SR o e

NGRS

From Pixels to Features, J.C. Simon (ed.)
O Elsevier Science Publishers B.V. (North-Holland), 1989 91

Computational Considerations in Convolution and Feature-extraction in Images

Robert Hummel and David Lowe'

Courant Institute of Mathematical Sciences
New York University
251 Mercer Street, New York, NY 10012 USA

Blurring by Gaussian convolution, or by a Laplacian of a Gaussian kernel, is a common image
2 processing technique used for edge detection, multiresolution represeptation, motion analysis,
matching, and other early visual processing tasks. We consider methods for computing Gaus-
sian convolutions on discrete grids, and also consider differcnce-of-Gaussian and Laplacian-
of-Gaussian convolutions. To properly approximate the continuous theory, it is important to
evaluate the elements in thesc large kemels by integration of the continuous kernel in a region
about the corresponding location. We further consider zero-crossings of filtered images, and
look at methods for selecting significant zero-crossing curves. Finally, we discuss how to han-
dle borders. We note difficulties and instabilities in dealing with zero-crossings, and discuss
bricfly ways to deal with these problems.

1. Continuous Convolution

Many image processing operations rely on convolutions against the image intensity data.
While many operators are local, and can be computed using convolutions with three-by-three pixel
kernels, there are some operators that require much larger convolution kernels. For example, the
Marr-Hildreth edge operator [1] requires convolution kernels that are sometimes as large as fifty
by fifty pixels in extent. Most of the large kernel filters are based on Gaussian blurring of the
image data either to compute a blurred, smoothed version of the image data, or to compute a
difference-of-Gaussian image, or a Laplacian-of-Gaussian image.

We will give a number of computational techniques needed for efficient, accurate digital
implementation of these kernels and interpretation of the results. Many of the computational
methods discussed here are well-known, and we are mainly concerned with bringing together a
compendium of observations in implementing large kernels based on Gaussians. A treatment of
large kernel convolutions, together with many further results, can be found in [2]. An article by
Huertas and Medioni [3] contains many relevant suggestions for implementation of the types of
kernels discussed here, and the Grimson and Hildreth discussion [4] of Haralick’s paper on the
second directional derivative [5] gives some details of their implementations.

A Gaussian convolution is defined; in two continuous variables, by
hoy)= [ G x—=x’,y—y")f(x’,y")dx"dy’,
]RZ

where G (x,y)=(1/2nc2)e =" *Y"Y28"  Here £ (x,y) is the input image, and h(x,y) is the desired
filtered image.

The need for discretization is imposed since the input function is in fact given at a discrete
grid of points, say f (i,j), where i and j take on integer values. The temptation is to convert the
integral into a sum, replacing the integrand by point evaluations at the grid points, i.e.,

"The second author is now with the Computer Science Dept., University of British Columbia, Vancouver, B.C.
VOT 1WS5, Canada.




92 R. Hummel, D. Lowe

h(i,j) = TEG Ui j=j) ")
‘-I jI

This can lead to inaccuracies, however.

Instead, for all convolutions, including Gaussian convolution, the integration should be
discretized by modeling the continuous f (x,y) from the given discrete data f (i,j). The easiest
method is to assume that f (x,y) is obtained from f (i,j) by nearest-neighbor interpolation. Then
the continuous integral can be computed from the discrete sum in the form:

h(i,j) = $XG (i~i’, j=jN G, 77,
"I jl

where

e oo [i+12 pj+1r2
Gap=f,; [, GyIaxdy.

Thus the discrete kernel elements should be obtained from block averages of the continuous ker-
nel, and not by point evaluations.

If bilinear interpolation is used to model f (x,y) instead of nearest neighbor interpolation, the
formula becomes:

-1 =1
Higher order interpolants can be treated similarly. In general, the discrete kernel elements are

obtained by integrating the continuous kernel against the basis functions of the interpolation
method.

The result of the block averaging procedure is that the kernel values can be changed some-
what. Figure 1 shows a one-dimensional Gaussian curve with dots at the integer points, superim-
posed on a bar graph representing the block average values. The bar graph gives, in a sense, a
more accurate discrete Gaussian convolution. Further, the (infinite) sum of the averaged values
G(i,j) are guaranteed to sum to one. Interestingly, the infinite sumn of the evaluates of the Gaus-
sian G (i,/) also very nearly sum to one, as long as © is larger than about 0.5 pixels. This occurs
because the errors tend to cancel, due to the fact that the Gaussian has a region of negative curva-
ture, and another region with positive curvature. The first row of Table 1 gives the sum of the ker-
nel values for different values of ¢ for a two-dimensional Gaussian kernel. However, the fact that
the point evaluates of the Gaussian very nearly sum to one doesn’t justify their use for Gaussian

G, j)= 1[““ );j+lG(x,y)~(l—li—x 1)-(1=1 j=y |)dxdy.

