step 2. Each
processor enqueues the edge element it is currently processing onto the
output list, unless it observes that both vertices of the edge point to the same

120 R. Humimel

node, or unless the current edge is successful in causing a hook. Since several
processors may request a hook of a single node simultaneously, it is
necessary for a processor to determine whether it has been successful in
causing a hook. This is done by means of a hook count attached to each node,
represented as the array “Hooked(i)”’. In order for a processor to gain
permission to hook node i, it must issue a fetch-and-add with increment 1 to
the variable Hooked(i), and retrieve the value 0. Since only one processor
will receive a 0-value from the fetch-and-add, exactly one hook will take
place and a processor knows whether it is the winner according to the
permission granted from the returned value. In this scheme, we are using
the fact that once a node hooks onto another node, then it is no longer a root
and will at no future time be eligible for hooking again.

During Step 0 the vertex list for Step 4 is created, and stored in the array
Vlistda. The vertex list for Step 1 is not needed, since Step 1 is skipped
during the first iteration. During Step4 the Vlist4a list is read, and new lists
of vertices are created, one for Step 1 and one for the next iteration’s Step 4.
The new list for Step 4 is written to Vlistdb. If we instead wrote to Vlist4a,
overwriting the list being scanned, we could potentially overwrite a value in
the list that has been allocated to a processor but not yet read. The length of
the list, NV4, is continually overwritten, but the length of the original list is
passed by value and stored in the procedure-local variable NV. In alternate
iterations we then read from Vlistdb and write to Vlist4a. Finally, note that
Age fields are updated after each shortcut and hook operation, updating the
target of the shortcut or hook in Steps 1, 2 and 3. A dead tree is one whose
root is stagnant after Step 3. Note that a hook into a stagnant tree must hook
onto the root, so that if a stagnant tree is made live by Steps 2 or 3 the Age
field of the root is updated. Thus in Step 4, nodes in dead trees are
recognized because they point to roots whose Age field has not been updated
in the current iteration.

Our time bound of Section 3 shows that the algorithm will terminate after
no more than logspN, i.e. approximately 1.71 log, N iterations. Inspecting
the algorithm, we see that Step 1 requires 5 accesses to the common
memory, while Steps 2, 3 and 4 require 11 accesses per task. The time used
for Step 0 is negligible. In counting the number of accesses, we have
assumed that a fetch-and-add is equivalent to two accesses, that indepen-
dent reads or writes can be pipelined through a connection network and thus
can be performed essentially concurrently, and that accesses by separate
processors do not interfere. These are all reasonable assumptions, modulo
minor perturbations, for the Ultracomputer.

The unknown variable in an analysis of the MIMD approach to the
Shiloach/Vishkin algorithm is the rate of decrease of the task list sizes.
Initially, the number of tasks are NVV1 = NV4=N and NE2,NE3 <2N. We

Connected component labelling 121

conjecture that the edge lists will normally drop off geometrically. The
vertex lists, particularly the list for Step 4, will drop only after a component
is completely labelled, which can take 1.7 log N, iterations, where N. is the
size of the component. In any case, no iteration will need more than 60N
accesses, and considerable drop-off is expected as iterations proceed.

Let N. be the number of nodes in the maximum size connected
component and N the total number of nodes. Suppose that there are P
processors, and each access to shared memory takes alog P time (in seconds).
Since P processors can be devoted to performing tasks simultaneously, we
come up with a time bound of

103aN log N,
Pllog P

seconds for termination of the algorithm. If we dispense entirely with the
enqueuing of new tasks, using the same vertex and edge lists in all iterations,
we can then modify the code so that 5 accesses per task are needed in Step 1,
and 6 accesses per task suffice in Steps 2, 3 and 4. In this case, we know that
roughly 35 N accesses will be needed per iteration, with no drop-off. We can
thus drop the 103 constant in our upper bound to 60, for otherwise the
enqueuing process is not supportable. The expected constant is probably
somewhat smaller, due to the drop in the length of the task lists.

