Computing Large-Kernel Convolutions
of Images
by

Robert Hummel
David Lowe
Courant Institute of Mathematical Sciences

Technical Report No. 254
Robotics Report No. 84
Névember, 1986

New York University
251 Mercer Street
New York, NY 10012

This research was supported by Office of Naval Research Grant N00014-85-K-0077, Work
Unit NR 4007006, and NSF grants DCR-8403300 and DCR-8502009.

Computing Large-Kernel Convolutions of Images

Robert Hummel and David Lowe

Courant Institute of Mathematical Sciences
New York University
251 Mercer Street, New York, NY 10012 USA

Abstract

Blurring by Gaussian convolution, or by a Laplacian of a Gaussian kernel, is a com-
mon image processing technique used for edge detection, multiresolution represen-
tation, motion analysis, matching, and other early visual processing tasks. We con-
sider methods for computing Gaussian convolutions on discrete grids, and also con-
sider difference-of-Gaussian and Laplacian-of-Gaussian convolutions. To properly
approximate the continuous theory, it is important to evaluate the elements in these
large kernels by integration of the continuous kernel in a region about the
corresponding location. We discuss complexities of implementations of Gaussian
and Laplacian-of-Gaussian kernels on different serial and parallel computer archi-
tectures. We further consider zero-crossings of filtered images, and look at
methods for selecting significant zero-crossing curves. Finally, we discuss how to
handle borders.

1. Continuous Convolution

Many image processing operations rely on convolutions against the image
intensity data. While many operators are local, and can be computed using convolu-
tions with three-by-three pixel kernels, there are some operators that require much
larger convolution kernels. For example, the Marr-Hildreth edge operator [1]
requires convolution kernels that are sometimes as large as fifty by fifty pixels in
extent. Most of the large kernel filters are based on Gaussian blurring of the image
data either to compute a blurred, smoothed version of the image data, or to com-
pute a difference-of-Gaussian image, or a Laplacian-of-Gaussian image.

We will give a number of computational techniques needed for efficient, accu-
rate digital implementation of these kernels and interpretation of the results. We
will also analyze the computational complexity of these implementations, using
several models of computation. Specifically, we consider a sequential random
access computer, a pipeline parallel machine with a finite but large word size, and a
bit-serial mesh-connected parallel computer. Table 1 shows the models of computa-
tion, properties, and types of machines that we have in mind. Many of the compu-
tational methods discussed here are well-known, and we are mainly concerned with
bringing together a compendium of observations in implementing large kernels
based on Gaussians, and comparing their complexities on different architectures. A
more thorough treatment of large kernel convolutions, together with many further
results, can be found in [2]. A recent article by Huertas and Medioni [3] also

Computing Large-Kernel Convolutions of Images

Model Description Unit-time Operations Examples

SRAM Sequential random Add,multiply,fetch, VAX, PC
access machine; store of words (large
uniprocessor word size).

Pipeline | Image processing Table-look-up; add of VICOM
pipéline machine; two images,multiply of DeAnza,
raster-scan machine; | image by constant, CRAY XMP
vector machine. scroll (sometimes zero-cost).

MCC Bit-serial mesh- Sum or multiply of two 1-bit | MPP, GAPP
connected computer | images,access neighbor bit,

1-bit image shift.

Table 1. Three models of computation based on three different computer architec-
tures.

contains many relevant suggestions for implementation of the types of kernels dis-
cussed here.

A Gaussian convolution is defined, in two continuous variables, by

h(x,y) = [G(x=x'y=y")f(x',y")dx'dy’,
IR2
where

1 (2 2Y D2
G(x,y)=——¢ (x*+y9) 20)
(x,y) Py

Here f(x,y) is the input image, and A (x,y) is the desired filtered image. In this
paper, we address the following questions:

(1) How can the computation be discretized?
(2) How can the discretized equation be computed efficiently?

(3) How should the borders be handled? That is, since f (x,y) is not necessarily
defined over all of IR2, the convolution must be converted to a finite
domain.

The need for discretization is imposed since the input function is in fact given
at a discrete grid of points, say f(i,j), where i and j take on integer values. The
temptation is to convert the integral into a sum, replacing the integrand by point
evaluations at the grid points, i.e.,

h(i,j) = X XG>UA—i",j—jNfG" ") .

i, jl

This can lead to inaccuracies, however.

Page 2

Hummel and Lowe

Instead, for all convolutions, including Gaussian convolution, the integration
should be discretized by modeling the continuous f(x,y) from the given discrete
data f (i,j). The easiest method is to assume that f (x,y) is obtained from f(,j) by
nearest-neighbor interpolation. Then the continuous integral can be computed from
the discrete sum in the form:

h(i,j) = ZZGG=i',j=jNfi',j",
i’ jl
where
i+1/2 j+12
G(i,j)= f 1n f,-_m G(x,y)dxdy.
Thus the discrete kernel elements should be obtained from block averages of the
continuous kernel, and not by point evaluations.

If bilinear interpolation is used to model f(x,y) instead of nearest neighbor
interpolation, the formula becomes:

- i+1 aj+1 , .
Gy = [, [GGy(=limx (1= |j=y Ddxdy.
Higher order interpolants can be treated similarly. In general, the discrete kernel

elements are obtained by integrating the continuous kernel against the basis func-
tions of the interpolation method.