0.4 — o~

0.3 4

0.1+
T T I
-5 0 5

Figure 1. A one-dimensional Gaussian, with 0=1.0. Dots mark point evaluates of the Gaussian at
each integer. The heights of the bars in the bar graph give the mean values of the Gaussian in a block
of width 1 centered at each integer.

U ———

i B

Tahh
stand:

convole

Tre
volutic:
instead,

We car

The bo
factor o~
of Tub

1
when i
exarmyii:

filtered

Here
Once .
depicts *
kernel «
are guan
to zero.
Table |
evaluan
of abs .
Table
exampi-.

the no
dive
b)‘ N Joaiy

more gen




ould be
©oeasiest
o Then

"us Ker-

son, the

Lents are
“raolation

wid some-
saperim-
wense, a
{values
ne Gaus-
L OCCUTS
Coourva-
the ker-
Jact that
‘aussian

Tan at
z block

Convolution and Feature-Extraction in [mages 93

o
50 60 75 1.0 1.5 20 3.0 4.0 5.0
IY GG 1.02897 | 1.00328 | 1.00006 1.0 1.0 1.0 1.0 1.0 10
IIIGHC G 0.31213 | 0.17204 | 0.09651 | 0.058 | 0.026 | 0.015 | 0.0068 | 7.0038 | 0.0024
I3 AGG.H) -1.15203 | 0.12971 | 000238 | ~00 | ~00 | ~00| ~00| -00| ~00
Y IAG(Lj)~AG (i, /)1 | 3.84728 | 1.86594 | 1.17351 | 0.768 | 0.414 | 0225 | 0.1039 | 0.0593 | 0.0382

Table 1. The sum of point-evaluate kernel clements, where G (x,y) is a Gaussian in two variables with
standard deviation ¢ and total integral 1.

convolution — the averaged values G form a better approximation to the continuous theory.

Indeed, assume that the image data is bounded, say |f (x,y) <M. We have denoted the con-

volution using block average kernel values G(i,j) by h(i,j). If point evaluates G (i,/) are used
instead, let us denote the result by Ap (i, j):

hp(i,)) =2 3G U=, j=j"fG’J") .
"I jl
We can then bound the difference:

Lh(i, )=hp(, )| S TTIGGEj) = GG, j) 1M .
i’ j/

The bound can be attained, and thus the sum ¥} 1G(,J) -G (i,j)!, measures a proportionality
factor for the maximum error in using point evaluates. These values are listed in the second row
of Table 1 for various values of ©.

The need for averaging the continuous kemel rather than point evaluations is more critical
when Laplacian-of-Gaussian convolutions are attempted. Accuracy is often very important; for
example, the locations of zero-crossings can depend critically on small changes in values of the

filtered image. In the case of Laplacian-of-Gaussian convolution, the kernel is given by:2

AG(ry)=C | X2 ol p=ereyhiact,

o?

Here C is a constant, which if a precise Laplacian-of-Gaussian is desired is equal to 1/2no*).
Once again, point evaluations of the kernel lead to different values than block averages. Figure 2
depicts the one-dimensional situation with the Laplacian of the Gaussian, with 6=1.0 . This time,
kernel elements should sum to zero. Once again, the block-averaged kernel elements, (AG)(, ),
are guaranteed to sum to zero, while the point evaluates AG (i, /) serendipitously very nearly sum
to zero, as long as ¢ is sufficiently large (greater than 1.0 suffices). The third row of entries in
Table 1 gives the values for the infinite sum of kernel elements. The error bound for using point
evaluates of the Laplacian-of-Gaussian as opposed to block averages can be measured by the sum
of absolute differences: Y3 1AG(i, /) — AG(i,j)| . These values are listed in the fourth row of
Table 1 for varying values of 6. We see that point evaluates can lead to rather large errors, for
example, 70% relative errors at ¢ = 1.0 pixels, and remaining as high as 10% relative error for

o = 3 pixels. .
r

2We usc the notation *“ A *’ 1o denote the Laplacian operator, as is common in mathematical analysis. In physics,
the notation ** V2 *’ is often used for the Laplacian operator in R3 (three-dimensional space), as a shorthand for the
divergence of the gradient. The notation is explained by the fact that the gradient of a function f is generally denoted
by Vf, and the divergence of the result is denoted V-Vf. The notation ** V?2 "’ has been borrowed and applied in R” for
more general n by many disciplines.




