
Combining Bodies of Dependent Information

by

R. A. Ilummelf and L. M. Manevitzt
Courant Ins[itute and Bar Ilan University

Appears in the Proceedings of the Tenth Intcrnational Conference on Artificial Intelligence

Topic: Reasoning

Track: Science

Keywords: Thcory of Evidence, combining evidence, independence

Abstract

Recently, Hummel and Landy proposed a variation on the Dempster/Shafer ttreory of evidence

that tracks only the first and second order statistics of ttre opinions of sets of experts. This exten-

sion permits the tracking of statistics of probabilistic opinions, however, as opposed to tracking
merely Boolean opinions (or possibilities within the "frame of discernment"). Both the

Dempster/Shafer formulation and the Hummel/Landy formulation assume ttrat bodies of experts

that are combined to form new statistics have independent information. We give a model for
parameterizing degree of dependence between bodies of information, and extend the

Hummel/Landy formulation for combining evidence to account for sets of experts having depen-

dent information sources.

fNew York University
251 Mercer Street

New York, NY 10012 USA
hummel@nyu.arpa

tBar Ilan University
manevitz@ nyu-acfS.arpa



Combining Bodies of Dependent Information

Robert Hummel and Larry Manevitz

A bstract

Recently, Hummel and Landy proposed a variation on the Dempster/Shafer

theory of evidence that tracks only the first and second order statistics of the

opinions of sets of experts. This extension permits the tracking of statistics of
probabilistic opinions, however, as opposed to tracking merely Boolean opin-
ions (or possibilities within the "frame of discemment"). Both the

Dempster/Shafer formulation and the Hummel/Landy formulation assume that
bodies of experts that are combined to form new statistics have independent in-
formation. We give a model for paramctcrizing degree of dependence between

bodies of information, and extend the Hummel/Landy formulation for combin-
ing evidence to account for sets of experts having dependent information
sources.

L. Background
Many systems using artificial intelligence concepts must combine information from

disparate sources of knowlcdge to make a decision. Often the information that is given is incom-
plete: evidence is accumulated suggesting one altemative or another, but in a quantitatively
inconclusive way. The use of purely Bayesian tcchniques sometimes encounters difficulties, due

to the lack of sufficient information. There are thus many different ways that have been proposed

for combining evidence. One method, called here the Dempster/Shafer theory of evidence [1],
has received considerable intercst and some use in experts systems.

Central to the Dempster/Shafer theory, and several other formulations of combination of
evidence, is a way of handling uncertainty in propositions. Rather than assigning probabilities to

possible labels (from a " frame of disccmment"), these theories attempt to assign degrees of
confidence to the various propositions. In Shafer's explanation of the Dempster/Shafer theory of
evidence, this is done through the use of "belief functions" to assign weights to subsets of labels

in their theory. In general, there is a set of possible labels, and a set of numbers representing a

current state of belief. Whcn additional information is obtained, the numbers are changed to a

new state. Each state is associated with the body of evidence obtained to that point, and the

updating method rcprcsents the combination of the current body of evidence with the incremental

evidence.

For example, for medical diagnosis applications, a patient can have one of a set of possible

diseases (pathologies). Evidcnce is obtained in the form of symptoms and test results. Given a
current set of symptoms and results, a doctor might decide to run an additional test, and update

the assessment of the paticnt's condition bascd on the results, in conjunction with the information
already present.

In the theory of "belief functions," o state is represented by a probability distribution over
the power set of the set of possible labels. Thus a number is assigned to every subset of labels.

New evidence is rcprescnted, in the Dcmpstcr/Shafcr theory, by a new state, also assigning a
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number to every subset. The Dempster rule of combination [2] is used to combine these two
states to form a new state.

Other possibilities include "Bayesian" approaches, for which a state is generally

represented as a probability distribution over the set of possible labels. Each value is regarded as

a "subjective" or "inferential" probability, and the use of Bayes' formula in the presence of
various independence or simplifying assumptions is partly defended by a body of research and

results, especially those developed by Good, Savage, De Finini, and Ramsey et al. A survey

treatment is given in [3].

