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Combination Calculi for Uncertainty Reasoning:
Representing Uncertainty Using Distributions

Robert Hummel and Larry Manevitz

Abstract

There are many different methods for incorporating notions of uncertainty in evidential reasoning. A
common component to these methods is the use of additional values, other than conditional probabilities,
to assert current degrees of belief and certainties in propositions. Beginning with the viewpoint that these
values can be associated with statistics of multiple opinions in an evidential reasoning system, we
categorize the choices that are available in updating and tracking these multiple opinions. In this way, we
develop a matrix of different uncertainty calculi, some of which are standard, and others are new. The
main contribution is to formalize a framework under which different methods for reasoning with
uncertainty can be evaluated. As examples, we see that both the ‘‘Kalman filtering’” approach and the
““Dempster-Shafer’” approach to reasoning with uncertainty can be interpreted within this framework of
representing uncertainty by the statistics of multiple opinions.

1. Reasoning with uncertainty

Most expert systems make use of an evidential reasoning system, where evidence is combined with current
belief states in order to maintain states of belief and confidence in a set of hypotheses. The fundamental concepts
always involve quantities related to the degree of validity of a proposition, such as a probability, and other quantities
related to the degree of certainty in the assertion of the degree of belief. Various calculi are used for representing
these concepts and performing the calculations, including Bayesian networks, fuzzy logic, and the Dempster/Shafer
theory of evidence. Each calculus has certain theoretical underpinnings, although a universally accepted methodol-

ogy is still lacking.

It is now well-established that an evidential reasoning system must be able to deal with uncertainty. For
example, the classical medical expert system MYCIN, and the famous geology expert system Prospector used dif-
ferent methods for handling degrees of certainty in propositions [1,2]. Other significant systems that reason with
uncertainty include INTERNIST [3], MUNIN [4], and INFERNO [5]. Degrees of certainty are represented both at
the user-interface and within the automatic inferencing systems of these and most other successful expert systems,
and one of the main problems in building an evidential reasoning system can be said to be the design of the method
to handle uncertainty. Pearl’s book offers a comprehensive survey of probabilistic reasoning and uncertainty

methods [6]. An excellent introduction to the notion of representing uncertainty in probabilistic inferencing systems



Combination Calculi for Uncertainty Reasoning

is given in Chapter 7 of Tanimoto’s textbook [7] and in Neapolitan’s book [8]. Collections of papers on uncertainty
reasoning are found in a series of books compiled for the Workshops on Uncertainty in Al [9], and in the Interna-

tional Journal of Approximate Reasoning, for example.

There are really two problems that must be addressed when designing an evidential reasoning theory. First,
__the issues of belief, certainty, and confidence must be modeled in a rational manner. Second, the methodology for
maintaining and combining states must be determined in a manner that conforms as nearly as possible to the model.
One reason for the profusion of different calculi is that both issues present serious difficulties. The modeling issues
present difficulties because different meanings can be ascribed to beliefs and certainties. Although probabilities are
likely to be used to develop the calculus, the probabilities must apply to events that are well-defined, and the events
will typically involve subjective evaluations that make the theory subject to varying interpretations. The methodo-
logical issues are difficult because no matter what scheme is chosen to implement the model, certain approximations

will be necessary. Always, the methodology will fall short of the desired goals.

To make the issues more concrete, consider the difficulty of defining the statement that ‘“This patient has a
20% probability of having disease [2,.”” The frequency interpretation of such a sentence means that among 100
patients having precisely the same symptoms and conditions, roughly 20 will have disease Dy. The difficulty with
this interpretation is that it presupposes the existence of a sufficient number of cases with identical conditions —
whereas the statement may be uttered by a knowledgeable physician who has never seen such a case; indeed, there
may have never been such a case anywhere before! Another interpretation might be termed the *‘subjective’ pro-
bability theory, and is founded on work by DeFinetti, Good, Savage, Kyburg, Fisher, and others [10-12]. In the
‘‘subjective interpretation,”” the statement can be interpreted to mean something along the lines of ‘I would accept
1 to 4 odds that the patient has disease D;.”” However, such an interpretation can lead to different measurement
methods. For example, if one insists that the bettor should come out even in the average over many bets on the
same situation, then the subjective interpretation should yield the same value as computed in the frequency interpre-
tation. On the other hand, one could take a particular situation and devise experiments to find a psychometric func-
tion under varying conditions, to find the odds under which a majority of experts would be indifferent when placing
“‘pets.”” This value need not equal a precise frequency even if the frequency can reasonably be measured statisti-

cally.
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Difficulties arise when inferencing is done using probabilities computed by the different methods. The fre-
quency interpretation is supported by the availability of Bayes’ theorem. Conditional probabilities can be computed
using conjunctive and prior probabilities, and used to update and modify distributions. This, then, is ‘‘Bayesian
analysis.”” However, if probabilities are measured subjectively, then simple psychology experiments have shown
that Bayes’ formula is not obeyed by the values obtained from the psychometric functions [13]. Moreover, the aver-
age opinion need not equal the value obtained from a frequency analysis. Proponents of the ‘‘Bayesian school”’
ascribe this discrepancy to mistakes on the part of the subjects of the experiments. Others argue that Bayesian

analysis is incompatible with the subjective interpretation.

Either way, there are problems in implementing a probabilistic reasoning system. If a purely Bayesian
analysis approach is taken, then many different joint probabilities must be known in advance — generally more
values than can be reasonably measured and stored. Some suggest that unknown values should be chosen by the
principle of ‘‘maximal entropy’’; alternatively, independence assumptions can be invoked to give a functional rela-
tionship between groups of joint probabilities, essentially discarding certain conditional probabilities by saying that
they are unimportant. More realistically, one can reason through intermediate hypotheses, with simple functional
dependencies between the conditional probabilities from one node to the next, as in Pearl’s system of networks [14].
The result is an algorithmic approach to modifying probabilities based on evidence accrued. One of the major
appeals of Pearl’s approach is that the functional dependencies are chosen to match expert rules. If an expert says
that “‘A causes B,”” the expert indicates not only a rule but many conditional independence relationships as well.
Thus the resulting algorithm implements Bayesian updating according to natural causal relationships. However, the

conditional independencies will be valid only to the extent that the experts correctly design the network.