We can also inspect the code to determine what percentage is spent in
allocation and enqueuing of tasks, and what percentage is spent in actually
performing the steps of the algorithm. This gives a measure of the degree of
parallelization. The measure is still somewhat misleading, however, since
the use of an interconnection network or other access strategy exists solely to
support concurrent reads and writes, and is thus an additional price paid for
parallelism. The synchronization between steps introduces an additional
drop in the degree of parallelization, which is difficult to measure since it
depends upon the load on the parallel computer and the number of available
processors relative to the size of the task lists. Finally, many of the tasks
attempt to perform a shortcut or hook and are unsuccessful in the attempt,
either because of multiple requests or because the conditions are not
satisfied to request the action. These tasks might be considered wasted
effort. Just taking into account allocation and enqueuing, we estimate that
nearly 509, of the accesses during shortcutting steps and only 309, during
hooking steps constitute performance of the algorithm. The rest is overhead
for parallelization.

Typical numbers for a 512 by 512 image would be « =25 ns, N=512%/8,
N.=4000 and P =4096. This yields a time bound (using the constant 60) of
1.728 ms.

This compares with the standard sequential methods, which permit two

122 R. Hummel

frame-time (67 ms) connected component labellings on 512 by 512 images.
By using a supercomputer with a 10 ns cycle time, a linear connected
component can be performed in something like 10n? cycles, which for
n=512 yields 26 ms times.

Let us briefly compare these times with an n by » mesh connected parallel
array of single-bit processors. Let us assume the breadth-first-search
method instead of the Wassimi/Sahni algorithm. Each pixel requires a
unique processor identifier, which for an #n by » mesh will have 2 log » bits. A
local max among the central pixel and the four nearest neighbours can be
constructed using a sequence of 5 pairwise maxima. The maximum of two
1ntegers a and b can be calculated using the formula max (a,b)=
2(a+b+ la—b]). Thus roughly 10 arithmetic operations, each involving
integers with 2 log » bits, are required per iteration. In addition, a 2 log » bit
operation is needed to mask the boundary, and another operation is needed
on each iteration to check for termination. We assume the existence of a
global “sum-or” which can detect a non-zero value within a designated
plane in the grid in one cycle time. Combining, we estimate that 24 logn+ 1
cycles are needed per iteration. How many iterations will be needed, on the
averager We are tempted to answer N2 as an estimate of the diameter of the
largest component. Unfortunately, the components are frequently boundar-
ies of connected regions, and a safer bet for the maximum internal path
length is 2n Thus we arrive at the time bound of

an (12 log n+5).

Using n =512 and « =50 ns, which seem to be currently typical numbers, we
obtain a time bound of 2.78 ms.

We see that for these numbers, the MIMD Shiloach/Vishkin approach
wins, although the bounds are within the same order of magnitude. Thus the
true benefits of MIMD approaches to image processing lie in the greater
degree of flexibility, and performance improvements, if present, will be
borne out mostly by realistic empirical studies.

ACKNOWLEDGMENTS

Work on this paper has been supported in part by NSF Grant DCR-
8403300. An earlier draft and much of the research was conducted by Alan
Rojer, whose assistance is greatly appreciated. He was supported by Navy
Grant N00014-85-M-0260.

Connected component labelling 123
REFERENCES

[1] Duff, M. J. B. (1978). Review of the CLIP image processing system. In Proc.
Nat. Computer Conf. p. 1055. See also Duff, M. J. B. (1985). Real
applications on CLIP4. In Integrated Technology for Parallel Image Process-
ing (ed. S. Levialdi), 153-165. Academic Press, London.

[2] Batcher, K. E. (1980) Design of a massively parallel processor. IEEE Trans.
Comp. 29, 836-840.

[3] Kung, H.T. (1982). Why systolic architectures? Computer 15, 37-46.

[4] Hummel, R. A. (1984). Image processing on the NYU Ultracomputer. Courant
Inst. NYU Ulrracomputer Note No. 72.

