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Abstract

We consider the problem of determining the parameters of motion of a sensor in a fixed scene,
given the optical flow field induced on the perspectively projected image. Specifically, we consid-
er the problem of finding the rotational parameters of motion. Although this problem has been
much studied, most methods make use of local flow field data, rather than integrating information
from the entire image plane. When information is incorporated from many locations in the image
domain, typical methods require the solution of large systems of equations. We suggest a new
method, based on measurements of the curl of the flow field. We show that under a variety of as-
sumptions, the flow due to translational motion is cancelled, and the rotational parameters of
motion can be obtained by fitting a linear function to the available data throughout the entire im-
age plane. The regression process gives a completely trivial method for the estimation of the ro-
tational parameters. We further show that noise in the measurement of the curl data is inconse-
quential for two reasons: (1) we may instead use curl values that are averaged over large re-
gions, by measuring circulation values about cycles, and that these measurements serve equally
well as point values of the curl; and (2) the regression process attenuates noise in the measure-
ment of the curl values, so that in practical situations, accurate estimates are obtained. We
demonstrate the viability of the approach with a number of calculations for typical situations,
and a number of experiments using synthetically-generated motion data.

1. Introduction

As a camera moves around in a fixed scene, a motion is induced on the image plane. The
instantaneous flow field depends upon the parameters of the instantaneous motion of the sensor,
as well as the distances from the sensor to the surface points of objects observed at each pixel in
the image. For many applications, it is useful to determine, from the observed motion of objects
in the image, the parameters of motion of the sensor. In particular, the motion of the sensor can
be described by six parameters: three parameters determine the translational velocity of the focal
point of the sensor, and three additional parameters give the angular velocity of the coordinate
system attached to the sensor. The difficulty in determining these parameters, when they are
unknown, is that typically the induced motion on the image plane must also be determined, and
further, since the depths to the objects are unknown, the determination of the parameters from the
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image motion is nontrivial.

A related problem arises when a sensor observes rigid objects that are moving about in a
scene. Potentially, the sensor is also moving. In this case, there are motion parameters that
describe the relative motion of each object with respect to the camera. Once again, it is often
desired to determine the parameters of this motion for each object.

Determining motion parameters can be useful for tracking objects, for segmenting objects,
and for coarse determination of depths. Often, knowledge about the relative motion of the
objects is the primary objective of the image analysis process.

There are two phases to the motion parameter determination. In the first phase, the image
sequence is analyzed, and the image flow field is determined. That is, the image sequence is con-
verted to a sequence of image vector fields, where the vector field at any instant indicates the
velocity of motion of each point on the image plane at that time. In the second phase, the vector
fields are used to determine the motion parameters, through a process of solving an inverse prob-
lem, where the depths to the imaged points are typically unknown parameters that must also be
determined. In this paper, we will concentrate on the second phase.

Both phases are well-studied problems. For the first phase, numerous methods have been
suggested for determining the vector field flow from an image sequence, including the method of
Hom and Schunk [1], Barnard and Thompson [2], Hildreth [3], and the more recent methods of
Anandan [4] and Heeger [5].

In the second phase, the flow parameters must be determined from the optical field. In spe-
cial cases, this has been extensively studied, for example, in the work of Lawton [6], Longuet-
Higgins and Prazdny [7], and Prazdny [8,9]. Solution methods based on the use of a sufficient
number of correspondences are given by Waxman et al. [10], Waxman and Wohn [11], and Fau-
geras [12]. More recently, Heeger and Jepson [13] have suggested a simple linear approach based
on a search for the focus of expansion. We give more details of their approach in Section 3.

We now present an overview of the proposed method. A complete formulation of the prob-
lem is given in the subsequent two sections, and a derivation of the method is given in Section 4.
Section 5 presents the method in a succinct and complete fashion, and the final two sections
present an analysis of the potential errors, first analytically, then empirically.

Suppose the the optical flow field in the image is V = (u(x,y),v(x,y)), and that feature
detectors in the image measure the curl of V at a number of locations or the average of the curl of
V over a number of patches in the image. The latter values, the average of the curl over a patch,
will be seen to be equal to the circulation of V about the patch. Providing the variation in the
depths are small compared to the overall depth of the objects in the scene, or providing any of a
number of other conditions hold true for each sample location or patch in the image from which
the curls are obtained, the sample values should lie on a linear surface over the image, i.e,
g (x,y) = ax+by+c. The coefficients of this linear surface, which we may obtain by fitting a sur-
face to the data, are directly proportional to the parameters of rotational velocity of the image
sensor. The remaining unknowns, the translational parameters and approximate depths to points
in the objects, can then be obtained from observation of the flow field V, by subtracting off the
flow field due to the rotational motion that has already been determined.