If a non-Bayesian approach is taken, then any of a number of different calculi can be invoked, and consider-
able effort can be spent assessing the relative merits and the relationships among the various methodologies. Some
of the potential methods include the Dempster/Shafer theory of evidence [15], or the use of fuzzy set theory [16].
However, once again, independence assumptions are generally necessary. More importantly, the semantics of the

quantities in the representation must be interpreted subjectively.

In this paper, we approach the problem of modeling uncertainty in a somewhat different manner. We define
our semantics objectively, by interpreting our measures of liklihood and uncertainty as objective, frequency meas-

ures of opinions about a certain situation. Thus, a 60% measure for the certainty in a diagnosis of measles given a
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certain set of symptoms, will no longer be interpreted as ‘‘60% of patients having these symptoms would have mea-
sles’”; but rather as saying ‘‘Given this situation to evaluate, 60% of the experts would say the patient has measles.”
One can use other measures, but our common theme is that ‘‘certainty’’ is measured by the distribution of these
opinions. That is, uncertainty is represented by a wide distribution of opinions while certainty is represented by

close unanimity of opinions.
To use this idea, several issues should be addressed:
® What do we mean by an “‘opinion’” of an expert?

° What information must be maintained? Is it necessary to maintain every separate opinion, or can some form

of statistics be kept?

° What is the appropriate method for updating of the opinions? That is given new information, how should the

opinions be revised?

We will assume that an “‘opinion’’ is an estimate of a quantity that is functionally related to a (frequency-
based) probability, or is an estimate of a well-defined quantity representing the likelihood of a given proposition

based upon given evidence. However, there is no need to assume consistency of opinions of a specific expert.

In the remainder of this paper, we present a variety of different calculi that are obtainable from specific
choices, depending upon the values that the opinions are supposed to represent, and depending upon the assump-
tions used in the updating process. Our intent is to show the utility of the multiple-opinions approach to uncertainty
in guiding the development of such calculi; we do not support a particular uncertainty calculus over all others. We
do not purport to obviate other approaches to uncertainty. Some of these calculi are new; others turn out to be stan-
dard uncertainty calculi such as the Dempster/Shafer calculus, and the systems approach to combining uncertain
estimates generally known as Kalman filtering. (As a side effect, this gives a Bayesian foundation to what are

thought to be non-Bayesian combination formulae such as the Dempster/Shafer method.)

While we make no attempt to give a thorough survey of existing calculi nor their relation to the calculi that
are derived in this paper (as a result of the multiple- opinions framework), we briefly review a small selection of

alternative foundations to compare them with our formulation.

This uniform presentation should be useful in order to choose a calculus appropriate for a specific application.

That is, we make clear how various different assumptions result in the different calculii.
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2. Uncertainty and distributions of opinions

The use of intervals of probabilities in order to represent uncertainty in reasoning is an appealing idea. While
a Bayesian system, or other probability-based system, normally uses a single probability in order to represent the
chance or likelihood in a particular proposition, frequently a degree of belief in that value is also required. One
method of representing the degree of certainty, discussed early on by Dempster [17] and others [10, 18], is to use an
interval of probabilities, say [10%,90%] to indicate little certainty in a 50% probability estimate, or {45%,55%] to
indicate relative certainty in the central 50% probability. However, the use of the Dempster combination formula in
conjunction with the interpretation of the belief and plausibility functions as a probability interval has led to illogical
behavior [19]. Alternative methods tag the indicated probability with a ‘‘certainty value,”” which might be inter-

preted as a scaled version of the probability window, and thus can form an equivalent representation.

A good way to view the probability interval formulation of the uncertainty representation is to distinguish
between two sample spaces. Consider, as an example, the case of medical diagnosis of a patient. There is the sam-
ple space of all patients, from which can be determined prior and conditional probabilities for various diseases based
on various symptoms. However, there can be a second sample space, the sample space of doctors, with each doctor
giving an opinion or estimate of a specific probability. The fact that the doctors’ opinions are subjective estimates is
not incompatible with the existence of true probabilities: since there are two sample spaces, there can be different
functions. If all of the doctors agree on a particular probability, and providing the sample space is large enough,
then there is considerable confidence, or belief, in that probability. However, if the doctors give a wide range of
opinions, then we have an interval of probabilities, which might be determined from the minimum and maximum
opinion, or might be represented by a standard deviation spread in the opinions from the mean. In either case, it is
clear that we can view a range of probabilities as a confidence measure in a particular probability, by assuming that

the range arises from multiple subjective estimates.

Figure 1 depicts the situation for the medical diagnosis situation, illustrating the different sample spaces that

occur: namely, the spaces of patients, of experts, of diseases, and of symptoms.

Since the sample space of patients is distinct from the sample space of doctors, the opinions of the doctors
need not be based on a statistically significant number of cases, and thus the existence of probabilities over the space
of patients may be problematical. Nonetheless, the doctors are able to estimate values, given precise instructions,

related to likelihoods based on physiological (i.e., causative) analyses, or philosophical predictions of probabilities.
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We can refer to the doctor’s estimates as probabilistic values, or functionally related to probabilistic values, even
though there may be no evidence for the existence of probabilities. Alternatively, the doctors’ opinions might be,
for example, fuzzy values; what matters is that the values should be defined in some precise way, so that combina-

tions of pairs of values are well-defined.

Accordingly, we posit that uncertainty in a probabilistic value can be represented by a collection of estimates
of the quantity, and that the degree of certainty or uncertainty can be measured by means of the distribution of
values in the collection of estimates. The collection of estimates, or opinions, forms a random process over a sam-
ple space that we will call the set of “‘experts’” E. It is important to realize that all of the experts are attempting to
estimate the same quantity based on the same information. That is, every expert has the same set of evidence
(which is what we mean by a collection of experts). If new evidence becomes available, then every expert will

revise his or her opinion, or perhaps the set of experts will be replaced with a new set of experts. This is in

Symptoms

Hospital

] HDD

chills
fever —
etc.