In a recent work by Hummel and Landy [4,5], it'is shown that the Dempster/Shafer formu-
lation is completely equivalent to the tracking of statistics of sets of experts expressing Boolean

opinions over the set of labels. The sets of experts update by combining, using Bayesian updat-
ing, in pairs over the product space of experts. To make these points concrete, let us review these

notions for the medical diagnosis situation.

The current state is represented by a collection of doctors, each expressing an opinion as to

the subset of possible diseases that a particular paticnt might have. A doctor simply gives a list of
possibilities, based on the symptoms and information available to him at that point. All doctors
have the same information, but not all doctors have the same opinion (i.e., the same list of possi-

bilities). New information is represented by another collection of doctors (perhaps specialists),
each with his own list of opinions. A new state is formed as follows. The new set of "doctors"
is the set of all committees of two, with one doctor from the original set, and the other doctor
from the new set, the set of specialists. Each of these composite "doctors" forms a new opinion
by combining the opinions of the individual doctors within the committee. The new opinion is
formed by using a Bayesian updating with the individual opinions, with an independence
assumption conceming the source of the information. This means that the new list of possible

diseases is formed by intersecting the two component lists; that is, the committee rules out patho-
logies if either the pathology was originally ruled out or if the specialist rules it out. If there were
n doctors in the original sct, and ru specialists, the new state consists of n'm opinions of the new
committees.

The correspondence between the belief function for a given state and the opinions of the

collection of experts can be stated easily. Let S be a specified subset of labels. Then the belief on
the set S is associated with the percentage of experts that have ruled out labels not in S. That is,

we consider the fraction of experts that specify that the subset of possible labels is S or contained
in S, and call this the bclief on the subset S. It tums out that the resulting updating formula when

sets of experts combine as indicated above is precisely the Dempster rule of combination. This
equivalence is not surprising, since the original introduction of the Dempster rule of combination
was based on notions of statistics of certain measures over measure spaces (the spaces of experts).

From this viewpoint, we see that the Dcmpstcr/Shafer theory of evidence requires indepen-

dence of the sources of knowledge, and that furthcr, there is no distinction made between labels

being possible and labels being probable. The former objection was known [6], whereas the latter
objection is egregious, in that one of the desired properties of the formulation is that it should

represent labels with " fuzzy' ' degrees of probability.

To handle the latter objection, in [4] an altcmate formulation is given. In this formulation,
each expert maintains a probability distribution over the set of labels, rather than simply a list of
possible labels. The set of numbers used to represent the current state associated with a collection
of experts and their opinions are related to the mean probability distribution and the multivariate
covariance (standard deviation) of those opinions. In fact, in the HummeULandy presentation,

the logarithms of the probabilities are used, and so the means and covariances of the log's of the
probabilities becomc the numbers for the state of the system. To combine two collections of
experts, the set of all committces of two is again formed. When committees update, Bayes'
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formula is used to compute a new probability distribution over the set of labels. The mean and

covariance of the set of logarithms of the new (probabilistic) opinions are then formed of the set

of composite experts (namely, the product set of the two former sets of experts). Precise formulas

are given in Section 3.

However, the formulation still requires independence of the information. Roughly speak-

ing, this means that the source of new information, to be combined with the body of existing
information, must be unrelated. Further, the independence assumption that is needed is condi-

tional independence, for all labels. Independence is defined in terms of probabilities taken over
ttre set of all labeling situations, e.g., ttre set of all patients. More precisely, assume that s 1

represents the set of symptoms and information obtained to date, and s2 is the new infolmation.
What is required is that the probability of the existence of the symptoms s 1 ilffIong the set of all
patients having a given disease l" must be the same as the probability of the existence of the same

iet of symptoms s 1 irnong the set of patients having the symptoms s2 and the disease 1,. Further,

this equivalence must hold for all diseases 1,. In essence, this says that information about the

symptoms s2 yield no information as to the probability of the symptoms sr, in the presence of
any given disease.

The independence assumption is not very rcalistic for most applications. It is required to
justify the updating formulas, and is so prcdominant in most formulations for the combination of
evidence that the limitations are generally overlookcd.