The curl of the flow field has long been recognized as an important property of the motion
field. However, the observation that the curl of the field is approximated by a linear function, and
the use of that approximation to determine the rotational parameters, appears to be new. Koen-
derink and Van Doom [14] note that the gradient of the velocity field can be decomposed into
fixed fields with elementary coefficients, namely from the divergence, the curl, and the deforma-
tion of the field. We begin with their computation of the curl (converted to image coordinates),
but make use of the function to solve for the rotational parameters. They instead studied the pro-
perties of these elementary fields in the case of an observer moving with respect to a plane



[15,16]. The existence of receptive fields sensitive to the curl was hypothesised by Koenderink
and Van Doom [14] and Longuet-Higgins and Prazdny [7]. Regan and Beverly [17] studied this
possibility by conducting experiments and concluded that the existence of vorticity receptors is
very likely. The approximation based on constant depth surfaces, however, does not appear in
these works, since the interest typically was in deriving surface structure directly.

The approach is complementary to the approach of Rieger and Lawton [18] which is based
on finding depth discontinuities, where the jump in the vector flow field cancels the component of
the field due to the rotational parameters, and leaves only a component dependent on the transla-
tional parameters. If confronted with a scene without regions of sufficiently constant depth, then
there are likely to be sudden discontinuities, and an approach based on vector flow jumps can be
used. As we will see, the assumption of constant depth, or any of a number of other sufficient
assumptions, for the purposes of computing rotational parameters, is not unreasonable in many
circumstances.

2. The optical flow equations

For the case of perspective projection of a scene on a planar imaging sensor, the optical
flow equations are well-known and understood. Derivations for a moving sensor in a stationary
environment may be found in [7, 13, 19] and yield the image optical flow (u,v) at the image point
(xy)

2
uxy)= Z(;,y) [—fl‘1+x't3]+(n1[—x—fy-] —(Dz[f+1f—] + 03y,
2
vxy)= Z(i,y) [—ft2+}"t3]+(01[f+lf— —0)2[% — ax,

where (¢,,t,,¢3) are the components of the three-dimensional translational motion of the sensor,
and (m;,0,,m3) is the rotational velocity of the sensor coordinate system. Here, f is the focal
length of the camera system, so that the transformation from spatial coordinates to image coordi-
nates is govemed by the equations

x=fXIZ, y=fY/Z,

where (X,Y,Z) = (X (x,y),Y (x,¥),Z (x,y)) is the position of the surface in 3-space that is imaged at
the image coordinate position (x,y).

Similar equations hold for the case of nonstationary objects; then, a flow equation must be
written for each object, since there are different relative translations and rotations for each such
object.

As is common, we note that the flow equations may be grouped into the sum of two terms:
the first term gives a flow field due to the translational components, and is modulated by the
inverse depths, and the second term is a flow field due to the rotational components, and is
independent of the depths:

V)= (18] =iy + Vot

with
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Note also that the flow due to the translational components has a radial structure, expanding or
contracting about a ‘‘focus of expansion’’ at location (t,1), and with a magnitude modulated by
the distance from the focus of expansion, the component of translation in the viewing direction
(¢3), and the inverse depth to each pixel, p(x,y) = 1/Z(x,y).

3. Motion parameter determination

The motion parameter determination problem is the following. We are given a collection of
image locatlons {(x,,y,)} i=1 and approximate flow field measurements at those points,
{(u‘,v,)} i=1. Thatis, we have noisy knowledge of (u(x;,y:),v(x;,y;)) = (4;,v;) at the points (x;,y;).
We wish to determine the six parameters of motion of the sensor: t = (¢1,2,¢3), ® = (®;,0;,13),
such that there exists a collection of inverse depths p;, i=1, - - - ,N satisfying, as best as possible,
the flow equations:
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where (T,m) is as defined above. Although the primary unknowns are the parameters t, ®, the

resulting inverse depths {p;} give some useful information about the structure of the object by
means of the equations Z(x;,y;) = 1/p;, and thus are often used in subsequent processing.