Observed patient Diseases

I EEREREEEEE

Figure 1. The various sample spaces involved in our medical diagnosis application. Probabilities are
defined in terms of frequencies over the space of all patients. Certainty is measured in terms of the
distribution of opinions over the space of doctors, after all the evidence is combined.
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distinction to schemes where each piece of evidence yields a different conditional probability, and one examines the

distribution of those probabilities over the set of different pieces of evidence [20].

In our representation of uncertainty, the cause of the uncertainty is not the variation or the discordance of the
evidence. The uncertainty that we wish to model is the intrinsic uncertainty that arises from a particular piece of
evidence. Thus the collection of experts share one piece of information, or one set of information, and nonetheless
have a spread of opinions. This spread comes from a lack of certainty, or the fact that estimates must be made, or
perhaps due to a lack of a statistically viable base of experience. When we combine the opinions of the experts with
another set of experts having different opinions related to different (or new) information, the new level of uncer-
tainty arises purely due to the new spread of opinions generated by the combination method. Instead, one might
look at the different pieces of evidence, and estimate levels of uncertainty not according to the discordance of opin-

ions, but based on the unlikelihood of the particular mix of evidence.

For example, different pieces of information may give rise to different levels of uncertainty; we might call
this extrinsic uncertainty, because it comes from an analysis of the mix of different pieces of information. One
piece of information, in isolation, might argue strongly for the diagnosis of a particular disease, say D, with a high
degree of certainty. Another piece of evidence, in isolation, argues for the same disease, D, again with high cer-
tainty. The two pieces of evidence, in concert, might argue for disease D, but with a high degree of uncertainty,
because the disease often occurs with one symptom or the other, but the co-occurrence of both is associated with
many possibilities. In this case, the extrinsic information about the combination of evidence leads to a large
increase in uncertainty, simply due to the confluence of the two pieces of information. On the other hand, an intrin-
sic combination of the two will likely result in a high degree of certainty for disease dy, since both constituent opin-
ions were certain. Another possibility is that the two pieces of evidence argue for different diseases in isolation,
with moderate uncertainty, but in confluence argue for a third disease with high certainty. Computing extrinsic
uncertainty depends entirely on the particulars of the situation, and can make use of a model of causality of the
diseases. However, it is clear that no general statement can be made about the functional dependence of the certain-

ties on the range of evidence.

As we will discuss in Section 5, in the absence of other assumptions, the probability distribution over a collec-
tion of labels, conditioned on two different pieces of information, can have an arbitrarily complex functional rela-

tionship depending on the probabilities for each label, conditioned on each piece of information individually.
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Similarly, the level of uncertainty for each label, given two pieces of information, may be arbitrarily related to pro-
babilities and uncertainties for those labels conditioned on each piece of information individually. To make order of
the chaos, one must either have a functional model for the relationships, or one must make certain simplifying
assumptions. For the case of the probability distributions, the requisite assumptions typically involve independence

of the information; for the uncertainties, we will assume the lack of extrinsic uncertainty.

More general treatments that can account for extrinsic uncertainty are required by certain applications. Dif-
ferent methods could be proposed for dealing with the required modeling of the functional relationships. The
methods used could generalize the calculi considered here, or alternative computational systems, such as Bayesian
networks, might be used to model the updating of uncertainty due to extrinsic information (see [8] Chapter 10,[6]

Chapter 7, and [21] ).

3. Related theories of uncertainty

3.1. The Dempster/Shafer Calculus

The well-known Dempster/Shafer ‘‘theory of evidence’” [15] can be formulated precisely as a representation
of multiple subjective opinions of propositions [22]. In this formulation, it can be seen that the combination rule
invokes a Bayesian updating between pairs of opinions, but that since there are many opinions encoded in the state,
the overall updating formulas are not Bayesian. However, the theory of evidence makes use only of boolean opin-
ions [22], where the ‘‘doctors’” give only a list of possibilities, as opposed to assigning probabilities to each proposi-
tion. Indeed, this is how Dempster originally formulated the states used for his combination formula [17]. The
subset-valued function I'(w), used in Dempster’s formulation, forms the set of propositions that the sample (i.e.,
expert) ® says are possible, given the information currently available. Different samples o can give rise to different
opinions of the set of possibilities I'(c0). Dempster proceeds to give a method for combining multiple sets of opin-
ions in a quite general framework, and this formulation has become the basis of the theory of belief functions under-
lying the Dempster/Shafer theory of evidence. Let us review briefly the relationship between the belief function and
the distribution of opinions of I'(w), and the combination method, in terms of opinions of doctors in a medical diag-

nosis application.

For a given patient, the set of possible diseases is given by A. Each doctor o € E states the subset of possible

diseases I'(m)cA that he cannot rule out. All doctors have the same information, but not all doctors have the same
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opinion (i.e., the same list of possible diseases). The mass m(A) on a particular subset ACA is the percentage of
doctors that state that the subset of possible diseases is precisely A. The belief Bel (A) on a subset A is the percen-

tage of doctors that have ruled out all diseases outside of A, i.e., for whom I'(w)cA. Finally, the plausibility PI(A)

is defined as the percentage of doctors whose subset of possible diseases intersects A, L

New evidence is represented by another collection of doctors Ev, each with his own list of opinions, I'7(w/) for
areEr. A new state is formed as follows (see also Figure 2). A new set of ‘‘doctors’ is formed, consisting of the
set of all committees of two doctors, with one doctor from the original set £ and one doctor from the new set Ev.
Each of these composite doctors (3,0/) € Ex Es forms a new opinion by taking the intersection of the opinions of
the constituent doctors, 1.e., I'(@)I'/(ws). Thus a committee rules out all diseases that are ruled out by either of the
members of the committee. However, if the resulting committee has ruled out all the diseases in A, then that com-
mittee is discounted, and is dropped from the collection of new doctors. Assuming that not all committees drop out,
it can then be shown that the percentage of the remaining committees that state that A is precisely the subset of pos-

sible diseases is given by:

S m(B)mAC)
BAC=A
1- Y mB)ym(C)’
BC=.

which is precisely the Dempster rule of combination. More details of this formulation are given in [22].

