€omputing Gaussian Blur

Robert Humme!l and David Lowe

Courant Institute of Mathematical Sciences
New York University
251 Mercer Street, New York, NY 10012 USA

Abstract

Blurring by Gaussian convolution, or by a Laplacian of a
Gaussian kernel, is a common image processing technique used
for edge detection, multiresolution representation, motion
analysis, matching, and other carly visual processing tasks. We
consider mecthods for computing Gaussian convolutions on
discrete grids, and also consider difference-of-Gaussian and
Laplacian-of-Gaussian convolutions. It is important to evaluate
the clements in these large kernels by integration of the
continuous kernel in a region about the corresponding location,
especially if the continuous function globally integrates to zero.
We further consider zero-crossings of filtered images, and look
at mecthods for seclecting significant zero-crossing curves.
Finally, we make some remarks on how to handle borders.

1. Continuous Convolution

Many image processing operations rely on convolutions
against the image intensity data. While many operators arc
local, and can be computed using convolutions with three-by-
three pixel kernels, there are some operators that require much
larger coavolution kernels. For example, the Marr-Hildreth
edge operator [1] requires convoluticn kerncls that can be as
large as fifty by fifty pixels in extent. Most of the large kernel
filters are based on Gaussian blurring of the image data cither
to compute a blurred, smoothed version of the image data, or to
compute a difference-of-Gaussian image, or a Laplacian-of-
Gaussian image.

We will give a number of computational tricks needed for
cfficient, accurate implementation of these kernels and
interpretation of the results. There is little of any novelty in
these tricks, and we use very little theory to justify comparative
claims of effectiveness. Instcad, we are simply concerned with
a compendium of observations in implementing large kernels
based on Gaussians. A much more thorough treatment,
together with many further results, can be found in (2].

A Gaussian convolution is defined, in continuous
variables, by

h(xy) = [Glx=x'.y=y')f(x',y")dx'dy’,
ml

where

1 —(?]
G(x,y)= PRACas Pl el
27a?

.Hcrc S(x,y) is the input image, and A(x,y) is the desired filtered
image. We address the following questions: (1) How can the

computation be discretized? (2) How can the discretized
cquation be computed most efficiently? (3) How should the
borders be handled? That is, since f(x,y) is not nccessarily
defined over all of IR?, the convolution must be converted to a
finite domain.

The neced for discretization is imposed since the input
function is in fact given at a discrete grid of pcints, say f(i,j),
where 1 and j take on integer values. The temptation is to
convert the integral into a sum, replacing the integrand by point
cvaluations at the grid points. This can lead to serious
inaccuracies, however. A particularly nasty consequence is that
the effective (discrete) kernel, given by grid evaluations of the
Gaussian G (x,y), will no longer sum to one.

Instcad, for all convolutions, including Gaussian
convolution, the integration should be discretized by modeling
the continuous f(x,y) from the given discrete data f(i,j). The
casicst method is to assume that f(x,y) is obtained from f(i,;)
by nearest-neighbor interpolation. Then the continuous integral
can be computed from the discrete sum in the form:

h(1) = ZXCU=i"j=j)",
g
where
. i1 j+1n
CG.=J_,, fj_mG(X.y)dxd»
Thus the discrete kernel clements should be obtained from
block averages of the continuous kernel, and not be point

evaluations. In particnlar, the resulting elements will much
more nearly sum to one, in the case of Gaussian convolution.

If bilinear interpolation is used to model f(x,y) instead of
ncarest neighbor interpolation, the formula becomes:

6y = [[6ty (= limxD-(1- U yhdeay.

Higher order interpolants can be treated similarly. In general,
the discrete kernel clements are obtained by integrating the
continuous kernel against the basis functions of the interpolation
method.