The result of the block averaging procedure is that the kernel values can be
changed somewhat. Figure 1 shows a one-dimensional Gaussian curve with dots at
the integer points, superimposed on a bar graph representing the block average
values. The bar graph gives, in a sense, a more accurate discrete Gaussian convolu-
tion. Further, the (infinite) sum of the averaged values G(i, J) are guaranteed to
sum to one. Interestingly, the infinite sum of the evaluates of the Gaussian G (i,)
also very nearly sum to one, as long as ¢ is larger than about 0.5 pixels. This
occurs because the errors tend to cancel, due to the fact that the Gaussian has a
region of negative curvature, and another region with positive curvature. The first
row of Table 2 gives the sum of the kernel values for different values of o for a
two-dimensional Gaussian kernel. However, the fact that the point evaluates of the
Gaussian very nearly sum to one doesn’t justify their use for Gaussian convolution
— the averaged values G form a better approximation to the continuous theory.

Indeed, assume that the image data is bounded, say |f(x,y)|=M. We have
denoted the convolution using block average kernel values G(z J) by h(i,j). If
point evaluates G (i,j) are used instead, let us denote the result by hp(i,/):

hp(i,J) = X >GU—i",j—j"fG",j") .
il jl
We can then bound the difference:

|h(i,) =hp(i,)| = SSIGG',j") = GG, i) |'M .
i, j!
The bound can be attained, and thus the sum of absolute differences of the kernel
elements,

Page 3

Computing Large-Kernel Convolutions of Images

0.4 —

A
[

0.3 —

0.2 —

014 | \

/ N\

0 - -——-‘—-——c_—-l==‘4 >“'=s__...____._

I I I
-5 0 ’ 5

Figure 1. A one-dimensional Gaussian, with 0=1.0. Dots mark point evaluates of
the Gaussian at each integer. The heights of the bars in the bar graph give the mean
values of the Gaussian in a block of width 1 centered at each integer.

ag
Sum
.50 .60 75 1.0 1.5 2.0 3.0 4.0 5.0

EZG (9))] 1.02897 1.00328 1.00006 1.0 1.0 1.0 1.0 1.0 1.0
ij ,

22 GG, N~ a(i,j) | 0.31213 0.17204 0.09651 | 0.058 | 0.026 | 0.015 | 0.0068 | 0.0038 | 0.0024
ZEAG 5 -1,15203 | -0.12971 | -0.00238 | ~ 0.0 | ~ 0.0 | ~ 0.0 ~ 0.0 ~ 0.0 ~ 0.0
i

SSIAG(L/)-AG(,)| | 3.84728 | 1.86594 | 1.17351 | 0.768 | 0.414 | 0.225 | 0.1039 | 0.0593 | 0.0382

Table 2. The sum of point-evaluate kernel elements, where G (x,y) is a Gaussian in
two variables with standard deviation ¢ and total integral 1.

Page 4

Hummel and Lowe

331660 = GGl ,
i

measures a proportionality factor for the maximum error in using point evaluates.
These values are listed in the second row of Table 2 for various values of o.

The need for averaging the continuous kernel rather than point evaluations is
more critical when Laplacian-of-Gaussian convolutions are attempted. We will
shortly discuss alternate methods of performing these convolutions, but sometimes it
is desired to perform a full image convolution against the analytically calculated ker-
nel. In the case of Laplacian-of-Gaussian convolution, the kernel is given by:!

AG(x,y) =C . [:ff_'tzl’_z_ — 2]3"0”2'*‘)’2)/2"2.

a

Here C is a constant, which if a precise Laplacian-of-Gaussian is desired is equal to
1/(2ma*). Once again, point evaluations of the kernel lead to different values than
block averages. Figure 2 depicts the one-dimensional situation with the Laplacian of
the Gaussian, with o=1.0 . This time, kernel elements should sum to zero. Once
again, the block-averaged kernel elements, (AG)(i,j), are guaranteed to sum to
zero, while the point evaluates AG(i,j) serendipitously very nearly sum to zero, as
long as o is sufficiently large (greater than 1.0 suffices). The third row of entries in
Table 2 gives the values for the infinite sum of kernel elements. The error bound
for using point evaluates of the Laplacian-of-Gaussian as opposed to block averages
can be measured by the sum of absolute differences:

S IAGG,) — AGW,)| .
i
These values are listed in the fourth row of Table 2 for varying values of o. We see

that point evaluates can lead to rather large errors, for example, as high as 10%
relative error for o = 3 pixels.

Analytic evaluation of the averages of the kernels is possible in terms of the
error function erf. For example, block averages of the Gaussian are given by:

— 412 41 B
G(,j) = fi-—l/z fj—1/2 G (x,y)dxdy

1 i+12 | |i=12]] j+12 | | im1/2
4 [erf[\/fo] erf[V2]] '[erf[V2o] °t Vie |V
where erf is the error function associated with the normal distribution, i.e.,

erf(x) = fx(Z/Vw)e"‘zdt. (Erf is a built-in function on most Fortran compilers).
0

Similarly, block averages of the Laplacian-of-Gaussian kernel are given by

"We use the notation “ A ” to denote the Laplacian operator, as is common in mathematical analysis. In
physics, the notation * V2 ” is often used for the Laplacian operator in IR3 (three-dimensional space), as a
shorthand for the divergence of the gradient. The notation is explained by the fact that the gradient of a func-
tion fis generally denoted by Vf, and the divergence of the result is denoted V-Vf. The notation * V2 " has been
borrowed and applied in IR” for more general n by many disciplines.