The Dempster/Shafer theory requires two kinds of independence. Because intersections are used in combin-
ing opinions, there is an implicit assumption of independence of the information being combined. The evidence
does not have to be independent in the true probabilistic sense, but only in a sense of possibilities. The exact
requirement is that if a hypothesis is ruled out by a particular symptom, then it is must be ruled out by that symptom
in combination with any other symptom. (See the discussion of independence-of-evidence assumptions in Pearl’s
rejoinder to discussions on [19], available as {23].) In addition, because a set product is used to form the new col-
lection of experts, each expert is being paired independently with all other experts in the other set. This is a second
independence assumption. Both independence assumptions limit the general utility of the calculus. Another

difficulty is that all opinions are boolean — doctors only give lists of possible diseases, and do not offer any

"It is interesting to compare the interpretation implied by our formulation of belief functions with Pearl’s useful and successful
interpretation [19] based on conditional probabilities of provability. The interpretations are compatible; where we use a collection of doctors,
Pearl speaks of a collection of logical theories from which the hypothesis can be proved. The isomorphism is only broken by allowing the doctors
to make estimates.
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Opinion of ®

Opinion of wr

T\
0/

Opinion of
(0, 0r)

Figure 2. Combination in the Dempster/Shafer theory of evidence. Opinions are represented by subsets
of A. A state is given by the statistics of the opinions over a set of experts E. A pair of states is combined
by computing the statistics of the opinions over the product set of experts, where pairs of opinions are
formed by intersecting component opinions.

estimates of the likelihoods or probabilities of the diseases.

3.2. Yen’s GERTIS system

There have been many attempts to relax the objection that the Dempster/Shafer calculus is based purely on
possibilities, despite the appearance of continuous values that look like probabilities. For example, Yen [20]
extends I' so that each element maps to a collection of disjoint nonempty subsets together with a probability distri-
bution over the collection of subsets. That is, I'"(@) is a probability distribution over a collection of (disjoint) sub-

sets, rather than giving a single subset. Yen then develops a calculus with a modified Dempster’s formula. How-
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ever, for Yen, each element in E has a different body of evidence. The masses are still computed by computing
statistics over E. Accordingly, this methodology is applicable when the elements of information in E are largely
independent, and should be combined statistically rather than inferentially. In combination with another collection
of information Ev, the information is paired off and combined using conditional independence assumptions between
elements of £ and elements of E. The principal difference between this approach and the approach taken here is
that here we assume that all elements of £ have the same information, and that variation occurs because each ele-
ment in £ maps to an estimate, rather than an exact measurement. We also do not attempt to extend our approach to

the hierarchical label sets that Yen uses.

3.3. Pearl’s incorporation of uncertainty in Bayesian nets

Pearl’s comprehensive treatment of probabilistic reasoning [6] includes a study of uncertainty representation

and propagation in probabilistic reasoning systems such as in Bayesian networks.

Bayesian networks, called by Neapolitan “‘independence networks,”” and also called ‘‘causal networks,”” typ-
ically use directed acyclic graphs with random variables associated with each node and conditional probabilities
associated with each edge. While there are extensions of the methods described below to general directed acyclic
graphs, for simplicity we discuss the case of singly connected graphs. (See, for example, Lauritzen and
Spiegelhalter [24] for a discqssion of one form of Bayesian networks for multiply-connected directed acyclic
graphs.) An underlying assumption for the singly-connected graph is that any pair of nodes are conditionally
independent given the information at a node that lies on the directed path between them. This is a very natural
assumption for expert systems, for example, since a graph can be created from a system of ‘‘causal rules’’. Addi-
tional independence relations are implied by the causal network. The independence assumptions relate naturally to
intuitive causality rules: given the immediate antecedent of a conclusion, the conclusion is independent of non-
immediate causes. So it can be argued that the expert rules developed by the human experts reflect the indepedence

relations as understood by the expett in the system.

Under these assumptions, Pearl and his associates have shown that there is a direct algorithmic relationship
that allows the propagation of new information through the network. The propogation methods are derived from the

conditional independence assumptions and Bayes rule.
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Pearl has also suggested [6] (Section 7.3) that one can use this algorithmic relationship to carry out a sensi-
tivity analysis, and thus to develop an uncertainty combination formulation. Specifically, one could use probability
intervals for the information at nodes as a means of representing uncertainty, and propagate all possible combina-
tions of probabilities within the interval. Alternatively, one could use a probability distribution over a range of
values at one or more nodes, and compute the expected state of the network. By defining certain nodes to be inputs
(actually, the information given for the node), and other nodes to be outputs, a Bayesian network can be used to
define a functional combination method. This is a logical way to define a potentially complex combination formula.
Further, the formula can be extended to deal with a representation of uncertainty, using the sensitivity computation
that deduces a density distribution over the outputs given distributions for the inputs. Thus, a network can be used
to develop a functional updating formula, including uncertainty. We make use of functional updating formulae

when developing our calculi, although typically we consider far simpler updating methods.

In Section 7, we comment on possible augmentations to Bayesian networks in light of the theories developed

here.

3.4, Tzeng’s mathematical formulation of uncertainty

Tzeng has introduced a mathematical model of uncertain information [25]. The model is related to the
Dempster/Shafer calculus, in that there are ‘‘messages’” that map to subsets of labels, but is considerably more gen-
eral. Indeed, Tzeng shows how the Bayesian calculus and the Dempster/Shafer calculus fit into the scheme, and

demonstrate a range of other possibilities that can be derived from the same model.