The nced for averaging the continuous kernel rather than
point ecvaluations is cven more critical when Laplacian-of-
Gaussian convolutions are attempted. We will shortly discuss
alternate methods of performing these convolutions, but
sometimes it is desired to perform a full image convolution
against the analytically calculated kernel. In the case of
Laplacian-of-Gaussian convolution, the kernel is given by:

2,2
AG(x,y) = C .(L.'%L..z],*(x"y’)/‘la’,
o

Here C is a constant, which if a precise Laplacian-of-Gaussian
is desired is ecqual to 1/(2no*). The continuous kerncl
integrates to zero over IR?, and it is highly desirable that the
discrete kernel also-sum to zero, to avoid any bias in subsequent

—

e e 910

CH2342-4/86/0000/0910801 .00 © 1986 TFFF

e A B B e W

T e .)
zero-crossing operators. Accurate results arc obtained only
when the kernel is block averaged or weighted averaged, by
formulas similar to those given above.

o, e

Analytic evaluation of the averages of the kerncl are
sometimes possible, but often lecad to less fundamental
functions. For example, block averages of the Gaussian arc

given by:
+12 f/nfz dd
Join Jo1n Glxy)dxdy

n
1 +12)_ [1-w2)|. [+12])_ f[g—-uz]
4[”'[\6;] ”‘[x/ﬁ?]] [”f[\/ﬁ N

where crf is the error function associated with thec normal
distribution.

When analytic evaluation is impossible, or simply too
much of a bother, the averaged kernel can computed (off-line)
by numerical quadrature methods, using standard numerical
integration package software. Simpson’s mecthod for one-
dimensional integration usually suffices for the kernels under
consideration. More sophisticated techniques can be used.

2. Iterated Discrete Convolution

Two computational tricks permit rapid discrete Gaussian
convolution. The first trick, almost always used in practice,
takes advantage of the fact that the Gaussian is a separable
kernel. This has the consequence that a two-dimensional
convolution can be performed by iterating two one-dimensional
convolutions. That is, when the kernel K(i,j) is separable,
given say by

K(ij) = k(i) k,0),

then the convolution can be performed according to the formula

K== = Zkl(i-l')[Ekz(j—r)f(i'.f')].
[it J
Thus first the horizontal convolution against k, is performed
first, and the result is convolved against the vertical kernel k.
If the kernel is m by n, then this observation reduces the
complexity from O(m-n) to O(m+n). For the Gaussian kernel,
both the continuous and discrete versions are separable.

The sccond trick applicable to Gaussian convoiution makes
use of the fact that the binomial coefficients form a rapid
approximation to a normal distribution. It is well-known that
the binomial coefficients, given by

G) -+
’ k (n=k) k!
approximate a normal distribution
1 REYE]
e T,
Vino

where x = k—n/2, and o = (Vn/2). Binomial cocfficients are
most casily calculated using Pascal’s triangle, and lead to the
design of an iterated convolution kernel, formed as follows.
The initial data is f(i), i= - - - ,—1,0,1, - - -, (one dimension),
which we sct equal to hy(i). We define hy(i), for N>0, by
hy_(i=1)+2hy_ (i) +hy_ (i+1)
hy(i) = 3 .

It follows that

k=N
. 1 2N :
hy(i) = 2 +N]/('+k)‘
This is a close approximation (for large N) of convolution
against the Gaussian with o = V/N/2Z.
This method of Gaussian convolution has the advantage of
yiclding a finite computation, using simple arithmetic. Without

91l

the iterative method, the full convolution has to be performed
using floating point or large-field fixed point arithmetic, and
must be truncated at some arbitrary width. However, the
asymptotics of the iterative approach arec not as good, since
roughly 3-N opcrations per pixel are required, as compared to a
convolution operation of O(VN) per pixel if the full
convolution truncated to some fixed multiple of o is performed.

Theoretically, if f(i) is integer data represented by a fixed-
number of bits, then cach successive computation of hy(i)
should require two additional bits for accurate representation.
However, as long as nearest-ncighbor rounding is used, the
errors are not too great when the iterative approach is used with
fixed precision arithmetic at all levels of N.