In this paper, we introduce a model for measuring a "degree of independence" between

sets of information. The degree of independence is mcasured by a single variable c,, which can in
turn depend upon the information values (the symptoms), i.e., cr = cr(s 1,sz). We then extend the

Hummel lLandy formulation for the combination of inlormation to the case where the information
is cr-independent.

Further, we develop formulas so that the statistics are taken over the union of the sets of
experts, rather than over the set of all committees of two. We find the use of the product sets of
experts "less natural" than simply combining all experts into one collection. The difficulty, of
course, is that when combining the expcrts into one collection, each expert must be required to

update his opinion bascd on some other opinion, and it is not a priori specified which other opin-

ion should be used.

2. Advantages and Disadvantages

The entire approach of tracking statistics of sets of experts has a number of features to com-

mend it. Although thc best formulation for combining evidence will typically depend upon the

application, the methods to be described in this paper, and the related but earlier formulas of
Hummel and Landy, have a number of advantages over, for example, the Dempster/Shafer formu-
lation.

For example, a belicf function as uscd in the Dempster/Shafer theory of evidence requires

the specification of 2N values, where there are N labcls. If only first and second order statistics

are tracked, as suggestcd here, then thc numbcr of values needed to specify a state is only
N + (N2+N)12. For large N, this can mean a substantial savings in computational effort needed

to update a state.

Further, we at least in principle have replaced the notion of subjective probabilities with
objective statistics. These statistics, given sufficient resources, could be measured by, for exam-
ple, "polling" methods. For example, to measure the state that some new information in a medi-

cal diagnosis situation should produce, we could actually poll a collection of doctors. Our formu-

las are thus firmly based on objective probability theory, and thus foundationally secure. Of
course, the assumptions are still debatable in the context of any particular application, and the

value of cr(sr,sz) in the cr-independence of two sets of evidence is mostlikely to be a subjective
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quantity (although we suggest a method for measuring o).

Finally, the notion of tracking statistics, while initially complicated by the presence of
many different sample spaces (the doctors, the patients, committees of doctors, etc.), is funda-

mentally simple and appealing. Specifically, we are saying that a state of belief consists not of a
single opinion, but of a collection of opinions, and that the collection of opinions can be meas-

ured by a mean opinion, and a measure of the spread (or distribution) of those opinions. The
spread measures a degree of uncertainty, since if all opinions are identical, there is a considerable

degree of certainty in the single expressed opinion. Updating is done by combining the mean

opinions and combining the uncertainties. Basically, the new mean opinion becomes a comprom-
ise between the two mean opinions of the composing evidence. Uncertainties are likewise mixed,
and generalty accumulate. Further, in the prescnce of dependencies in the information sources,

uncertainty increases if the opinions from the two sources of information are divergent.

On the other hand, our introduction of a-independence brings with it new complications.
As mentioned above, the degree of indcpendence between two bodies of information is likely to

be decided subjectively. The case cr = 1 corresponds to complete independence, as is assumed in
the HummeVlandy formulation. The case cr = 0 corresponds to complete dependence, so that the

informatioo s 1 implies the information s2. In this case, the new evidence can be said to be redun-

dant, so that no updating should take place. Between these two situations, there can be any level
of dependence. In fact, it is possible to have c,> 1, corresponding to negative correlation between

the information sources. We expect that, in practice, information will be deemed to be, for exam-
ple, 0.5-independent, bascd on subjective critcria. In essence, the subjective component of com-

bination of information has bcen pushed to a meta-levcl, where degrees of independence of infor-
mation sources and information values are estimated, instead of estimating degrees of confidence

and likelihood of the various labels in the prcscnce of specific information.

Finally, we note that the theory makcs explicit the dependence on the order in which infor-
mation is combined. That is, if informatioll J1, sz, " , Jn are to be combined, the various o
values and the outcome of the entire system will dcpcnd upon the order in which the information
is mixed. The system is neither commutative nor associative, in the presence of the o-
independence formulation. While this might be dcemed to be a considerable disadvantage of the

formulation, it may bc realistic, in the sense that decisions are often based on incrementally gain-

ing evidence, ancl that the interpretation and outcome depends on the order in which information
is obtained.