There is a close relationship between his model and our viewpoint of multiple opinions of experts; the main
difference occurs in the kinds of opinions that are permitted. Whereas our nominative notion of opinions will be a
probability distribution over the labels, Tzeng, as with the Dempster/Shafer theory of evidence, consider only
boolean opinions (that is, lists of possible labels). However, each message in Tzeng’s formulation may have a
weight (see our space of weighted experts in Section 4.3), and for a given piece of evidence s (a code, in Tzeng’s
terminology), there is an associated collection of distinct messages (i.e., experts) E(s), E,(s), etc., where we recall
that each message gives a boolean opinion. From our viewpoint, this collection is a set of opinions, based upon the
information 5. Then, for different pieces of evidence s, one obtains different such collections (although note that

there is an implicit ordering: that E;(s) and E;(s,) are in some sense related — see our notion of pairwise com-
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bining of opinions in Section 4.3.4). The collection § of possible codes s is then given a prior probability distribu-
tion, and computations may be made in a Bayesian fashion conditioned on certain codes or certain messages occur-
ring. We see, however, that Tzeng’s information space, which is the full collection of codes, messages, and map-
pings of codes to messages and messages to subsets of labels, in some sense represents the collection of all possible
computational domains for a given labeling situation, confining the various pieces of possible evidence to give rise
to collections of boolean opinions (and thus Belief function representations). As we discussed in the previous sec-
tion, the functional relationship between the possible pieces of evidence and the probabilities and uncertainties is in
general unrestricted, and thus any function over an information space might be a reasonable model for a particular
sitnation. The modeling that leads to structure in Tzeng’s model occurs when the variety of available messages,

codes, and sets of experts, are restricted.

The model that we develop differs from Tzeng’s formulation primarily in the way that choices lead to dif-
ferent calculi; our formulation requires that the choices be stated in advance, and influence the way that maps and

spaces come together.

4. The Models

In this section, we present the alternatives for the models that will, in combination, lead to different calculi for
uncertain reasoning. Each model, as described above, depends on states that are based on multiple non-boolean
opinions, where each opinion is expressed relative to a set of propositions (i.e., hypotheses). We will say that each

opinion is offered by an expert and that:
E represents the set of experts,
and that:
A represents the set of propositions (or labels).

For simplicity, we will assume that A= {1,2, - - - ,N}. We will refer to these as labels, although they are variously

referred to as the “frame of discernment,”” the “‘outcomes,”’ or the ‘‘hypotheses.”’? The important point is that the

labels form a mutually exclusive and exhaustive set of possibilities: exactly one label is true for any given situation.

2 Hypotheses typically have binary truth values; thus n output hypotheses can be viewed as a method of representing 2 true output
possibilities (labels) through a binary encoding of each label.
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For each expert € E, the map

Xo Ao R

gives @’s opinions for each of the labels A€ A. Since we have chosen to represent the labels by integers, the opin-
ions of expert @ forms a vector, X, = (Xo(1),Xxo(2), -+ - X, (¥}). Mathematically, we can regard x,, as a realization

of a random vector x, representing sample © from the sample space E.

A calculus for uncertain reasoning will result when we explain how to mix two groups of opinions. That is,
we will assume that we have two sets of experts: E; and E,. Each set of experts have their opinions, respectively

x® and x®, containing the opinions x{) and x{, for ; € E,, m, € ;. What is desired is a method to determine a

single combined set of experts E, each with their opinions, x,, for we E.
The choices, each of which yields a different calculi, relate to:
® The values represented by the values in the opinions (i.e., the x ,(A));
e Which statistics are used to track (and simplify) the opinions;
® The way in which the two sets are combined (e.g., by set product or by set union); and
® The formulas used to combine the opinions of a single pair of experts.

We emphasize that the statistics used to describe the distribution of opinions forms the representation of uncertainty,
thus obviating the necessity to maintain individual expert’s opinions. The practical feasibility of implementing an
uncertainty calculus using the representation is related to the complexity of the statistical parameters that are used to

describe the distribution.
Let us consider the options.
4.1. Values represented by the opinions

We describe three alternatives for the representation of opinions: probabilities, log probabilities, and odds.

4.1.1. Probabilities. The most obvious choice is to allow each expert to give an estimate of a probability for

each label:

Xo(A) = Probability of A according to ®.

If we denote the information available to the experts by s, then each expert is making an estimate of Prob(A|s). The

resulting opinion, X, i thus the estimate of a probability vector. Clearly,
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0<x,(\) <1,

It would seem desirable that each expert should specify a valid probability vector, so that

N
Y xoM)=1 (Tentative)
=1
However, we will not impose such a requirement on our experts. There is no reason to impose such a requirement,
since the experts are making estimates, and not defining precise probabilities. In fact, the estimates may well be of
subjective probabilities. However, each estimate is based on the given evidence, and is made independently of the
estimates for the alternative labels. Thus if we point out to an expert that his estimates are inconsistent because the
sum of his probabilities is either less or more than one, he should not be perturbed, and merely answer that his esti-

mates are not exact.

We might have instead required our experts to constantly normalize their estimates so that the sum is always
one. In practice, this is the most likely scenario. However, for technical reasons, we will not insist that experts per-
form normalizations. There are two problems with normalizations. The first is that some aberrant expert might give
estimates of O for all labels, and thus give a vector that can not be normalized. However, this problem can be cir-
cumvented by banning the zero-vector estimate, or perhaps by banning all zero estimates — opinions must lie in the
range 0 < x,(A) < 1. However, in these cases, it is important to then use an updating formula which ensures that the
restrictions are respected after combination. The second, more serious difficulty has to do with the fact that the
average of a set of normalized probability vectors may not be the same as the normalization of the average of the
unnormalized opinions. Thus if we track only statistics of the set of experts, updating by the experts will not factor
through to formulas on the statistics if we insist on normalizations. We will further see, when we discuss updating
using independence assumptions, that we avoid certain difficulties if we permit our experts to give estimates that are

not necessarily normalized.

4.1.2. Log probabilities. A disadvantage of the probability opinions is that many updating schemes will require
knowledge of the prior probabilities of each label. That is, updating using probability opinions will be parameter-
ized by a collection of constants, v, - * -, Y, one for each label, where y; = Prob(A) is the prior probability for label

A.

As an alternative, we will consider the log-probability opinions, defined as:
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xa() =10 Probability of A according to o based on the evidence}
® & Prior probability of A as estimated by @
That is, each expert, having information s, makes an estimate of the quantity
Prob(A|s)
L(A|s) =log| ——~|.
(Als) g[ Prob(A)

The value x,(A) is expert @’s estimate of L(A|s). Note that this value is a so-called ‘‘log-likelihood,” in that it is
equal to log(Prob(s|A)/Prob(s)), by Bayes’ theorem. The log-probability L(A|s) is a real number, positive or nega-
tive, that indicates the influence of the information s on the probability of the label A in terms of orders of magnitude
(base e). Thus, for example, an estimate x,(A) =—2 says that the information s decreases the probability of label A
by roughly two orders of magnitude (i.e., by a factor of e™2) relative to the prior probability. This method of

representation, without the uncertainty calculus, is described by Charniak and McDermott [26].