3. Ditference-of-Gaussians

A number of operations are based on difference-of-
Gaussian (DoG) or Laplacian-of-Gaussian (L.oG) operations.
The Marr-Hildreth edge operator is one such; another is the
DOLP [3]. First, it should be noted that the DoG is an
approximation to the LoG, in the sensc that
. 172
AG(x,y) = lim —_ (Gu (x.y)—G, (x,y)].

a,-0, (,?—Ui 1 ?

If o, and o, are very different, then the approximation is not
very good. In many schemes, such as the Burt Laplacian
pyramid [4], the effective DoG is formed with the ratio of a,
and o, fixed. In fact, Marr and Hildreth suggested a separation
according to (o/0,) = 1.6

The fact is that for zcro-crossings and many other
applications, the DoG is better than the LoG. If a pyramid
scheme is desired, then the Burt method is by far the one of
choice. However, if a DoG is desired at a fixed resolution, then
for maximum efficiency, the two Gaussian-convolved images
should be computed, and some care should be excrcised in
computing the difference, since numerical precision may be
difficult.

If the LoG is desired, despite the advantages of the DoG,
it can be calculated by any of the following four methods:

(1) Use the Laplacian-of-Gaussian kernel, averaged in. blocks,
to convolve against the data f(i,j). Note that the kernel is nat
separable, so that the resulting convolution will be expensive.

(2) First compute a Laplacian of the image data, using a four-
point Laplacian, i.c.,

LGg) = fG=10)+ i+ L)+ f(ij+ 1)+ £ = 1) =47 (i)),
and then Gaussian-blur the result. !a this method, numerical
precision in the blurring of L(i,j) is a major concern, since if
insufficient bits for the representation are provided, the result
of blurring will quickly become zero
(3) Compute blurred versions of the data S(i.j) using the
functions hy(i,j) as described before, but using full accuracy by
retaining all nccessary bits. The LoG is approximated using
hyoy—hy.

(4) Use the Hucrtas-Medioni decomposition of the Laplacian-

of-Gaussian into the sum of two separable kernels [5].
Specifically, the decomposition is given by

AG(xy) = ¢ 'hx(x)'hz()’) + C hy(x)-hy(y),

where

)

hy(x) = [1— £]ﬁ hy(x) = e,
20¢

Note that in cach of the two scparable kernels, one of the two
dimensions uses a Gaussian convolution.

4. Zero-crossings

To compute the zero crossings of a two-dimcensional
function h(i,j), the image should be thresholded at zero, and
border points identified in the resulting binary image. A border
point can cither be defined as a pixel that contains a pixel of a
diffcrent binary value among its four (or cight) neighbors (in
which case edges will be two pixels thick), or a “1"" pixcl with a
“0" pixel among its eight ncighbors. One way of finding
border pixels using the sccond definition, appropriate when fast
three-by-three convolution hardware is available, is to blur the
binary image using the mask with 1's in the ecight neighbors and
Y in the center, and then thresholding the result so that values 9
and above, but less than 17, are identified as border pixcls.

Zcro-crossings of the second directional derivative, where
the direction of differentiation is the dircction of the local
gradient [6], has been suggested as a possible alternative for the
Marr-Hildreth edge operator. It should bc noted that this
opcrator also yields closed contours for the zero-crossings, and
can be computed by finding zero-crossings of:

W y) = Lt 2 S f ot f
where a subscript denotes a partial derivative.
can be calculated using local

The the discretized h(i,f) is a sum of products of

the

The partial
derivatives three-by-three
convolutions,
local convolutions of the image data. Haralick reccommends that
the partial derivatives of f be computed using the ‘‘facet
model,” although f could represent a smoothed version of the
image data, smoothed by a Gaussian blur or some other
operation.