3. Formulation and Formulas

Let E be a set of experts. Each expert ee E is privy to a body of information (symptoms)

about the current situation. We dcnote by s the information together with the associated experts.

The goal is to label the cunent situation (i.e., the current patient) with a label ), from the set of
possible labels A. It is assumed that A is mutually exclusive and exhaustive. The expert e's

opinion is represented by the set of values pr(e,}"), given information s. The average opinion,
computed by taking a mean over all eeE, is dcnotcd by tt"(I). Likewise, the covariance values

are given by the fbrmula

C, (tr r,Lz) -f# [ Qt, (e,]v1)-Lr" (I r ))' (p,(e,,tz l-p" (Iz )l

Logarithmic opinions are denoted by yr(e,}.), and are given by the formular'
),(e,I) - los I !'@.'f;).| * r"'/ r \- '- -/ -- " I Prob(],)J

where Prob(),) is a prior probability of labcl l" over all situations (i.e., the probability of the given

disease among all patients). The value c" is an indeterminate constant, meaning that the y" values
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are defined only to within an additive constant independent of l. and of e. Means and covariances

of the y's are ilso defined, yieling means and covariances of log's, and are denoted by p(l) *O
C(/) respectively. The use of the logarithmic opinions simplifies the formulas, and is suggest in

t7).

Now, suppose that we have two collections of experts E1 and E2 and thus two bodies of
informationsl ands2. WewishtocombinetheinformationFsr,P"z,Crr,and Crrto obtaina

new mean F"r"z and a new covariance Crr"z. Similarly, we should combine the means and

covariances of log's.

In Hummel and Landy [4], the formula is given for the log's, with complete independence.

The formulas are:

p$1)", (r) = plij(r) + u!?(1.),

cl,J,, (rr , rz) = cS',) (rr , rz) + cY)(rr , rz).

These formulas are derived assuming that updating takes place using the set of all committees of
two, and that within each committee, Bayesian updating is used with a conditional independence

assumption. Specifically, it is assumed that

Prob(s2 ls 1 ,1.) - Prob(sz I l.)

for all 1,, where the probabilities are taken over the set of all "patients," (and not over the

experts). The crucial point in the derivation is that the logarithmic probabilities update by
adding:

)","2((e t,ez),)") = )"r (e t,7") * !sz@2,?").

We now define the information s 1 and s2 to be a(s 1 ,s2)-independent if:

Prob(s2 1s1,tr) = Prob(s2 l1;o("t'"t)

for all ?^,. It is important to realize that a-independence is not symmetric, that
a,(s 1 ,s2) * a(s 2,s 1) in general. Note that for o=1 , the assumption reverts to conditional indepen-

dence. f'61 q;S, we have that the information s 1 implies (with probability one) the information
sy. The existence of such an o constitutes an assumption, and is not in any way a completely
general measure of independence. Specifically, we are assuming that c,(s 1,s2) is independent of
1,. This is a strong assumption, but is not as strong as the assumption of independence.

We note that a might be measured by polling among many situations, observing when
informatioo J 1 and s2 cooccurs, and measuring

*(s 1,sz) = AvgI 
log(Prob(sz ls r ']')lt'- Ll t f L log(Prob(sz ll,)) )

Of course, these are precisely the kind of joint statistics that Bayesian's are often reminded are

hard to obtain.

In the presence of a(.s1,s2)-indepcndence, it is not hard to show that log-probabilities now
update according to the formula

)",rr((e t,€z),I) = y" ,(e t,l,) + a'(s t,sz)'!rz@2,)t).

Trivially, then, the new updating formulas become

rr51),rtrl - p5',)(r) + a(s r,rz)'pf?(tr),

cl?, (rr , rz) = c1'l (rr , rz) + a21s r ,s z)'c5/] (Lr , rz).

Obviously, the formulas have changed very little: the updating term giving the new information

Page 5



Combining bodies of Dependent Information

is simply weighted by the degree of independence of the new information. While this idea is fun-

damentally simple, we have justified the use of this weighted updating through a precise

definition of cr-independence.