94 R. Hummel, D. Lowe
//“ /'\\
= \ | by

4

Figure 2. The Laplacian of a Gaussian in one dimension, i.e., the second derivative of a Gaussian,
with 0=1.0. The point cvaluates and mean values at each integer are shown as in Figure 1.

We conclude that the use of averaged kernel elements as opposed to point evaluates is impor-
tant, especially for the Laplacian-of-Gaussian kernel.

Analytic evaluation of the averages of the kernels is possible in terms of the error function
erf. For example, block averages of the Gaussian are given by:

_G—(i,j) - Ii+1/2 j“/zG(x,y)dxdy -

12 2

1 erf i+1/2 —erf i-1/2 1. orf Jj+1/2 —erf j=1/2 ’

4 2o V2o 2o 2o
where erf is thg error function associated with the normal distribution, i.e.,
erf(x) =J”‘(2/\ﬁ€ Ye™"dt. (Erf is a built-in function on most Fortran compilers). Similarly, block

. . 1

J+1/2 —erf j=1/2 l

2o V2o ||
+ %[g'(jH/Z) —-g'(j~1/2)]

o 2] Lol
e [ o e o
where g’(x) = (=x/\ZR 03 )e =/ 2"

For more general continuous kernels, analytic evaluation may be impossible or simply too
much of a bother. The averaged kernel can then be computed (off-line) by numerical quadrature
methods, using standard numerical integration package software. Simpson’s method for one-
dimensional integration usually suffices for the kernels under consideration.

A separate issue when implementing these convolutions concerns quantization and truncation
of the kernel. In practice, the kernel elements are typically approximated by rational numbers, so
that integer arithmetic may be used. Depending on the number of bits used to represent the kernel
elements, the kernel will be effectively truncated to a finite domain, since elements outside of
some radius will be approximated by zero. Further truncation is also possible. When using these
kernels, errors come from two separate sources: from the quantization error due to the approxima-
tion of the kernel elements by rational values, and the truncation error due to the omission of ker-
nel elements outside of a given radius. The first error is controlled by the number of bits used in
the representation of the kernel elements. The truncation error is dependent on the radius used for

0
averages of the Laplacian-of-Gaussian kernel are given by

erf

e o [iH12 (412 1], e
AG(:,/)-_[_HZ -‘;'-1/2 AG (x,y)dxdy = 5 [g (i+1/2)-g (;—1/2)]

o chmyt v o

the implen
amount pr

Hildre
gests that ¢
Figure 3a. -
side of the *
of size 2ro
independer
location 7«
ing from
convolutic:
partin 10

Quu
kernel elo:
convolut:
the repres<

Figure !
sian ke
200, wh
kernets

Figur:
specihc
Tocatioe
Gaussii




Convolution and IFeature-Extraction in Images 95

the implementation of the kernel. For bounded image data, the truncation error is bounded by an
amount proportional to the integral of the kernel outside of the truncation radius.

Hildreth notes that the central negative region in AG(x,y) has radius w=y2 o, and then sug-
gests that the Laplacian-of-Gaussian kernel be implemented with a radius of 4w=5.66G [6]. In
Figure 3a, we plot the values of the integrals of the continuous kernels G (x,y) and AG (x,y) out-
side of the truncation radii r-. (Actually, the table gives the integrals of the kernels outside a box
of size 2rc by 2:0). Note that the y-axis is logarithmic. It should also be noted that these plots are
independent of o (the function G (x,y) depends on G). The truncation error drops as the truncation
location ¢-0 is increased. We see that for Gaussian convolution, the truncation errdr is less, rang-
ing from roughly 10% at 20 down to less than one part in 107 at 5.60. Laplacian-of-Gaussian
convolution has larger truncation errors, (the dashed curve), with roughly 5% error at 36, and one
part in 10% accuracy at 5.66.