The opinion vector X, in this case can have positive and negative components, and encodes the information of
the conditional probabilities. Indeed, if the prior probabilities Prob(A) are known, then the conditional probabilities

Prob(A|s) can be recovered from the set of log-probabilities, L(A|s). The precise formula is

Prob(A)-exp(L(A|5))
% .
3 Prob(M)-exp(L(M]5))
pyas]

Prob(A|s) =

Similarly, an estimate of the conditional prébabilities can be obtained from the estimates of the log-probabilities in
the log-probability opinion vector x,, using the same formula, substituting x,(A) for L(A|s). Because of the normal-
ization in the above formula, an additive constant to all components of x,, is unimportant: x, represents the same
opinion as x4, + (c,c, * *+,¢). However, if each expert o uses a different ¢ = (c,c, - - - ,¢), then this will affect the
estimate of the uncertainty by skewing the covariance matrix. Thus we require that all experts use the same vector
¢ =0 when making their log-probability estimates. However, the fact that the representation is invariant to transla-

tions in this way is useful for the accumulation of evidence in the absence of certain independence assumptions.

4.1.3. Odds formulation. Yet another alternative representation of x,(A) concerns the special case when the
label set A has only two alternatives. In this case, we typically have that A = {H,~ H}, where H is some proposi-
tion. That is, the label set consists of a proposition and its negation, and the two relevant probabilities are simply
Prob(H) and Prob(—=H). In this case, each expert needs to maintain only one value, and a reasonable form of the

representation is to use x, as a vector of length one, i.e., a scalar, to estimate the odds:
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Prob(H)
Prob(—H) "

Both probabilities are recoverable from the odds by the formulas Prob(H) = O(H)/(1+0O(H)), and Prob(-H) =1 —

OH) =

Prob(H). Using x, = O(H) results in the odds formulation. The odds values are always nonnegative, but are
unbounded. In this case, there is an implicit normalization, since only one parameter is tracked, although there are

two constituent probabilities that could be estimated.

4.2. Statistics

Next, we consider the statistics that should be maintained by the uncertainty reasoning system. There are
many possibilities, but we will list only three. We consider the complete representation, the tracking of mean and
covariance statistics, and mean and standard deviations statistics. We omit higher order tracking, and methods

that might model, say, the distribution as a sum of multinormal distributions.

4.2.1. Complete representation. The complete representation keeps all the values, and tracks all the opin-
ions. Generally, however, such a system involves too many values. If the opinions record discrete values, such as
boolean values stating whether a label is possible or impossible, then a complete set of joint probabilities can be
maintained. This is exactly the situation in the Dempster/Shafer theory. The representation in this theory is based
on a belief function, which is updated by combining with other belief functions. The belief function encodes all of
the joint statistics over the labels [22], where by joint statistics we mean the probabilities over the set of experts.
Thus the belief in a subset A is the probability that an expert names a subset of possibilities that is contained in A.
The mass on A is the joint probability that the labels in A are precisely the ones that are named as being possible by
a random expert (taken from the sample of experts). The joint probability, that a particular collection A of labels are
named (with no restrictions on the other labels) is known as the commonality value Q (A) of the set. From the col-
lection of mass values, or plausibilities values, or commonality values, it is possible to derive the other collections;
thus each collection is an equivalent representation of the full 2V set of joint probabilities. In essence, rather than
maintaining N probabilities, one for each label in A, the Dempster/Shafer calculus uses 2V values, one for each sub-
set of A. It is important to recall, however, that these statistics are computed over the sample space of experts, and
not over the sample space of problem instances. Once again, however, the Dempster/Shafer formulation generally
involves unacceptably many variables. Various methods have been proposed for reducing or simplifying the

number of variables in the Dempster/Shafer calculus [27,28].
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For the Dempster/Shafer calculus, each opinion is given by N boolean values, and thus there are 2V possible
opinions. In general, when there are P discrete possible opinions, then the complete set of statistics can be specified
by 2P yalues. When the opinions are values from a continuous range, and therefore not limited to a finite set, then
the full set of statistics will generally require storing each and every opinion. Accordingly, when the opinions are
values from a continuous domain, then the complete statistics representation simply amounts to tracking each and

every opinion.

4.2.2. Mean and Covariance. Instead, if we regard map x,: A—R as a realization of a random vector over

the sample space ® € E, then the most obvious statistics to maintain are the mean and covariance values, defined by:

) = Ave [xa)
we
ch) = Ave v [ro 00|
Since the covariance matrix is symmetric, there are a total of N + N(N+1)/2 variables in the mean and covariance

representation, given that there are N labels.

4.2.3. Mean and standard deviations. As an even simpler alternative, we might retain only the N means and
the N standard deviations. The standard deviation for label A, 6(A), can be defined as:

oM =CRN).
This is the mean and standard deviations representation. Whereas the mean and covariance representation models
the distribution of opinions as an ellipsoidal cloud about the mean opinion, the mean and standard deviation
representation uses a squashed spherical shape, i.e., an ellipscid oriented along all axes, about the mean in an N-

dimension Euclidean ‘‘opinion space’” (see Figure 3).
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° D

a b

Figure 3. A multinormal spread of opinions by (a) the mean and covariance
representation and (b) by the mean and standard deviation representation.

In some of the calculi, we need in addition to the above statistics a value for the total number of experts in E,

representing a total weight M for the given piece of evidence shared by the experts in E.