We now introduce a second new concept to the formulation, that of union-based combina-

tion. In the formulas above, the information in s1s2 is based on the product space of experts

E/E2. We find it more desirable to base formulas on the union space of experts E1vE2. The

resulting set of information, s1s2, contains updated opinions foreach expert eeEtvEz. How-

ever, we must specify the manner in which each expert performs the updating, since there are no

longer obvious pairs of opinions for each resultant expert. The method advocated here is to have

the experts in E1 update in a Bayesian fashion based on the mean opinion from the set 82. Like-
wise, the experts in E2 update using the information obtained from the mean opinion of experts

in E 1. This changes the component formulas, so that, for ee E 1,

)s1s2 @,)") =)", (e,7") + a,(s r,sz)'p$?(I).

Likewise , for ee E 2, we have the same formula, but with all occurrances of s 1 and s2 exchanged.

In particular, we make use of the value a(s2,s 1).

The result is easy to obtain, but now depends on the number of experts in the component

sets, lE 1 I and I Ezl. For the log-probabilities, with a-independence, the formulas are:

p5")", =
lEtlp['/ + lEzlp!'] + cr(s1,s )lEt lfr['] + a(sz,sr) lE2lp'!l

lEtl + lEyl

CS//", (Ir ,Iz) = pC", (trr, )r) + QCsz(1.1,1"2) +

oIrrf icl.,)+cr(s r,sz)pl?(rr)-p.fJ",,ttl Ip!1)0.r1+cr(s 
1,s2)p[/]ctzl-p51)",crr j

*rIrrl/]trr)+a(s2,sr)pS/i(r,)-rr[?",,^tl 
Ipf?tlrl+cr(s2,s,lpf',)(rrl-rr51)",trri

where wehave suppressed the l"argumentin the firstequation, and p - lEl l/(lE1l+lEzl), and

0 = 1-p.

We see that a state now consists of the mean log-opinion fri/)(},) for all labels l.e A, the

covariance of the opinons Cf)(}"r,)"2), and a weight of evidence, lEl, coffesponding to the

number of experts participating in those opinions. In the case of complete independence,

cr(s1,s2)=cr(sz,,sr)= 1, the above formulas become simple addition of the means and covari-

ances, as in the original HummeVlandy formulation. However, with the covariance formula,
there are additional mixed terrns which measure the difference in the mean opinions of the

experts in E1 and the experts in E2.

Many other formulations are possible. For example, we can compute means and covari-
ances of the probabilities instead of the log-probabilites. We omit the formulas here, for lack of
space. We could also use only incremental evidence, so that experts in E 1 update using the

means of the opinions of E2, while the expcrts in E2 use their actual opinions. This leads to

slightly different formulas. Finally, as we have seen, the formulations can be posed for either the

product spaces of experts, or the union set of experts: many variations are possible.

4. Conclusions

We see that the formulas for tracking statistics of sets of experts with probabilistic opinions

are conceptually simple. The resulting formulations pcrmit the representation of uncertain infor-
mation, by recording the degree of concunence of opinions, as well as recording a culrent aver-

age opinion. Our suggested formulation has been based on combining sets of experts, with each
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expert using the statistics of the information from the other set to update his opinion. The major
contribution of these ideas is that the updating of individual experts can be performed by well-
founded probabilistic reasoning,namely Bayes' rule. In this way, although the resulting formulas
make good sense from a subjectivist viewpoint, the subjectivity has been given a rigorous foun-
dation based objective probabilistic updating. The key is that the updating takes place over sets

of opinions, and not on a single opinion.

The idea of cr-independence has been introduced. The definition generalizes the notion of
statistical independence, and may apply in situations where independence is too-strong an

assumption. This does not mean, necessarily, that cr-independence is practical or realistic. The

best we can claim is that a-independence may be more realistic than complete (conditional)
independence for some applications. The resulting modifications to the formulas are not too star-
tling: the degree of independence is used as a weighting factor to determine the amount of updat-
ing that occurs as a result of the new information. However, the o factor can be based on a
parameter that is well-defined by the model, and defended by the rigorous derivation of the updat-
ing formulas.
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