Quantization error is a consequence of representing the kernel elements imprecisely. If each
kernel element is accurate to with g, and the image data is bounded by M, then each term in the
convolution can theoretically contribute Me in error. In practice, however, quantization errors in
the representation of the kernel values tend not to accumulate, so that we may assume that the total

0.1}

0.01}--
0.001 -
0.0001
le-05}--
1e-06{--
1e-07)--

t, for a truncation radius to

Figure 3a. Truncation errors due to clipping of the kernel within a box, for the block averaged Gaus-
sian kernel (solid curve) and the Laplacian-of-Gaussian (dashed curve). The size of the box is 2¢-c by
2t-0, where 1 is the abcissa value. The values plotted represent the absolute value of the integral of the
kermel outside the box.

Number
of bits

t, for a truncation radius rc

Figure 3b. The number of bits required to represent kemel elements at the extreme points of a
specified radial cutoff. The solid curve gives the number of bits nceded so that the effective truncation
location of the Gaussian is at a radius of ¢-0, while the dashed curve is the same for the Laplacian-of-
Gaussian kemel.




96 R. Hummel, D. Lowe

error due to quantization is of order O (Me), independent of the size of the kernel. The accuracy €
is usually determmed by the number of bits b used to represent fixed-point versions of the kernel
elements: €=27°. There is also a relationship between the kernel truncation size and €. A max-
imum truncauon radius is determined by €, since once the kernel decays below &, the kemel is
effectively set to zero. Put another way, for a given truncation radius, a minimum number of bits
are required to represent the kernel elements to that radius, and more bits may be used at the
expense of some computation costs.

In Figure 3b, we assume that the truncation radius is set, and that € is thereby chosen as the
smallest kernel element. We then plot the number of bits required to represent the smallest kernel
element, for both the Gaussian kernel (solid line) and the Laplacian-of-Gaussian (dotted). We see,
for example, that roughly 25 bits of precision suffices for both kernels at a radius of 5.66. This
strategy, setting the number of bits so that the quantization of kernel elements effects the trunca-

tion at the desired radius, seems to be a sensible method for balancing quantization and truncation
error with computational effort.

Of course, high accuracy is an issue only if one believes that it is important that the appropri-
ate kernel (Gaussian or Laplacian-of-Gaussian) be implemented accurately. For example, using
point evaluates for the kernel elements leads to potentially different results, and thus is not neces-
sarily an accurate implementation. However, it might happen that for the intended application, the
differences are inconsequential, and the Gaussian or Laplacian-of-Gaussian can be replaced by
less accurate kernels or more general kernels. We reiterate that the determination of locations of
zero-crossings is an application that does require high accuracy.

In order to implement Gaussian convolution efficiently, two computational tricks can be
used. One is to make use of the fact that the Gaussian kernel is separable, and to thus perform the
convolution first in one direction, and then in the orthogonal direction. It should be noted that the
integrated Gaussian kernels, given above, are also separable. Making use of the separability of the
Gaussian kernel does not compromise the accuracy of the calculation. A second trick that is espe-
cially important with certain pipeline architectures is that the Gaussian may be approximated by
the iterated convolution against a local discrete kernel. In one dimension, if a discrete signal f (i)
is iteratively convolved against the three tap kernel [ 1/4 1/2 1/4 ] N times, then the result is the
same as the convolution

~_ N 1 (o .
hN(l)—kEN;N[k+N]f(l+k).

This is an approximation to convolution against a Gaussian with o =+N/2. The approximation
improves as N increases. In two dimensions, the iterated convolution, performed N times, against
the three-by-three mask

121

16 242

121
yields an approximation to the two-dimensional convolution against a Gaussian with 6 =VN/2.

2. Difference-of-Gaussians

A number of operations are based on difference-of-Gaussian (DoG) or Laplacian-of-Gaussian
(LoG) operations. The Marr-Hildreth edge operator is one such; another is the DOLP [7] First, it
should be noted that the DoG is an approximation to the LoG, in the sense that

AG(y) = lim -—IQ—[GG, (x,y)—Go,(x,y)]
00, O 1—02

If o) and o, are very different, then the approximation is not very good. On the other hand, if 01
and o, are very close, implementing the difference quotient may well lead to numerical precision
problems. In many schemes, such as the Burt Laplacian pyramid [8], the effective DoG is formed
with the ratio of 6 and o, fixed. In fact, Marr and Hildreth suggested a separation according to
(01/02)=1.6 . This suggestion is often misinterpreted as a statement that the LoG is best
approximated by a DoG with 6,/0,=1.6, which is clearly not true.