So far, we have described the set-up assuming that each expert has equal weight. We can easily extend the
representation to allow each expert to have a nonnegative weight p(w), insisting that the sum of weights

3 p(w) = My equals the total weight (or mass) of the evidence associated with the experts E, if a total weight value
wekE

is included. When the experts have different weights, the calculation of the average in the definition of the mean

and covariance values should take the constituent weights into account. When this is done, the mean is given by

1

p) = My

2 (@)X, (),

wek

and the covariance is

COM) = 3= 5 P[00 0 [ro(0) - i)

E geE

For both the ‘‘mean and covariance’ and ‘‘mean and standard deviations’” representations, the narrowness of
the distribution is a measure of the certainty in the mean opinion. There are various ways of reducing the multinor-
mal distribution to a single measure of the degree of certainty. For example, we can take the volume of the ellip-

soid, which can be computed from the determinant of the covariance matrix, as a measure of uncertainty. Alterna-
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tively, we can measure uncertainty using the maximum semi-diameter of the ellipsoid, or, depending on the values
represented by the opinions, we might want to measure maximum relative variation from the mean value within the
ellipsoid, where the relative variation of each component is measure as a percentage of the component value in the

mean opinion.

4.3. Combining sets

We now turn to the alternatives for the formulation of the combination method. In this subsection, we are
concerned with the method for creating a single set of experts E from two given sets £y and E,. We will define the
methods of combining by union, by pairwise matching, by set product and by the product measure. In addition,

we introduce the non-commutative update by means and commutative update by means methods.

4.3.1. Set union. The most obvious way is simply to take a union:

E=FE|UE,.
The union method of combination, which seems so desirable, has a serious flaw: namely, evidence is never actually
combined, but only pooled. It is the essential feature of evidential reasoning that one body of information known to
E, in combination with another body of information E, can lead to a conclusion that would not be known or
suspected by either group individually. The union method has no way of incorporating such connectives into the
reasoning system. Thus the union method of combining experts leads to formulas that do not depend on the method

of combining opinions, since pairs of opinions are never combined.

4.3.2. Set product. The product method of combining the sets is to replace the union with a set product:

E = E 1 X Ez,
so that £ becomes the set of all committees of pairs of experts, composed of one expert from each of the two sets,
E, and E,. This is, for example, the method used in the Dempster/Shafer calculus. The advantage of this method is
that each committee can use an opinion combination method (discussed in the next subsection) to reason about the

combined information.

4.3.3. Product measure. In the case when each expert has a weight, we need to define the weights of the com-
mittees. In this case, each expert @, in E; has a weight p; (), and each expert o, in £, has a weight p,(m,), so

that in the product set formulation, the resulting weight of the committee @ = (0, 0,) should be
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p(o) = p () Pr(ed,).
The total weight My, of the product set E is simply the product of the constituent total weights, Mg, ‘Mg,. Since the

weights on the experts forms a measure, this representation is simply the product measure of experts.

4.3.4. Pairwise matching, The pairwise method assumes that the number of experts is always indexed over the
same set, say {1---n}. Thus we may assume that the experts are numbered 1 through n, in any given set of
experts E. Then given two sets of experts, £, and E,, each set containing n ordered expetts, then the combined set
E is also n ordered experts, where the k™ expert is formed by combining the k™ expert in £ with the k™ expert in
E,. That is, the collection of experts is regarded as an n-tuple, and combinations are performed pairwise on the

tuples. The length n is fixed in advance, and can be made as large as we like.

In fact, in order to get meaningful formulas, we will generally assume that » is infinite, so that the experts are
indexed over the natural integers {1,2 - - - }, and that the errors (i.e., variations from the mean) in the opinions are
always orthogonal. Thus if {x{P(A)]>3; is one collection of opinions for any given label, with mean u®(A), and
{x?()}:., is another collection of opinions (perhaps for a different label) with mean p® (M), then the expectation

E{GPW-p® ) (P )-p@ (W) } =0.
This orthogonality condition on the noise, however, holds only between pairs of collections of opinions. The condi-
tion is implied by independence of the opinions x{V(A) and xP () viewed as random variables over the sample
space of natural integers, but is weaker than complete independence. In the case when the opinions are gaussian

random variables, then orthogonality of the errors is equivalent to independence.

For the case of updating using probabilities, a further assumption will be needed, which is equivalent to com-
plete independence. Thus if we consider the opinions x to be random vectors over the sample space of experts,
then we require independence of the collection of random vectors obtained from different sets of experts (which in
the pairwise matching case are indexed over the same set). Independence can be viewed roughly as saying that the
joint cumulative probability distribution functions are separable into a product of the constituent probability func-
tions [29], but practically, for our purposes, will mean that

E{G)P0f) = (O (u®)
for any pair of sets of opinions on either the same or different labels.
Interestingly, these independence assumptions are required only for the pairwise matching combination

method, whereas in the product method, the independence of cross terms comes about by explicitly including the
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ferms.

4.3.5. Non-commutative update by means. There are two other alternatives that lie somewhere between the
union method and the product method of combining sets of experts. In the first, the non-commutative update by
means, cach expert in £, combines with the mean opinion of the experts in E;, potentially taking into account the
spread of opinions in E ;. The result is a collection of opinions £, with one opinion for each member of E,. This
method is not commutative, since it matters whether experts in £, combine with the mean opinion of experts in £y,

or experts in £ combine with the mean opinion in E,.

4.3.6. Commutative update by means. The commutative update by means method combines each expert in
E, with the mean of the opinions in E,, and each expert in EF, combines with the mean of the opinions in Ey, to

form a collection of opinions indexed over E, one for each expert in the union £y UE,.

4.4. Combining opinions

In nearly all of the models, the core of the evidential reasoning process occurs when two opinions must be
combined. Each opinion is an estimate of a quantity related to a probability, so we discuss methods for updating
probabilities. Our viewpoint is purely Bayesian, even though the eventual formulas for evidential reasoning among
multiple opinions will not follow Bayes’ law. We will cover in detail two Bayesian-based combination methods,
one where conditional independence is assumed, and the other where we introduce o-dependence assumptions.

In addition, we discuss conjunctive updating, and functional updating.