We observe that the problem has N+6 unknowns in 2N equations. Thus at least 6 points
(12 equations) are needed. We further observe that since ¢3 and the p; are unknown, we can at
best solve for the collection #3°p;. That is, only proportional depths can be obtained. Moreover,
the unknowns for the translational parameters are expressed in terms of 73, T, and 1; it is impos-
sible to determine ¢35 unless at least one actual depth value is known. In general, many more than
6 points are used in order to achieve stability and invariance to noise in the determination of <, 1,
®, and proportional inverse depths.

As mentioned before, many solution methods have been studied. We briefly outline the
method suggested by Heeger and Jepson [13]. They observe that for fixed (t,1M), the equations
are linear in the remaining unknowns @, {¢3'p;}’-;. We thus have 2N linear equations in N+3
unknowns, in the case when (t,1) is fixed. As long as N>4, these are easily solved to give the
least mean square error, and that error is also easily determined. The residual error in the least
mean square solution can be used as a measures of the quality of the estimate (t,n) for the focus
of expansion — in noise-free circumstances, there should be zero residual error if T and 1 are the
correct values. Equivalently, we see that the data {(u;,v;)}!L;, regarded as a vector in 2N-space,
should lie on an N +3-dimensional hyperplane defined by the fixed (t,n); the extent that the vec-
tor lies off this hyperplane measure the noise in the data and the correctness of the (T,1) estimate.
Heeger and Jepson then simply check a large array of possible (t,n) values, computing the error
at each such position. Where the error is minimized, they declare the correct (t,n) to be found,
and the least mean square solution to the other variables to give the solution. For methods based
on a similar approach, but set in the continuous domain thus providing more insight into the
structure of the problem, see R. Hummel and V. Sundareswaran [ 20].



4. Using the curl of the flow field

4.1. Derivation

The curl (or rof) of a two-dimensional vector field V(x,y) = (u(x,y),v(x,y)) is a scalar func-
tion defined by

curl(V) = % - %;‘—

The curl of V is also denoted VxV. If we apply the curl operator to both sides of the optical flow
equation, we obtain:

VxV(x,y) = tg.[%%.(y_n) - _g%-(x—f% - %[xml +ym, +2f(o3] : @.1)

4.2. Regression

Let us assume, for the moment, that Z (x,y) is locally constant. Then p(x,y) is also locally

constant, and dp/dx = dp/dy =0, and the first term on the right hand side of (4.1) vanishes. We
then obtain:

VXV = :fl_[ X0 +y, + 2f(o3:| ‘ (Constant depth) (4.2)

We will later weaken the assumption of constant depth.

Now, suppose that instead of being given a collection of flow velocities {(u;,v;)}, we are
given a collection of measurements of the curl of the flow velocity:

Yx.y) = VXV (x,y),
N

so that we have values {y;}); at locations {(x;,y;)})L;. We then have (for the constant depth
case) the linear equations:

-1 ®
Yi= —f—[xi.yi,Zf] W[ i=1,---,N. 4.3)

03
This system of equations is easily solved (as long as the points (x;,y;) are not collinear). It is
more revealing, however, to observe that the right hand side of (4.2) is a linear function in x and

y. Thus: the rotational parameters of the motion can be obtained from the coefficients of a linear
approximation to the curl of the flow field in a region of constant depth.

Let us denote the linear function in x and y by g:

gxy)= T{O)M +apy + 2(03f] .

We have seen that the curl, Y(x,y), of the vector field should give an approximation to g (x,y), at
least in regions of constant depth. Note also that ;, @;, and @3 are the coefficients of the func-
tions ¢;(x,y) =x/f, $2(x,y) = y/f, and ¢3(x,y) =2, which are mutually orthogonal functions when
defined on a symmetric domain D (such as the unit disk {x2+y2<1}, or a rectangular image
{—a<x<a, —b<y<b}). Thus, there exist constants c;, c3, and c3 (depending on the domain D)
such that the coefficients satisfy

o =c1 [[ xg(uy)dudy, @ =csff ygGuy)drdy, o3 =c3[[ gxy)dxdy.