Even when a DoG is used, the zero-crossings do not
necessarily track the edges accuratcly. Prominent edges will
generally have a zero-crossing curve associated with them (at
some scale of resolution), but the zero-crossings will tend to
wander off of the edges, and complete loops for which the main
cdge forms only a portion of the loop. Thus it is desired to tag
pixels identified as a zero-crossing by a strength. Onc way of
doing this, uscd frequently in practice, is to measure the slope
of the filtered image at the zcro-crossing. Prominent cdges
usually give rise tv zere crossings for which the crossing has a
strong slope. Thus a measure of importance is given by
IC(AG=f)|(x.y), at points (x,y) where AG=f(x,y) = 0. This can
be computed by taking a Sobel gradient magnitude of the
Laplacian-of-Gaussian filtered image, and cvaluating the result
at the zero-crossings. We have found that by throwing out
zero-crossing noints where the Sobel gradient magnitude s
below a threshold, the remaining curves form a much more
accurate depiction of the edges in the image. Of course,
thresholding the results in this manner means that the resulting
curves no longer form closed contours.

Alternatively, it is possible to *‘and’’ the results of finding
zero-crossing contours at scveral successive scales of resolution.
Providing the contours are thickened in all but one of the scales
before the *‘and-ing,” the result again is a collection of curves,
not nccessarily closed, but associated with prominent cdges.
This technique is essentially equivalent to the Sobel magnitude
of the filtered data discussed above.

Finally, it is possible to combine a zcro-crossing operator
with a Sobel edge operator applied to the original image data,
by simply *‘and-ing” the results of the zero-crossing operator
with a thresholded Sobel magnitude image. The results again
are similar to the techniques mentioned above.

912

5. Borders

All of the convolutions discussed so far assumec that the
original data f(x,y) is defined for (x,y) € R? and that the grid of
points (i,j) is an infinite lattice. Generally, however, images
are defined on a finite rectangular grid of points, or sometimes
on an irregularly shaped grid. Suppose that f({,5) is defined for
(i,j)€D, where D is a domain of grid points. We define the
boundary points of the domain as points in D with at least one
of the eight neighbors outside of D, and denote those points by
aD . How should the infinite convolutions be defined?

A usual tactic is to simply extend f(i,j) to be zero for
pixels outside of P . For Gaussian convolution, however, there
is a better approach, motivated by rcgarding Gaussian
convolution as a mecans of solving the Heat equation [7].
Specifically, we use the formulas for iterative blurring:

16hy (1) = hy(i=1 =)+ 2hu(i= 1)+ hy(i=1,j+1)
+2h0(ij— 1)+4h,\,(i,j)+2h~(i,j+ 1)
+hy(i+1,j— 1)+ 2h,(i+1,j)+hy(i+1,j+1)

for (i,j)€MaD, and ko, (i,j) = hy(i.j) for (i,j)€ap.
Although this yiclds somcthing different than Gaussian blurring,
the result is an appropriate blurring of the image data.
Difference-of-Gaussian filters can then be computed. Note that
the DOG filters, when defined this way, will always give zero
values on the boundary.

Acknowledgements

This rescarch was supported by Office of Naval Research Grant
N00014-85-K-0077 and NSF grants DCR-8403300 and DCR-
8502009.

References

[1] D. Marr and E. Hildreth, “Theory of edge detection,”
Proceedings Royal Society London (B), p. 187 (1980).

(2] P. Burt, “Fast filter transforms for image processing,”’
Computer Graphics and Image Processing 16, p. 20

(1981).

[3] J. Crowley, “A representation for visual information,”
CMU Robotics Institute, Ph.D. Thesis (1982).

(4] P. Burt and T. Adclson, “The laplacian pyramid as a
compact image code,” IEEE Trans. on Communications,
p. 532 (1983).

[S] J. S. Chen, A. Huertas, and G. Medioni, “Very fast
convolution with Laplacian-of-Gaussian masks,”’

Proceedings of the Conference on Computer Vision and
Pattern Recogntion, pp. 293-298 IEEE, (June, 1986).

[6] R. Haralick, “Digital step edges for zero crossings of
sccond directional derivatives,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, p. 58 (1984).

[7] Robert Hummel, *Representations based on zero-
crossings in sczle-space,” Proceedings of the IEEE

Computer Vision and Pattern Recognition Conference, pp.
204-209 (June, 1986).