Page §

Computing Large-Kernel Convolutions of Images

Figure 2. The Laplacian of a Gaussian in one dimension, i.e., the second derivative
of a Gaussian, with ¢=1.0. The point evaluates and mean values at each integer are
shown as in Figure 1.

— i+1/2 j+172
AGGLN =, fj_m AG(x,y)dxdy =

1 . ' .
sl - samun]for[$52) - e[£G22)
L i+1/2 i—1/2
A = 1es Y R _
> [g (G+172) — g'(J 1/2)] [erf[e] erf[T]] ,

where g'(x) = (-—x/\/2fn'c3)e'x2"2°2.

For more general continuous kernels, analytic evaluation may be impossible or

simply too much of a bother. The averaged kernel can then be computed (off-line)
by numerical quadrature methods, using standard numerical integration package
software. Simpson’s method for one-dimensional integration usually suffices for the

kernels under consideration. More sophisticated techniques can also be used.

A separate issue when implementing these convolutions concerns quantization

and truncation of the kernel. In practice, the kernel elements are typically approxi-
mated by rational numbers, so that integer arithmetic may be used. Depending on
the number of bits used to represent the kernel elements, the kernel will be effec-
tively truncated to a finite domain, since elements outside of some radius will be

Page 6

Hummel and Lowe

approximated by zero. Further truncation is also possible. When using these ker-
nels, errors come from two separate sources: from the quantization error due to the
approximation of the kernel elements by rational values, and the truncation error
due to the omission of kernel elements outside of a given radius. The first error is
controlled by the number of bits used in the representation of the kernel elements.
The truncation error is dependent on the radius used for the implementation of the
kernel. For bounded image data, the truncation error is bounded by an amount pro-
portional to the integral of the kernel outside of the truncation radius.

Hildreth notes that the central negative region in AG(x,y) has radius w=V2o,
and then suggests that the Laplacian-of-Gaussian kernel be implemented with a
radius of 4w=5.66a [4]. In Table 3, we show the integrals of the continuous ker-
nels G (x,y) and AG(x,y) to various truncation radii -o. (Actually, the table gives
the integrals of the kernels in a box of size 2to by 2tro). We also give the magni-
tude of the kernel values at the outer radius location. It should be noted that this
table is independent of o. The differences between the integral values over the fin-
ite domain and the integrals over the infinite domain give estimates of the truncation
error. The quantization error is harder to estimate, but can be made small by using
many bits in the representation of the kernel. The magnitude of the kernel at the
truncationi error gives an indication of the minimum number of bits required. For
convolution against a Gaussian, a kernel size out to a radius of 3.5¢ yields an accu-
racy to within .001 times the image data bound, and will require kernel elements
with 12 bits. To achieve a .0001 accuracy, a radius of 4.1c is needed, and kernel
elements will require at least 16 bits. For convolution against the Laplacian-of-
Gaussian kernel, .001 accuracy is achieved with a 4.20 truncation radius, requiring
12 bit kernel elements, while .0001 accuracy yields a 4.80 radius and 16 bits. At the
radius 5.66q, the truncation error for Gaussian convolution is infinitesimal, and the
kernel elements at the truncation radius have magnitude roughly 10~%, so that 32
bits for the kernel elements is not unreasonable. For Laplacian-of-Gaussian

t
Value
1. 2. 3. . 5. 6.
1 1
SO 7 6 (xy)axdy | 0.466065 0.911070 0.994608 0.999873 0.999999 1.00000
I [° AG(x,yyaxay | 0.660764 | -0.412275 | -5.30386e-02 | -2.14115¢-03 | -2.973440-05 | -1.45821e-07
G (10,0) | 9.65324¢-02 | 2.15393e-02 | 1.76805¢-03 | 5.33905e-05 | 5.93115¢-07 | 2.42393¢-09
AG (10,0) -9.65324e-02 | 4.30786e-02 | 1.23764e-02 | 7.47468e-04 | 1.36417¢-05 | 8.24135¢-08

7

Table 3. Values for the integrals of a Gaussian and Laplacian-of-Gaussian in a box

of increasing size. We also give the value of these functions at the truncation loca-
tion nearest the origin.

Page 7

Computing Large-Kernel Convolutions of Images

convolution, a radius of 5.66¢ will give roughly one part in 10° accuracy, and ker-
nel elements with at least 21 bits should be used.

Of course, high accuracy is an issue only if one believes that it is important
that the appropriate kernel (Gaussian or Laplacian-of-Gaussian) be implemented
accurately. For example, using point evaluates for the kernel elements leads to
potentially different results, and thus is not necessarily an accurate implementation.
However, it might happen that for the intended application, the differences are
inconsequential, and the Gaussian or Laplacian-of-Gaussian can be replaced by
more general kernels.