In the case where we have a good estimate (by virtue of constant depth) of g (x,y) from ¥(x,y)
over an entire domain D (which is symmetric about the origin of the image plane), then we obtain



the striking result that the parameters of @ may be obtained from that estimate by integration
against three specific basis functions.

4.3. Conditions for linearity

We now weaken the restrictions. We first observe that the Equation (4.3) requires that
p(x,y) be constant in a neighborhood of (x;,y;), but is independent of the value of p(x; y;). Thus if
the collection of points {(x;,y;)} are at different depths, but that each is obtained from a region
where p(x,y) is locally constant, then the same set of equations result. Further, if there are points
(xi,y:) where p(x,y) is not locally constant, then the data Y(x;,y;) may lie off of the linear surface
g (x,y) =—(0;x + @y +2fm3)/f, but that this defect can be observed as an outlier providing there
are sufficient number of points lying on the linear surface so as to deduce the coefficients.

Next, observe that constant depth is a sufficient condition, but that there are other situations
where the first term of the right hand side of Equation (4.1) will vanish. Specifically:

° If the translational velocity t, is zero, then the term vanishes;

° Near the focus of expansion (t,n), the term is small, and at the focus of expansion, the term
vanishes; and

. If the vector

dp 9p|
[ ox’ ay] “4

is proportional to the vector (x—t,y-1), then the term vanishes at that point. The vector
(4.4) is the same as
-1 [z oz
Z%(xy) [ ox’ oy)’

which is very nearly proportional to the *‘tilt’’ of the surface in space (X,Y,Z) that is imaged
on the pixel (x,y). By tilt, we mean the projection of the surface normal onto the Z=0
plane. Thus the condition is that the tilt of the surface imaged at the point (x,y) should be
the same direction as a vector from (x,y) to the focus of expansion.

e  If the distance Z (x,y) to the object is large compared to the variation in the Z with respect to
x and y, then even if the distance is not constant, the first term will be negligible. Note that
the variation in Z is divided by Z2(x,y).

In each of these situations, the equation (4.2) is valid, and so the vector field curl values {y;} will
lie on the planar surface defined by g (x,y).

4.4. A robust method for obtaining curl values

Finally, we consider the problem of obtaining the values of the curl of the vector field.
Since the flow vector field is already a velocity field involving first derivatives, the curl of the
vector field involves a difference of second derivatives, and is therefore likely to be quite noisy.
Suppose that instead of being given y(x;,y;) = VXV (x;,y;) at a fixed point (x;,y;), we are given the
average of y over a region D; (which need not be symmetric):

¥i= ,D,ijv(x,y)dxdy

(see Fig. 1). Assuming that p is constant over D;, or any of the other above conditions hold over
D;, we then have that



- 1 -1 -1 -~ -
Yi= —I_D_,—I—-”D 7 [xo +y wy+2f 003 ]dxdy = 7[xi0)1+)’z0)2+2f0)3].
where (x;,y;) is the centroid of the region D; in the image coordinates. Thus, because the equa-
tion is linear in x and y, the curl data may be averaged over regions, and the same equations hold,
where the point location is evaluated at the centroid of the region.

Obtaining the average of the curl over a region in the image is plausible due to Stoke’s
theorem:

| jD curl(V)dxdy = i)DV(x,y)ds.

That is, the average of the curl over a domain can be replaced by a normalized (i.e., scalar multi-
ple of the) contour integral around the boundary of the domain. Thus the average values of the
curl can be obtained from contour integrals of the vector flow field (#(x,y),v(x,y)) around the
boundary of the regions. To be explicit, we recall that the contour integral of a vector field can be
defined in terms of an arc-length parameterization of a (smooth) closed curve, say (x(s),y (s)), for
se[0,L]. Then the contour integral and thus the i sample is given by

Yi= LL[u (x(s)y (S))%(S) +V(x(s),y (s))%(s)lds-

In fact, this value is independent of the parameterization of the closed curve. We will call this
value the circulation of the flow field about the cycle dD;. For actually obtaining the circulation
values, there are three possibilities: (1) computing the contour integral from the flow field, as
indicated above; (2) computing or sensing the curl of the flow field at all points in D; and then
averaging the values to obtain the circulation; or (3) sensing the circulation directly, using a col-
lection of ‘‘hard-wired’’ circulation detectors. We do not here advocate one method in prefer-
ence to the others.

Figure 1. Contours of regions D; and their centroids.