Convolution and Feature-Extraction in Images 97

Image 2 shows the zero-crossings for the difference-of-Gaussians applied to the image
showed in Image 1, where the ratio of the 6’s, 0,/0; = 1.6, while Image 3 shows the zero-
crossings using the Laplacian of the Gaussian. For Image 2, we used 6; = 6.4 and 0, = 4.0, while
the LoG example in Image 3 is based on 6 =4.9. In this example, we find that the DoG provides
slightly better correlation of the zero-crossings with edges and significant features in the original
image. We might also compare the DoG with an LoG with a different intermediate value of o, but
our experience with such comparisons is similar to the one shown. Namely, we find that the loca-
tion and density of zero-crossings is slightly more stable when a DoG is used.

If a pyramid scheme is desired, then the Burt method is generally the one of choice. The
effective ratio of scales, 6,/Gy, is equal to 2 in the standard scheme where pyramid levels
decrease in size by a factor of 2 between levels. Other schemes, however, are possible [2,9]. Ifa
DoG is desired at a fixed maximum resolution, then for greatest efficiency, the two Gaussian-
convolved images should be computed, and some care should be exercised in computing the
difference, since numerical precision may be difficult.

If the LoG is desired, despite advantages of the DoG, it can be calculated by any of the fol-
lowing four methods:

(1) Use the Laplacian-of-Gaussian kernel, averaged in blocks, to convolve against the data f (i,)),
as discussed in the previous section. Note that the kernel is not separable, so that the resulting
convolution will be expensive.

(2) First compute a Laplacian of the image data, using a four-point Laplacian, i.e.,

LG, J)=f =1 3f GHLiyf G j+D+f G j-1)-4f (.)),
and then Gaussian-blur the result. In this method, numerical precision in the blurring of L (i,j) is a
major concern, since if insufficient bits for the representation are provided, the result of any sub-
stantive amount of blurring will be zero.
(3) Compute blurred versions Ay of the data f (i, /) using Nth iterated convolutions against a local
kernel, but using full accuracy by retaining all necessary bits. The LoG is approximated using
hNn+1—hN.
(4) Use the Huertas-Medioni decomposition of the Laplacian-of-Gaussian into the sum of two
separable kernels [10]. Specifically, the decomposition is given by

AG(x,y)=C h1(x)ha(0) + C-ha(x)h1(¥),
where

@%M H ;{j.

{
H

R
N000E

Tmage 1 and 2. An original image, and the zero-crossings of the Difference-of-Gaussian filtered ver-
sion of the image in Image 1, where the Gaussians have standard deviation 6's corresponding to 4 pix-
els and 6.4 pixels.




L Lok s F ve,{..;/_f"e‘.‘hvﬂ"“ <

98 R. Hummel, D. Lowe

2
hi(o) = [fﬂ"—l] € () = e,

Note that in each of the two separable kernels, one of the two dimensions uses a Gaussian convo-
lution. The other convolution in each of the two kernels is a second derivative of a Gaussian in
one dimension. The decomposition arises since A(g(x)g(y)) = g”7(x)g () + g(x)g” ().

For the examples in Image 2 and 3, we used double-precision floating-point representations
of the image and kernel elements, for maximum accuracy. We used extremely large kemnels to
essentially eliminate truncation errors. When we used any of the approximation methods or com-
putational tricks discussed above on a limited-precision processor, the results of applying the
zero-crossing operation were frequently disconcertingly different. The difficulty is that the loca-
tion of the zero-crossings can be extremely sensitive to small changes in the filtered images.
There were always a number of zero-crossings (with high gradients in the filtered data) that were
not affected by the approximation methods, but many of the zero-crossings belonging to texture
edges and weak edges were considerably changed.