The complexity of pointwise convolutions, without making use of separable
kernels or other decomposition methods (discussed below), is a simple matter. On
a uniprocessor, the convolution of an N by N image with an m by m kernel will take
time O(m2N?), or O(m?) time per pixel. A pipeline machine will frequently have
special-purpose hardware for performing, say, p by ¢ convolutions in one pass
through the data. In this case, O(mz/pq) passes will be needed. Finally, on a bit-
serial mesh-connected computer, m* multiply-accumulates are needed, with m?
shifts of the image data. Each multiply-accumulate takes a fixed amount of time,
depending on the number of bits used to represent the kernel elements and the
number of bits used to store the results. Suppose that the accumulates contain b
bits. Then the whole process is O (m?2b) complexity.

Rather than converting these asymptotic complexities into typical running time
estimates, we defer further calculations until the end of the next section. In that
section, we discuss a couple of computational short-cuts that have a profound effect
on both the asymptotic complexities and the expected running times.

2. Iterated Discrete Convolution

Two computational tricks permit rapid discrete Gaussian convolution. The first
trick, almost always used in practice, takes advantage of the fact that the Gaussian is
a separable, symmetric, kernel. This has the consequence that a two-dimensional
convolution can be performed by iterating two one-dimensional symmetric convolu-
tions. That is, when the kernel K (i,j) is separable, given say by

K(@,)) = k1(i)k20)),

then the convolution can be performed according to the formula

XK= =i = Thk(i=i") | Zk2(G=J)fG",] .

il jl il jl
Thus the horizontal convolution against k, is performed first, and the result is con-
volved against the vertical kernel k1. If the kernel is m by m, then this observation
reduces the complexity from O(m?) per pixel to O(m). For the Gaussian kernel,
both the continuous and discrete versions are separable. Further computational sav-

ings can be realized on a sequential machine by making use of the symmetry of the
kernels. Specifically, the one-dimension convolutions

E;kl(i*i')f(i')

can be implemented as

Page 8

Hummel and Lowe

k1(O)f() + 3 ka(i(fG—i") + fli+i")),

i'=1

since k1(—I)=ky(l). This trick saves a few multiplies, but is generally not helpful
on a mesh-connected parallel architecture. In Tables 4, 5 and 6 we refer to the use
of the symmetry and separability of the kernel as computation Method A.

The second trick applicable to Gaussian convolution makes use of the fact that
the binomial coefficients form a rapid approximation to a normal distribution. It is
well-known that the binomial coefficients, given by

() - oom

approximate a normal distribution

__l.___ex212o-2
Vino
where x = k—n/2, and o = (Vn/2). Binomial coefficients are most easily calcu-
lated using Pascal’s triangle, and lead to the design of an iterated convolution ker-
nel, formed as follows. The initial data is f(i), i=---,-1,0,1, - - -, (in one
dimension), which we set equal to h¢(i). We define hy(i), for N>0, by
hN..l(i"‘1)+2hN...1(i)+hN..1(i+l)

hn(i) =

It follows that

& L (2N
hy(i) = 3 =55 f(i+k).
et 22 +N)
This is a close approximation (for large N) of convolution against the Gaussian with
o = VN/2. This method of Gaussian convolution has the advantage of yielding a

o=1 o=2 o=4
ops | ac sz ops | ac sz ops ac 8Z
Without Methods A or B, 4o cutoff | 162 | 81 (9x9) |'578 | 289 | (17x17) | 2178 | 1089 | (33x33)
Method A, 40 cutoff 28 {20 (9x9) | 52} 36 | (17x17) 100 68 | (33x33)
Method A, 60 cutoff 42 | 28 | (13x13) | 76 | 52 | (25x25) 151] 104 | (51x51)
Method B 12] 16 (5x5) | 48 | 64 | (17x17) | 192 | 256 | (65x65)

Table 4. Serial Random-Access computer model: number of arithmetic operations (ops) and
number of memory accesses (ac) per image pixel point for Gaussian convolution using various
methods of computation for various sizes of Gaussians. The effective size of the 2-D convo-
lution is given in the size (sz) column. Generally, Method B (Binomial coefficients) is useful
only for small o on this model of machine.

Page 9

Computing Large-Kernel Convolutions of Images

finite computation, using simple arithmetic.

In two dimensions, a similar iterative blurring scheme can be devised, formed
from the composition of two one-dimensional blurring steps as given above. Specif-
ically, ho(i,j) is the initial image data, and hy(i,j) is obtained from hy-1(i,j) by
convolution against the three-by-three mask

\ ! 121
16 2 42
121
Once again, Ay(i,j) will approximate a convolution of the initial data f(i,j) against
VN/2

a Gaussian with o= . In Tables 4, 5, 6, we refer to this method of Gaussian
convolution as Method B.

For a serial random access computer (such as a VAX), making use of the
separability of symmetry of the kernel (Method A) results in a large savings in
terms of number of computations, particularly for large o. The iterative approach
(Method B) is only useful for small o, where the approximation to a Gaussian will
not be as good. Table 4 lists computation counts using a serial random-access
machine for different values of o, with computation Method A, with Method B, and
without either method. We have listed arithmetic operation counts separately from
accesses to image memory, since different machines may have radically different
timings for these two kinds of operations. However, we have lumped together mul-
tiplications and additions into the same ‘“‘arithmetic count” figure.