[5] Nassimi, D. and Sahni, S. (1980). Finding connected components and
connected ones on a mesh-connected parallel computer. SIAM ¥. Comp. 9,
744-757.

[6] Miller, R. and Stout, Q.F. (1984). The pyramid computer for image
processing. Proc. 7th Int. Conf. on Pattern Recognition. pp. 240-242.

[7] Gajski, D., Kuck, D., Lawrie, D. and Sameh, A. (1983). CEDAR—a large scale
multiprocessor. In Proc. Int. Conf. on Parallel Processing, p. 524.

[8] Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P., Rudolph, L., and
Snir, M. (1983). The NYU Ultracomputer—designing an MIMD shared
memory parallel computer. IEEE Trans. Comp. 32, 175~189.

[9] Siegel,H.]., Siegel, L. J., Kemmerer, F. C., Mueller, P. T., Smalley, H. E. and
Smith, 8. D. (1981). PASM: a partitionable SIMD/MIMD system for image
processing and pattern recognition. IEEE Trans. Comp. 30, 934-947.

[10] Reeves, A. P. (1985). Multicluster: an MIMD system for computer vision. In
Integrated Technology for Parallel Image Processing (ed. S. Levialdi), pp. 39—~
56. Academic Press, London.

[11] Shiloach, Y. and Vishkin U. (1982). An O(log n) parallel connectivity
algorithm. ¥. Algorithms 3, 57-67.

APPENDIX. MIMD SHILOACH/VISHKIN CONNECTED
COMPONENTS PSEUDOCODE

/* Shiloach/Vishkin algorithm, coded in pseudo-C code for
* the NYU Ultracomputer
*/
#define n=512 /* Image is n by n */
typedef pnode =integer range[0..#% — 1];
typedef edge=record
{x: pnode;
y: pnode;}
[*globals:*/
shared binary Img(0..#n*— 1); /* Input image is n by n, raster scan order */
shared pnode Parent(0..n%—1);
shared int Age(1...n%), Hooked(1..n%);

124

procedure Shiloach Vishkin()

i
3

shared pnode

shared edge
shared int
shared int

/* begin */

B

R. Hummel

Viist1(0..n2 — 1), Vlistd(0..n2 — 1); /* Vertex lists */
Blist2(1..2#%), Elist3(1..2n%); /* Bdge lists */
NV1, NV4, NE2, NE3; /* Integers giving the length of lists */ .

I

step0(Vlist4a,&NV4,Elist2, &NE2);

10

while (NV4 > 0)

{I

I+1;

if (I > I)stepl(Vlist],NV1);
step2(Blist2,NE2, Elist3,&NE3);
step3(Blist3,NE3, Elist4,&NE2);

if (isodd(1))
{stepd(Vlistda,NV4,Vlist] &NV, Vlistdb,&NV4);}

else

/* Iteration counter */

/* Create vertex list for step 4 and Edge list for step2 *

/* While there are non-dead trees */

[* Uses Vertex list Vlistl */
/* Using Elist2, create Elist3 */
/* Using Elist3, create Elist2 */

{step4(Vlistdb,NV4,Vlist1,&NV1,Vlist4a,&NV4);}

stepO(V1ist,pNV,Elist,pNE) /* Initializes pointer graph and loads Vertex list and Edge

list */
shared
shared
shared
{

shared

pnode
edge

pnode

Viist(0..n% — 1);

Elist(1..20%);
int *pNV, *pNE;

pL;

pl<0; *pNV«0; *pNE«0;

2

—n

cobegin nomorethan n
private pnode
private int k;

i3

{while ((ifetch&add- (&pl,1))< n?—n)

{if (Img(i)=1)

/* We assume that the bottom row and
* right column of Img are all 0’s */

{Parent(i)ei; /*Self pointing root */
Age(i)«0;

Hooked(i)«0; /* Counter for hook requests */
kefetch&add(pNV,1); /* Enqueue node i */
Vlist(k)«i;

if Img(i+1)=1)