5. The proposed algorithm
We summarize and discuss the proposed algorithm for computing motion parameters.

We assume we are given a (perhaps coarsely sampled) collection of estimates of the image
flow field {(u,-,v,-)}ﬂv:h at associated locations {(x;,y;)}i=1, and additionally a collection of meas-
ures of the circulation of the flow field about various cycles:

¥i= é)i(u,V)ds,

for cycles dD;, i = 1, - - - ,M in the image domain. We further assume that either the translation
velocity t is zero, or that each image region D; is predominantly characterized by points where
any of the following conditions hold:

(1) The surface imaged at that point has locally constant depth;

(2) The depth of the surface imaged at that point is large compared to the variation in the
depths in the region about that point; or

(3) The tilt of the surface imaged at that point is directed away or toward the focus of expan-
sion — equivalently, the normal to the surface at the point imaged at the point intersects
in 3D space the line from the sensor extending in the direction of translational velocity of
the sensor.

It is not required that all points in D; satisfy the same one of these conditions; rather, we only
need that each point (x,y)e D; satisfies at least one of the conditions, or else that the measure of
the set of points in D; where none of the conditions is satisfied is small. Further, violations will
not create any problems providing there is sufficient variation in the tilts of the surfaces, so that
errors cancel out.

We note that the existence of perceptual filters capable of detecting local circulation of the
flow field is not inconsistent with the results of [17].

For each region D;, we determine the centroid of the region (%;,y;), fori=1, --- ,M. We
use the collection of data

Giyi¥ids i=1,---M,

to fit a linear surface g (x,y) =—(0;x + wyy+m32f)/f. The coefficients w;, ®,, and ®; can be

obtained in a variety of ways, but will in any case be an adaptive weighted sum of the y; data. In

particular, assuming that the collection of centroids is reasonably symmetric about the origin of

the image plane, w; will be a weighted average of the y; data, ®; will be a weighted average of .
the same data with weights proportional to the x-coordinate position of the centroid, and ®, will

likewise be a weighted average with weights proportional to the y-coordinate of the centroid. Of

course, outliers can be detected and discarded before the averaging.

Of course, once the rotational parameters are known, it is not difficult to solve for other
motion parameters and inverse depths.

6. An analytic analysis of the sensitivity

We calculate the range of errors that might be expected for the proposed algorithm. In par-
ticular, we are interested in computing the degree to which violation of the assumptions affect the
linearity of the curl of the flow field.

We assume that units of measurement are in terms of the focal length of the system, so that
f=1. In these units, the range of x and y for a reasonably wide angle camera (60 degrees)
satisfies —1/2<x,y<1/2. For the purposes of the analysis, let us consider the imaging and flow of
a flat surface patch at location (X ¢,Y ,Z() with surface normal (n,n,,n3):



(X—Xo)‘nl +(Y—-Yo)ny +(Z-Zy)n; =0.

Since our analysis will be entirely local, our conclusions on the relative sizes of the parameters
for which errors are small will apply to more complicated surfaces, where (X,Yo,Z) is the loca-

tion of the patch, and (n,,n,,n3) refers to the local normal to the surface (in 3D space). We then
have

ni Q&(x )= ny
n1X0+n2Yo+n3ZO ’ By o4 n1X0+n2Y0+n3ZO )

9P,
I (x,y)=

Typical values for the magnitudes of the rotational parameters will range from zero to 0.5
radians per second. The ¢3 translational parameter varies greatly according to the application.
Values of ¢4 in the range of 0 to 100 focal length units per second are plausible.

Recall again Equation (4.1), the formula for the curl of the flow field:
VxV(x,y) = tg[%%'(y—n) - %%-(x—‘% - [x(ol +ym, + 20}3] ,

where we have set f=1, and 3 is to be measured in focal length units per second. Setting
R =nXo+n,Yo+nsZy, we then have

VXV(x,y)=t3-[ nl-(y—n);n2~(x—’c)] _ [xml +y0)2+2a)3] .