For a pipeline machine, a critical issue is the size of convolutions that can be
performed in a single pass. We assume that addition and scalar multiplication of
two images requires a pass through the entire image, but many systems are capable
of 3 by 3 convolutions or larger in a single frame time. In Table 5, we list numbers
of passes required for Gaussian convolution, considering machines capable of one
by one, three by three, and seven by seven convolutions in a single pass. In all
cases, we assume that accumulative writes are allowed, i.e., that the result of a local
convolution can be summed with an existing image without an additional pass.
We’ve also assumed that scrolling the image data is free, since the shift can usually
be combined with another operation by setting offset registers. When these
assumptions do not hold, the counts for number of passes will increase. Specifi-
cally, if additive writes are not allowed, then operation counts will increase propor-
tionately, since each multiply must be followed by an addition pass. If image scrol-
ling requires a pass (to move the data), then costs are similar to costs for a mesh-
connected computer, treated below, where movement of data incurs communication
costs.

We see that on a pipeline machine, the iterative method (Method B) is espe-
cially useful when three-by-three convolutions are allowed, as long as ¢ is not too
large. If the hardware permits larger single-pass convolutions, a similar iterative
method can be defined where each iteration takes advantage of the full available
convolution size capabilities.

For a mesh-connected parallel computer, the situation is similar to the pipeline
computer case, except that now the number of bits retained in each convolution
makes a difference. Further, there may be large differences between bit operations

Page 10

Hummel and Lowe

o=1|0=2 | o=4

Neither A nor B, 4o cutoff

1x1 81 289 | 1089

3x3 18 64 121

7x7 8 9 25
Method A, 40 cutoff)

1x1 18 34 66

3x3 6 12 22

7x7 4 6 10
Method B

1x1 12 48 192

3x3 2 8 32

7x7 2 8 32

Table 5. Number of passes required on a pipeline machine for convolution by a
Gaussian using various methods of computation. For each method, we list figures
for three different architectures: one capable of only image sums and multiplies, one
capable of single-pass 3 by 3 convolutions, and one capable of 7 by 7 convolutions.

on the processor and communication costs to access a bit on a neighboring proces-
sor. We thus count arithmetic bit operations separate from bit communication
counts in Table 6. We assume that the image data is given with 8 bits of precision.
For Method A, we assume that the convolution is performed with b bits of preci-
sion. For greatest efficiency, the image data is moved among the processors, and
the convolution is accumulated in place. For Method B, we consider both the case
where b bits are used, and where full precision is retained by allowing the integers
to grow as large as needed.

We once again see that Method B, the iterative approach, is less valuable as o
increases. This is because the number of iterations required increases with o2.
However, since the binomial coefficient approximation to a Gaussian used in
Method B is asymptotically accurate as o—, we might well ask whether Method B
has any utility. One answer is that the utility depends upon the architecture. Cer-
tain pipeline machines have multiple stages, and can thus implement multiple itera-
tions rapidly. Accordingly, the range in which the iterative approach is favorable
may well include values of o of interest. A second .answer is addressed in Section
5, where we discuss iterative approaches to handling borders.

3. Difference-of-Gaussians

A number of operations are based on difference-of-Gaussian (DoG) or
Laplacian-of-Gaussian (LLoG) operations. The Marr-Hildreth edge operator is one
such; another is the DOLP [5]. First, it should be noted that the DoG is an

Page 11

Computing Large-Kernel Convolutions of Images

o=1 oc=2 o=4
ops com ops com ops com
Neither A nor B,
4o cutoff 729b | 648 2601b | 2312 9801b 8712
60 cutoff 1521b | 1352 5225b | 5000 23409b | 20808
Method A
4o cutoff 162b 144 306b | 272 594b 528
60 cutoff 234b | 208 450b | 400 918b 816
Method B
b bits precision 8b 8b 32b 32b 128b 128b
Full precision 72 56 672 608 8832 8376

Table 6. Number of bit-serial operations (ops) and neighbor bit communication
accesses (com) required for Gaussian convolutions on a mesh-connected parallel ar-
chitecture machine. It is assumed that the image data is stored as 8 bit numbers, one
per processor, and that the output convolution values will have b bits of precision
(except for Method b, “Full precision” mode). Typically, b will depend on o, but
will generally be at least 16.

approximation to the LoG, in the sense that

AG(xy) = lim =2 (Go,(53) = Gay(x0).
02~0} 0'%—0'%

If oy and o, are very different, then the approximation is not very good. In many
schemes, such as the Burt Laplacian pyramid [6], the effective DoG is formed with
the ratio of o1 and o3 fixed. In fact, Marr and Hildreth suggested a separation
according to (o1/02) = 1.6 . This suggestion is often misinterpreted as a statement
that the LoG is best approximated by a DoG with o1/02=1.6, which is clearly not
true.