/* Enqueue east neighbor */

{kfetch&add(pNE, 1);
Elist(k).x<i;
Elist(k).y i+ 13}

v

Connected component labelling

if Img@i+n)=1)
{k+fetch&add(pNE,1);
Elist(k).x «i;
Elist(k).y «i+n;}

}
}
}
coend
H
step1(V1ist,NV) /* Shortcuts all nodes on Vlist */

shared pnode Vlist(0..n?—1);
shared int NV;
{
shared int index;
index «0;
cobegin nomorethan NV
private pnode old-parent, new-parent;
private int k;
{while {((k«fetch&add{index,1}) < NV)
{old-parent« Parent(k);
new-parent« Parent(old-parent);
Parent(k) «new-parent;
if (old-parent # new parent) Age(new-parent)« [;

}

coend

step2(Elist,NE,Elistout,pNEout)
shared edge Elist(1.20%);
shared int NE;

shared edge Elistout(1..2n%);
shared int *pNEout;

125

/* Enqueue south neighbor */

{
shared int index;
index«0
*pNEout«0;
cobegin nomorethan NE
private edge e;
private pnode u,v;
private int kh;
{while ((k«fetch&add(index,1)) < NE)
{he1;
e« Elist(k); /* Edge is (e.x,e.y) */

u«Parent(e.x);

veParent(e.y);

if (u < v&&Parent(u) =u)
{hefetch&add(&Hooked(u),1);

126

if (h=0) /* Allow hook only if not hooked yet */

{Parent{u)«v;
Age(v)«1L;
i
i
else if (u> v && Parent(v) =v)

{hefetch&add(&Hooked(v),1);
if (h=0) /* Allow hook only if not hooked yet */

{Parent(v)«u;
Age(u)«1;
}
}
if (u#v && h#0)

{k«fetch&add(pNEout,1);

Elistout(k) «-¢;

}

!
coend
}
step3(Elist,NE,Elistout,pNEout)
shared edge BElist(l..2n%);
shared int NE;
shared edge Elistout(1..2n%);
shared int *pNEout;
{
shared int index;
index«<0;
*pNEout«0;
cobegin nomorethan NE
private edge [
private pnode u,v;

private int k,h;

{while ((k«fetch&add(index,1)) < NE)

{he1;
e—Elist(k);
u«Parent(e.x);
v DParent(e.y);
if (usv)

/* Hooked only if h=0 */

{if (Age(u) <1 && Parent(u)=u)
{hefetch&add(&Hooked(u),l);

if (h=0)
{Parent(u)«v; /
Age(vy<1;}
}

/* Allow hook only if not hooked yet */
*Hook uto v */

else if (Age(v) <1 && Parent(v)=v)
{h«fetch&add(&Hooked(v),1);

if (h=0)

/* Allow hook only if not hooked yet */

Connected component labelling 127

b

{Parent(v)«u; /* Hook v to u */

Age(u)y«T1s}
}
if (h#0)
{kfetch&add(pNEout,l);
Elistout(k)«e;
}
H
}
h
coend

stepd(V1ist, NV, Vlist1,pNV1,Vlist4,pNV4)

shared pnode Vlist(0..n%~ 1),Vlist1(0..n? — 1),Vlist4(0..n% — 1);
shared int NV;

shared int *pNV1,*pNV4;

{

shared int index;
#define NOT !
index+0;

pPNV1«0; *pNV4«0;

cobegin nomorethan NV
private pnode old-parent, new-parent;
private int k,j;

{while ((k«fetch&add(index,1)) < NV)
{old_parent« Parent(k);
new_parent« Parent(old_parent);
Parent(k)«new..parent;
if (old._parent s new_parent)
{jefetch&add(pNV1,1);
Vlist1(j)«k;}
if NOT(old_parent = new_parent && Age(new_parent) < I)
{j—fetch&add(pNV4,1);
Vlist4(j)«k;}

coend