In performing the separable convolutions in the Huertas-Medioni decompositions of the LoG,

one should use kernel elements obtained from block averages, as discussed in Section 1. The
block averages have analytical expressions, namely:

i+1/2
| mGdx = g% +1/2) - g%i-1/2),,
i-1/2
where g’(x) = —xe ™ /29", and
i+1/2
1 i+1/2 i-1/2
hy(x)dx = —| erf —erf -
i-’1{/2 2{ { \D—G] \/2_0']]

3. Zero-crossings

To compute the zero-crossings of a function of tv.o variables, 4 (i, ), the data should be thres-
holded at zero, and border points identified in the resulting binary image. There have been some
attempts at obtaining subpixel accuracy in the determination of zero crossings; in this case we can
view the situation as the same, with a high-resolution interpolated image obtained from the filtered
data. We mention two possible definitions for a border point. A border point can be defined as a
pixel that contains a pixel of a different binary value among its four (or eight) neighbors. In this
case, edges will be two pixels thick. Alternatively, a border point can be defined as a *“1”” pixel
with a “‘0”’ pixel among its neighbors. One way of finding border pixels using the second
definition, appropriate when fast three-by-three convolution hardware is available, is to blur the

Image 3. The zero-crossings of the Laplacian-of-Gaussian filtered version of the image in Image 1,
where the Gaussian has standard deviation 6 corresponding to 4.9 pixels.




Convolution and Feature-Extraction in Images 99

binary image using the mask with 1’s in the eight neighbors and 9 in the center, and then thres-
holding the result so that values 9 and above, but less than 17, are identified as border pixels.
(Here we have used eight pixel neighborhoods.)

Haralick has suggested that zero-crossings of the second directional derivative, where the
direction of differentiation is the direction of the local gradient [5], will tend to more accurately
locate edges as compared to the Marr-Hildreth edge operator. It should be noted that this operator
also yields closed contours for the zero-crossings, and can be computed by finding zero-crossings
of:

R(Y) = e fat2fcfy fyt oy

where a subscript denotes a partial derivative. The nonlinear second order partial differential
operator on the right hand side is in fact the directional derivative scaled by the square of the gra-
dient, and is thus defined even when the gradient is zero. Canny [11] notes that the operator can
be formulated as (1/2)Vf-VIVf12. We used a different computation, formulating the partial
derivatives by using local three-by-three convolutions. Specifically we have used:

1'—101 1 21
fe-gl-202. K-gl0 00,
-101 -1-21
0 0 0 -10 1 010
fxx~l—21,fxy“2000 yfyy"o—zo
0 0 0 10-1 010

The discretized (i, j) is a sum of products of local convolutions of image data as given by these
(or related) kernels. The image data can be the original image, or an appropriately blurred version
of the image data. Haralick recommends that the partial derivatives of f be computed using the
“‘facet model,”’ so that the smoothing is implicit in the representation of the parameters of the
local facet for f. Other methods of blurring can be used, including Gaussian blur, although this
method of computation does not work well with images that have been substantially blurred by a
Gaussian due to the small magnitude of the local gradient of the blurred image. In Image 4a, we
show the zero-crossings of the second directional derivative, after the image has been only slightly
blurred (6 =0.7). This should be compared with zero-crossings of the Laplacian-of-Gaussian of
the same image at a comparable scale (Image 4b).

Image 4a. The zero-crossings of the second directional derivative, computed in the direction of the
gradient (the Haralick operator). The original image was blurred by a Gaussian, with 6 = 0.7.

Image 4b. The zero-crossings of a Laplacian-of-Gaussian convolution of the image, taken at approxi-
mately the same scale of resolution as Image 4a. We note that the Laplacian-of-Gaussian tends to in-
troduce a number of extraneous zero-crossings, and tends to be slightly less accurate near corners.




100 R. Hummel, D. Lowe

Whether a DoG, LoG, or second directional derivative is used, the zero-crossings do not
necessarily track the edges accurately. Prominent edges will generally have a zero-crossing curve
associated with them (at some scale of resolution), but the zero-crossings will tend to wander off
of the edges and complete loops for which the main edge forms only a portion of the loop. Thus it
is desired to tag pixels identified as a zero-crossing with a measure of the edge strength. One way
of doing this, used frequently in practice, is to measure the slope of the filtered image at the zero-
crossing. Prominent edges usually give rise to zero-crossings for which the crossing has a strong
slope. Thus a measure of importance is given by |V(AG*f)I(x,y), at points (x,y) where
AG#*f(x,y) =0. This idea, for example, is mentioned in Marr’s book [12]. The slope at a zero-
crossing can be computed by taking a Sobel gradient magnitude of the Laplacian-of-Gaussian
filtered image. We have found that by throwing out zero-crossing points where the Sobel gradient
magnitude is below a threshold, the remaining curves form a much more accurate depiction of the
edges in the image.