Image 2 shows the zero-crossings at a particular scale for the difference-of-
Gaussians applied to the image showed in Image 1, where the ratio of the o’s,
o1/02 = 1.6, while Image 3 shows the zero-crossings using the Laplacian of the
Gaussian using scale ;. For Image 2, we used o1 = 6.4 and o, = 4.0, while the
LoG example in Image 3 is based on o = 4.9. In this example, we find that the
DoG provides slightly better correlation of the zero-crossings with edges and signifi-
cant features in the original image. We might also compare the DoG with an LoG
with a different intermediate value of o, but our experience with such comparisons
is similar to the one shown. Namely, we find that the location and density of zero-
crossings is slightly more stable when a DoG is used.

Page 12

Hummel and Lowe

Image 1. An original image, digitized to 512 by 512 pixels.

Page 13

Computing Large-Kernel Convolutions of Images

Image 2. The zero-crossings of the Difference-of-Gaussian filtered version of the
image in Image 1, where the Gaussians have standard deviation o’s corresponding to
4 pixels and 6.4 pixels.

Page 14

Hummel and Lowe

Image 3. The zero-crossings of the Laplacian-of-Gaussian filtered version of the im-
age in Image 1, where the Gaussian has standard deviation o corresponding to 4.9
pixels.

If a pyramid scheme is desired, then the Burt method is by far the one of
choice. The effective ratio of scales, oy/0q, is equal to 2 in the standard scheme
where pyramid levels decrease in size by a factor of 2 between levels. Other
schemes, however, are possible [2,7]. If a DoG is desired at a fixed maximum
resolution, then for greatest efficiency, the two Gaussian-convolved images should
be computed, and some care should be exercised in computing the difference, smce
numerical precision may be difficult.

If the LoG is desired, despite advantages of the DoG, it can be calculated by
any of the following four methods:

(1) Use the Laplacian-of-Gaussian kernel, averaged in blocks, to convolve
against the data f(i,j), as discussed in the previous section. Note that the
kernel is not separable, so that the resulting convolution will be expensive.

(2) First compute a Laplacian of the image data, using a four-point Laplacian,
ie.,

L)) =fU-LH+fE+L)+fGEj+D+fE]—D=4f 1G,)),
and then Gaussian-blur the result. In this method, numerical precision in

Page 15

Computing Large-Kernel Convolutions of Images

the blurring of L(i,j) is a major concern, since if insufficient bits for the
representation are provided, the result of any substantive amount of blurring
will be zero. :

(3) Compute blurred versions of the data f(i,j) using the functions hn(i,j) as
described before, but using full accuracy by retaining all necessary bits. The
LoG is approximated using Ay +1—hy.

(4) Use the Huertas-Medioni decomposition of the Laplacian-of-Gaussian into
the sum of two separable kernels [8]. Specifically, the decomposition is
given by

AG(x,y) = Ch1(x)-h2(y) + C-ha(x)h1(y),

where
ha(x) = [2-—1-2-]-.9-::2/2«2, ha(y) = e™VH%%,
o

Note that in each of the two separable kernels, one of the two dimensions
uses a Gaussian convolution. The other convolution in each of the two ker-
nels is a second derivative of a Gaussian in one dimension. The decomposi-
tion arises since A(g(x)g(y)) = g'"'(x)g(y) + g(x)g"'(y).

For the examples in Image 2 and 3, we used double-precision floating-point
representations of the image and kernel elements, for maximum accuracy. Despite
the computational advantages, we did not use Methods A nor B, nor any other spe-
cial property of the kernels. We used extremely large kernels to essentially elim-
inate truncation errors. When we used any of the approximation methods or com-
putational speed-ups discussed above on a limited-precision processor, the results of
applying the zero-crossings operation were frequently disconcertingly different.
The difficulty is that the location of the zero-crossings can be extremely sensitive to
small changes in the filtered images. There were always a number of zero-crossings
(with high gradients in the filtered data) that were not affected by the approxima-
tion methods, but many of the zero-crossings belonging to texture edges and weak
edges were considerably changed. :

For the computational costs of these methods, one can refer to the appropriate
cost of Gaussian blurring. Specifically, Laplacian-of-Gaussian convolution by
Method (1) above is equivalent to Gaussian convolution without Method A or B.
The appropriate o cutoff for LoG convolution, however, will be larger than the o -
cutoff for Gaussian convolution. Methods (2) and (3) above are essentially Gaus-
sian convolution, using Methods A and B respectively. Finally, the Huertas-
Medioni decomposition transforms LoG-convolution into the sum of two separable
convolutions, so that the computational times are essentially given by those for
Method A, except that the figures should be doubled and an additional sum of two
images will be required for the output.

4. Zero-crossings

To compute the zero-crossings of a function of two variables, A (i, J), the data
should be thresholded at zero, and border points identified in the resulting binary
image. We mention two possible definitions for a border point. A border point can
be defined as a pixel that contains a pixel of a different binary value among its four

Page 16

Hummel and Lowe

(or eight) neighbors. In this case, edges will be two pixels thick. Alternatively, a
border point can be defined as a “1” pixel with a “0” pixel among its neighbors.
One way of finding border pixels using the second definition, appropriate when fast
three-by-three convolution hardware is available, is to blur the binary image using
the mask with 1’s in the eight neighbors and 9 in the center:

111
19 1y,
111

and then thresholding the result so that values 9 and above, but less than 17, are
identified as border pixels. (Here we have used eight pixel neighborhoods.)