Regrouping, we have

i nyt nita—na-t
VXV(X,}’)=J€[—(01-—’I2R 3] +y[_0)2+ IRS] +[—2(03— ( 1 2R 2 l)]

Clearly, our ability to estimate the parameters ®;, ®;, and w3 will depend on the size of the
remaining terms in the corresponding coefficients. That is, we need that the terms
nyty  nyty  (nyta-ngity)

R’ R’ 2R
are small in magnitude, respectively, relative to the expected sizes of ®;, ®,, and w;. Note that
we have substituted ¢; and ¢, for 3T and t3m respectively. More realistically, it is the average
values of n; and n, throughout the image that influences the accuracy of the linear regression
that is used to estimate the components of @. Although typical values of the average surface nor-
mal tilts must be determined empirically, many scenes are composed of a variety of tilt direc-
tions. Fig. 2 shows plots of n;/R and n,/R for a typical scene of a road, computed using depth
data. The values of n1/R are well-distributed about zero, and average to 0.0040. The values of
n,/R, on the other hand, are predominantly positive, and average to 0.0103. The result is that
using this scene, the value of the horizontal rotational component ®; is likely to be estimated
with greater error when using the flow circulation algorithm.

We also note that if the components of t are bounded, then these terms will be small as
long as R is sufficiently large, since —1<n,n,<1 always. For example, if |¢5|<1 (a fairly small
forward velocity), then as long as R is greater than 50 or so (focal units), then ®, and ®, com-
ponents on the order of 0.1 or 0.2 radians per second should be reasonably accurately deducible.
However, note that R is the distance from the origin to the planar surface obtained by extending
the surface patch in all directions, measured in focal distance units at the point of closest
approach (see Fig. 3). Thus a nearby patch will always lead to a relatively small R, whereas a
distant patch could cause a problem if it is tilted so that the plane passes near the origin. How-
ever, such patches are precisely the surface elements that will be greatly foreshortened, and thus



nl/R n2/R

Figure 2. The plots for n1/R and n2/R for an outdoor scene.

will occupy only a small area on the image plane! Accordingly, as long as we confine ourselves
to distant surface patches, we can expect that much of the image area will be dominated by sur-
face patches with large values of R.

7. Experimental results

We have applied the algorithm to synthetically-generated vector flow fields. First, consider
the image of an ellipsoid, defined by

2 2 2
[ X—Xo] . [ Y—Y,| . 2-Zo)* _ .
a b J c J

We will assume that the ellipsoid center is 150 focal units away (along the Z-axis), and the
semiradii are 50, 30, and 70 focal units respectively. We assume the ellipsoid is in front of a flat
planar background. With the observer moving with a velocity of (0.3,0,2) focal units per second,
and rotating with an angular velocity of (0.2,0.1,0.5) radians per second, the curl of the vector
flow field will have values as graphed in Figure 4. The true linear surface is seen in the back-
ground region, the distortion caused by the translational velocity in conjunction with the surface
tilts. When a linear regression is used to fit a surface to the data, the resulting coefficients indi-
cate an estimated rotational velocity of (0.2, 0.1008, 0.5) radians per second. If there is error in
the determination of the curl of the vector field, then the resulting surface shown in Figure 4 will
be similarly perturbed. However, the surface fit by regression will not be sensitive to random
independent noise. That is, estimates of the linear surface will be based on averaged values over
regions, and not on local gradients of the displayed surface.

Next, we consider a corridor (see Figure 5). The sensor moves with fixed velocity along the
central line of the corridor, with a slight sideways drift. The view down the corridor is as shown
in Figure S. The translational velocity satisfies ¢, =1, t, =0, and ¢3 =5 focal units per second,




Back wall
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Figure S. The corridor, and the view from the sensor.

and ® =(0.2,0.1,0.5) radians per second. The actual curl of the vector field is shown in Figure 6;
on the back wall of the corridor, the curl is precisely linear and is entirely due to the rotational
parameters; on the sides, there is a deviation due to the translational parameters and the tilt of the
surfaces. In some sense, a corridor is a worst-case scenario for the algorithm, due to the abun-
dance of surface area with small R. However, clearly, the use of large-scale averages, or the best
fit linear surface, is likely to lead to the correct parametric estimates. In this case, the regression
fit of a surface to the observed data leads to the estimate ® = (0.2,0.1379,0.5) radians per second.
Once again, noise in sensing the curl values will perturb the surface shown in Figure 6. However,
if circulation values are calculated about circuits, then the surface will be locally averaged,
accordingly. The accuracy in determining the rotational parameters will depend on the accuracy
with which the parameters of the plane defined by the surface in the central region (where the
back face of the corridor is imaged).
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