One reason why the zero-crossings include curves that do not correspond to physical edges is
that the zero-crossings of the second directional derivative, and the zero-crossings of the Laplacian
as an approximation to the second directional derivative, include both gradient maxima and gra-
dient minima. Gradient minima arise when there are two successive step edges of the same step
direction lying approximately parallel in the image; James Clark considers the ‘‘phantom edge’’
produced by the gradient minima [13], and notes that for the second directional derivative, a zero-
crossing is a gradient maxima if and only if

o Pf
n 3 <0

where 9/0n is the directional derivative in the direction of the Gradient. Berzins [14] has sug-
gested that for the Laplacian-of-Gaussian images, only zero-crossings that satisfy

A AAD
an on 20

be retained, where 0/d0n now stands for the directional derivative perpendicular to the zero-
crossing. Clark notes that this is equivalent to the test

VFVvanN <o,

and is a way of (approximately) retaining only edges corresponding to gradient maxima. Image 5
shows the zero-crossings of Image 3, retaining only those zero-crossings passing the test given
above. Because of quantization of the values, edges with extremely small image gradients or
extremely small gradients in the filtered data are also eliminated. We see from Image 5 that
although some extraneous zero-crossings are eliminated, the zero-crossing screening is not a pana-
cea.

The essential difficulty with the methods for ‘‘cleaning-up’’ zero-crossings is that there is no
clear and obvious translation of the notion of a physical edge to a local condition on image inten-
sity variations. Physical edges can be associated with both small and large gradients, with zero-
crossings, or with texture or other feature boundaries. Marr and Hildreth [1] originally suggested
that this problem could be addressed by combining zero-crossings from multiple scales. For
example, zero-crossings that change location very slowly over a range of scales might be
presumed to arise from a single physical cause. However, experiments with ‘‘and’’-ing the zero-
crossing contours at multiple scales (with contours in all but one of the scales suitably thickened
before ‘‘and’’-ing) tend not to be successful at retaining edges with low intensity gradients, even
when those correspond to true physical edges. Perhaps orientation selectivity needs to be con-
sidered before combining edges at varying scales. Also, noise and local texture properties need to
be evaluated to account for movement of zero-crossings. However, there is currently no
generally-accepted method for combining contours across scales.

4. Borders

All of the convolutions discussed so far assume that the original data f (x,y) is defined for
x,y)e R? and that the grid of points (i,j) is an infinite lattice. Generally, however, images are




RO PRI S

H :
I
CHHIN
Convolution and Feature-Extraction in Images 101 [t ”ﬂ
i
{Hl
|
i
ik
i
i
Image 5. The zero-crossings of Image 3, netammg only those zero-crossings that pass the ‘‘Berzin’s {
test,”” namely those for which Vf-V(Af)<O0. i

defined on a finite rectangular grid of points, or sometimes on an irregularly shaped grid. Suppose
that f (i,j) is defined for (i,j)e D , where D is a domain of grid points. We define the boundary
points of the domain as points in D with at least one of the eight neighbors outside of D, and
denote those points by dD . How should the infinite convolutions be defined?

A usual tactic is to simply extend f (i,j) to be zero for pixels outside of D . For Gaussian
convolution, however, there are alternate approaches, motivated by regarding Gaussian convolu-
tion as a means of solving the Heat equation [15]. Specifically, we can use the formulas for itera-
tive blurring in conjunction with fixed boundary data. In this approach, Ay, (i,j) is an image
obtained from hy(i,j) as follows. For interior points, (i,j)e D —9D , the hy;(i,j) values are
obtained from the convolution of sy against the three by three kernel given at the end of Section 1.
For border points, set iy 1 (i,j) = hy(i,j). Although this yields something different from Gaussian
blurring, the result is an appropriate blurring of the image data. An analog to difference-of-
Gaussian filters can then be computed. Note that such difference filters, when defined this way,
will always give zero values on the boundary.

Another possibility for handling borders is to, in essence, insist that the normal derivative at
the borders be zero. In terms of the discrete blurring kernels, this condition can be implemented
(for a convex grid of points D, and when the kemel is no bigger than three-by-three) by the follow-
ing rule: Every access to a pixel outside of the grid D should substitute for that pixel the value of
the closest pixel in the grid D. We call the result adiabatic blurring.