Haralick has suggested that zero-crossings of the second directional derivative,
where the direction of differentiation is the direction of the local gradient [9], will
tend to more accurately locate edges as compared to the Marr-Hildreth edge opera-
tor. It should be noted that this operator also yields closed contours for the zero-
crossings, and can be computed by finding zero-crossings of:

h(x,y) = Pfat2fifyfothy,

where a subscript denotes a partial derivative. The nonlinear second order partial
differential operator on the right hand side is in fact the directional derivative scaled
by the square of the gradient, and is thus defined even when the gradient is zero.
Canny [10] notes that the operator can be formulated as (1/2)Vf-V|Vf|2. We used
a different computation, formulating the partial derivatives by using local three-by-
three convolutions. Specifically we have used:

1'«101 o2
fx~§'-202, fy~'§'0 0 of,
-1 0 1 -1 =21
0 0 0 Ll-ro 1 01 0
0 0 o0 1 0 -1 01 0

The discretized h(i,j) is a sum of products of local convolutions of image data as
given by these (or related) kernels. The image data can be the original image, or an
appropriately blurred version of the image data. Haralick recommends that the par-
tial derivatives of f be computed using the “facet model,” so that the smoothing is
implicit in the representation of the parameters of the local facet for f. Other .
methods of blurring can be used, including Gaussian blur, although this method of
computation does not work well with images that have been substantially blurred by
a Gaussian due to the small magnitude of the local gradient of the blurred image.
In Image 4a, we show the zero-crossings of the second directional derivative, after
the image has been only slightly blurred (0=.7). This should be compared with
zero-crossings of the Laplacian-of-Gaussian of the same image at a comparable scale
(Image 4b).

Whether a DoG, LoG, or second directional derivative is used, the zero-
crossings do not necessarily track the edges accurately. Prominent edges will gen-
erally have a zero-crossing curve associated with them (at some scale of resolution),

Page 17

Computing Large-Kernel Convolutions of Images

but the zero-crossings will tend to wander off of the edges and complete loops for
which the main edge forms only a portion of the loop. Thus it is desired to tag pix-
els identified as a zero-crossing with a measure of the edge strength. One way of
doing this, used frequently in practice, is to measure the slope of the filtered image
at the zero-crossing. Prominent edges usually give rise to zero-crossings for which
the crossing has a strong slope. Thus a measure of importance is given by
|V(AG*f) |(x,y), at points (x,y) where AG*f(x,y) = 0. This idea, for example, is
mentioned in Marr’s book [11]. The slope at a zero-crossing can be computed by
taking a Sobel gradient magnitude of the Laplacian-of-Gaussian filtered image. We
have found that by throwing out zero-crossing points where the Sobel gradient mag-
nitude is below a threshold, the remaining curves form a much more accurate depic-
tion of the edges in the image. Image 5 shows the zero-crossings filtered by the
Sobel gradient, corresponding to the unfiltered zero-crossings shown in Image 3.

Image 4a. The zero-crossings of the second directional derivative, computed in the
direction of the gradient (the Haralick operator). In regions where the gradient is
zero, the operator returns zero, and thus zero-crossings do not occur, since the bord-
er points are defined as pixels that have a positive value with a nonpositive value in
the neighborhood. The original image was slightly blurred by a Gaussian. The ef-
fective o is roughly 0.7 pixels.

Page 18

Hummel and Lowe

Image 4b. The zero-crossings of a Laplacian-of-Gaussian convolution of the image,
taken at approximately the same scale of resolution as Image 4a. We note that the
Laplacian-of-Gaussian tends to introduce a number of extraneous zero-crossings, and
tends to be slightly less accurate near corners.

Page 19

Computing Large-Kernel Convolutions of Images

Image 5. The zero-crossings of Image 3, with a brightness encoding of the Sobel
gradient magnitude of the Laplacian of the Gaussian of the image data at those
zero-crossings.

Here, we have simply displayed the zero-crossings with the intensity proportional to
the magnitude of the Sobel gradient at the zero-crossing. When this image is thres-
holded, the result is curves (which are no longer closed contours) with some of the
weak edges removed.

Alternatively, it is possible to ‘“‘and” the results of finding zero-crossing con-
tours at several successive scales of resolution. Providing the contours are thick-
ened in all but one of the scales before the ‘“and’’-ing, the result again is a collection
of curves, not necessarily closed, but associated with prominent edges. Marr and
Hildreth speculated on methods for combining zero-crossings from multiple chan-
nels (scales), and conjunctive combination was one suggestion [1]. In essence,

Page 20

Hummel and Lowe

“and”’-ing zero-crossings at successive levels demands that Zero-crossings not move
rapidly as the scale changes. Rapid movement is possible only if the gradient at the
zero-crossing is small, although it can happen that zero-crossings with low gradient
also survive “and’’-ing at several levels.

S. Borders

All of the convolutions discussed so far assume that the original data f(x,y) is
defined for (x,y)€IR? and that the grid of points (i,j) is an infinite lattice. Gen-
erally, however, images are defined on a finite rectangular grid of points, or some-
times on an irregularly shaped grid. Suppose that f(i,j) is defined for (i,j)€D,
where D is a domain of grid points. We define the boundary points of the domain
as points in D with at least one of the eight neighbors outside of D, and denote
those points by dD. How should the infinite convolutions be defined?

A usual tactic is to simply extend f (i, /) to be zero for pixels outside of D. For
Gaussian convolution, however, there are alternate approaches, motivated by
regarding Gaussian convolution as a means of solving the Heat equation [12].
Specifically, we can use the formulas for iterative blurring in conjunction with fixed
boundary data:

16hy +1(1,)) = hn(i—1,j =1 +2hy(i=1,/) +hy(i—1,j +1)
+2hn(i,j — 1) +4hn(i, j) +2hn (i,] +1)
+hy(i+1,j =D +2hy(i+1, /) +hy(i+1,j+1)

for (i,j)€D—9D, and hy+1(i,j) = hy(i,j) for (i,j)€dD. Although this yields
something different from Gaussian blurring, the result is an appropriate blurring of
the image data. An analog to difference-of-Gaussian filters can then be computed.
Note that such difference filters, when defined this way, will always give zero
values on the boundary.

Another possibility for handling borders is to, in essence, insist that the normal
derivative at the borders be zero. In terms of the discrete blurring kernels, this
condition can be implemented (for a convex grid of points D, and when the kernel is
no bigger than three-by-three) by the following rule:

Every access to a pixel outside of the grid D should substitute for that pixel the
value of the closest pixel in the grid D.

Thus, for example, suppose that D consists of the rectangular array of pixels
{(i,j) | 0 =i =511, 0 = j = 511}. Then to update a pixel on the left edge, (i,0),
with 1 = i =< 510 (not a corner point), the formula is

hy+1(i,0) = (1/16)- [BhN(i—-l,O) + hy(i—1,1)
+ 6hy(i,0) + 2hpN(i,1) + 3hy(i+1,0) + hN(i+l,1)] .

Similarly, in the upper left corner, the update rule is

hy+1(0,0) = (1/16)- [9hN(O,O) + 3hn(0,1) + 3hy(1,0) + hN(l,I)] .

For such a rectangular grid D, the rule can be seen to be equivalent to first blurring
the rows by the formulas using the masks

Page 21

Computing Large-Kernel Convolutions of Images

1/4 1/2 1/4] at interior points,

0 3/4 1/4] at left edges,

174 3/4 0] at right edges,

and then blurring the resulting columns by similar masks oriented vertically.

This method of updating has the property that the global mean is constant, i.e.,
> 3 hy(i,j) is independent of N. Once again, differences of levels can be formed
i
to ci)nstruct analogs to the DoG and LoG structure. Image 6a shows the finite rec-
tangular image of Image 1 blurred by this method. This blurring can be compared
to the image that results if the original image is blurred on an infinite domain, and
then restricted to the original size (Image 6b).

Acknowledgements

This research was supported by Office of Naval Research Grant N00014-85-K-0077,
Work Unit NR 4007006, and NSF grants DCR-8403300 and DCR-8502009.

Image 6. The left image (Image 6a) is a 128 by 128 image blurred by the iterative
method, keeping the normal derivative at the borders equal to zero. The average in-
tensity value is kept constant by this method. N = 32 stages of blurring were used,
corresponding to ¢ = 4 in a Gaussian convolution. On the right (Image 6b), the
same image is blurred an equivalent amount by the iterative method, assuming that
pixels outside of the image domain have value zero. The average intensity value
drops as the number of blurring iterations increases when using this method. All
difference will occur within 32 pixels of the border.

Page 22

Hummel and Lowe

References

[1] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings Royal Society Lon-
don (B), p. 187 (1980).

[2] P. Burt, “Fast filter transforms for image processing,”” Computer Graphics and Image
Processing 16, p. 20 (1981).

[3]1 A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy
using Laplacian-Gaussian masks,”” IEEE Transactions on Pattern Analysis and Machine
Intelligence 8, pp. 651-664 (1986).

[4] E. C. Hildreth, “Implementation of a theory of edge detection,” MIT Technical
Report AI-TR-579 (April, 1980). Master’s Thesis.

[S] James L. Crowley and Alice C. Parker, ““A representation for shape based on peaks
and ridges in the difference of low-pass transform,” IEEE Transactions on Pattern
Analysis and Machine Intelligence 6, pp. 156-169 (1984).

[6] P. Burt and T. Adelson, “The laplacian pyramid as a compact image code,” IEEE
Trans. on Communications, p. 532 (1983).

[7] Shmuel Peleg, Orna Federbusch, and Robert Hummel, Custom-made pyramids, In
preparation.

[8] I1.S. Chen, A. Huertas, and G. Medioni, ““Very fast convolution with Laplacian-of-
Gaussian masks,” Proceedings of the Conference on Computer Vision and Pattern
Recogntion, pp. 293-298 IEEE, (June, 1986).

[9] R. Haralick, “Digital step edges for zero crossings of second directional derivatives,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, p. 58 (1984).

{10] J. F. Canny, “Finding edges and lines in images,” MIT AI Lab Technical Report 720
(1983).

[11] D. Marr, Vision, W. H. Freeman and Company (1982).

[12] Robert Hummel, “Representations based on zero-crossings in scale-space,” Proceed-

ings of the IEEE Computer Vision and Pattern Recognition Conference, pp. 204-209
(June, 1986). :

Page 23