Thus, for example, suppose that D consists of the rectangular array of pixels
{(,j)] 0<i<511,0<j<511}. Then to update a pixel on the left edge, (i,0), with 1 <i <510
(not a corner point), the formula is

hne1 (8,0) = (%)'[%N(i—l,O) + hy(i-1,1) + 6hn(i,0) + 2hy (i, 1) + 3An(i+1,0) + Ay (i+1, l)] .

Similarly, in the upper left comner, the update rule is
hyn41(0,0) = (—) [9hN(O 0) +3hn(0,1) + 3An(1,0) + An(l, 1)]

For such a rectangular grid D, the rule can be seen to be equivalent to first blurring the rows by the
formulas using the masks [1/4 1/2 1/4] at interior points, [0 3/4 1/4] at left edges, and
[1/4 3/4 0] at right edges, and then blurring the resulting columns by similar masks oriented
vertically.

This method of updating has the property that the global mean is constant, i.e., ¥ ¥in(,)) is
independent of N. Once again, differences of levels can be formed to construct analogs to the
DoG and LoG structure. The results will be the same as if the image were extended by zeros or
some other fashion to an infinite domain, and then blurred by a Gaussian, except possibly very the
borders. Indeed, at the Nth level of blur by an iterated blurring procedure, only points within N




102

R. Hummel, D. Lowe

pixels of the border will show any difference. If the image is extended by zeros, then the borders
will tend to be ““darker’” if Gaussian blurring is used as opposed to adiabatic blurring. If instead
the image is extended by flipping the image left-to-right and top-to-bottom, to form a doubly
periodic image with period twice the size of the original image in each dimension, then Gaussian
blurring results in precisely the same image as adiabatic blurring.

Acknowledgements

This research was supported by Office of Naval Research Grant N00014-85-K-0077, Work Unit
NR 4007006, and NSF grants DCR-8403300 and DCR-8502009.

References

m
(2]

3]
[4]
(8]
(6]
7

(8]

9

[10]
(1]
[12]
[13]
(14]

(15]

D. Marr and E. Hildreth, ‘“Theory of edge detection,”” Proceedings Royal Society London (B), p. 187 (1980).
P. Burt, “‘Fast filter transforms for image processing,” Computer Graphics and Image Processing 16, p. 20
(1981).

A. Huentas and G. Medioni, *‘Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian
masks,”” IEEE Transactions on Pattern Analysis and Machine Intelligence 8, pp. 651-664 (1986).

W.E.L. Grimson and E.C. Hildreth, ‘‘Comments on *‘Digital step edges from zero-crossings of second direc-

tional derivatives”,” IEEE Transactions on Pattern Analysis and Machine Intelligence 7, pp. 121-124 (1985).
R. Haralick, ‘‘Digital step edges for zero crossings of second directional derivatives,”’ IEEE Trans. on Pattern
Analysis and Machine Intelligence, p. 58 (1984).

E. C. Hildreth, “‘Implementation of a theory of edge detection,”” MIT Technical Report AI-TR-579 (April,
1980). Master’s Thesis.

James L. Crowley and Alice C. Parker, ‘‘A representation for shape based on peaks and ridges in the differ-

ence of low-pass transform,”” /EEE Transactions on Pattern Analysis and Machine Intelligence 6, pp.
156-169 (1984).

P. Burt and T. Adelson, *“The laplacian pyramid as a compact image code,” IEEE Trans. on Communications,
p. 532 (1983).

Shmuel Peleg, Orma Federbusch, and Robert Hummel, *‘Custom-made pyramids,”” in Parallel Computer
Vision, ed. Len Uhr, Academic Press (1987).

J. S. Chen, A. Huertas, and G. Medioni, **Very fast convolution with Laplacian-of-Gaussian masks,”” Proceed-
ings of the Conference on Computer Vision and Pattern Recogntion, pp. 293-298 IEEE, (June, 1986).

J. F. Canny, “‘Finding edges and lines in images,”” MIT Al Lab Technical Report 720 (1983).

D. Marr, Vision, W. H. Freeman and Company (1982).

James J. Clark, **Authenticating edges produced by zero crossing algorithms,”” Div. of Applied Sciences, Har-
vard University, Technical Report (Aug, 1986).

V. Berzins, **Accuracy of Laplacian edge detectors,”” Computer Vision, Graphics, and Image Processing 27,
pp. 195-210 (1984).

Robert Hummel, ‘‘Representations based on zero-crossings in scale-space,”” Proceedings of the IEEE Com-
puter Vision and Pattern Recognition Conference, pp. 204-209 (June, 1986).