4.4.1. Conditional independence updating. Let us suppose that two experts are to combine their informa-
tion. The first expert knows the information sy, and the other expert knows the information s,. Their opinions are
based on estimates of quantities related to Prob(M]s,) and Prob(h|s,) respectively, for all Ae A. Of course, what is

desired is knowledge of the distribution Prob(A|s;,s5,) for A€ A,

If we assume conditional independence of the evidence, i.e.,

Prob(s, |s,,A) = Prob(s,|A), VA

then there is an easily-defined updating function. In that case, it is not hard to show that

1 Prob(A|s{)Prob(A|s,)
K Prob(A)

Prob(Als,,s0) =
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where K is a normalization constant, and is given in two forms by

_ Prob(sy,sy) Prob(As|s1)'Prob(As]s,)
~ Prob(s;)-Prob(s,) _}/eA Prob(A\s)

The computation is straightforward and standard, and proceeds from Bayes’ Law and the fact that conditional
independence is equivalent to the statement that

Prob{sy,s,|A) = Prob(s; |A)Prob(s, |A).
Note that conditional independence is symmetric, so that the resulting combination formula is commutative: updat-

ing information s, with information s, is the same as updating s, with §,.

It is also worth noting, since it is a common etror, that conditional independence neither implies nor is implied
by unconditional independence: Prob(s;,s,) = Prob(s,)Prob(s,). If we assert unconditional independence in addi-
tion to conditional independence, then we can additionally conclude that K = 1. However, this can lead to a host of
problems, since it puts compatibility constraints on the constituent probability vectors, and hence on the
Prob(A|s,)’s and Prob(A|s,)’s. Specifically, suppose we are given Prob(A]s;)’s, and assume conditional indepen-
dence and unconditional independence. Then in order to combine these probabilities with a set of Prob(A|s,;)’s, we
must have that the resulting Prob(A|s,5,)’s, given by the above combination formula with K=1 is a valid probabil-
ity distribution. This constraint means, however, that only certain Prob(A|s,)’s can be allowed: there will be an
additional constraining equation, and the constraint will depend on the probabilities given from information s;.
Thus the assumptions of conditional independence together with unconditional independence imposes restrictions
on sets of allowable probability vectors, which is hardly realistic in practice. In a certain sense, the assumptions of

conditional independence is irreconcilable with an assumption of unconditional independence.

These problems disappear when we use opinions for the updating. This is because the opinions are viewed as
estimates, and are not required to equal probability vectors. In the case when the opinions represent estimates of
probabilities, we do not require that the estimates sum to one, and so a pair of estimates x, and x), obtained using
information s, and s, respectively, may update under the assumption of conditional and unconditional indepen-
dence according to the formula X (g, o (M) =x%) (\)x@ (WA, where ¥, is the prior probability Prob(A). The fact
that the resulting vector may not sum to one does not concern us, since the combined opinion from the committee
(wy,®,) is only an estimate. In this case, both conditional and unconditional independence may be used, and there

is no incompatibility. For updating probabilistic opinions, we will assume both types of independence (the assump-
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tion of unconditional independence will be dropped for updating of log probabilities).

4.4.2. Alpha dependence updating. Independence is extremely useful, but often quite unrealistic. It requires
many separate and strong statements about the probabilities, and implies that the symptoms have no underlying
common mechanism, Especially in reasoning networks, conditional independence may not be valid. One method
for modeling some level of dependence is introduced in [30], where the authors have introduced the notion of a-
dependence. The assumption required is that there exists a real value o(s;,5,) such that the following N conditions
hold:

s y,52)
Prob(s,}5{,A) = [Prcb(sgl?u)] , A=1,2 "N

The essential requirement here is that os(,5,) is independent of A. Note that if oo= 1, then we have the same
assumption as conditional independence. The case o.= 0 might be called complete dependence; that is, the infor-
mation §, is implied by the information s;. We may also have o>1, which signifies an inverse dependence: infor-

mation 5, makes s, less likely in the presence of any given label, always by the same exponential amount.
Under the assumption of a-dependence, for o= s ,55), we have the updating formula

Prob(A| s, ) [Prob(A|s,)]%
Prob(A)*
Prob( s )-[Prob(hs]s,)1%
oA Prob(An)*

The denominator of these expressions is the same as

Prob(A|s,5,) =

_ [Prob(s,s,)]
"~ Prob(s;)[Prob(s,)]*’

which will be equal to one if we additionally assume unconditional a-dependence:

Prob(s; |s,) = [Prob(s)]%

However, we will only require both conditional and unconditional a-dependence when updating probabilistic opin-

ions. An advantage of the log-probability representation is that the formulas work fine even if K is not equal to one.

It is interesting to note that when o= 0, then the addition of information s, adds no new information, and so
no updating takes place. That is, the resulting distribution is the same as the initial distribution. Also, symmetry is
not guaranteed. The fact that s, is o(sy,8-)-dependent on s, does not imply that there will exist a coefficient
os,,s1) for an o-dependence relationship for s, on s5,, except in the case o.= 1. Even if an o(s,,s)-relationship

does exist in addition to the given afs,s5,), the relationship is likely to exist only approximately, and the optimal
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values for the two o’s are not functionally constrained. Generally, given information s; and s, from respective
classes of information, an o-relationship will only exist in one of the two directions, and then only approximately.
Accordingly, given distributions for Prob(A|s ) and Prob(A|s,), the system should combine the two using either an
o{s,,5,) formula, or an &(s,,s;) formula, whichever is appropriate. In typical usage, we have a current body of
knowledge, represented by s, and some new evidence, §,, and we wish to combine the new knowledge with the
old. Let us assume that the evidence is accumulated in an order such that when an a-relationship exists, it is the
ofs,5,) coefficient that is known, so that the new information s, influences the existing information with an
exponent of a(s;,$,) as in the formula above. For noncommutative updating by means, and for the product updat-

ing methods, this is all that is needed.

For the commutative updating by means, we must assume that both an a(s;,s,) coefficient and a a(s,,s;)
coefficient are known, and model the a-dependence of the data s, on s, and the data s; on s,. In order not to
obtain constraints on the allowable probability distributions given information s, and s,, it is necessary to assert that
the a-dependence conditions will hold only approximately. In this case, a(sy,5,) will most likely represent an aver-

age over A of the ratio of the logarithms of the probabilities, and similarly for o(s,,s ).

The updating formulas for the conditional independence and the o-independence cases become particularly
simple when viewed in terms of the log-probabilities. The formula for the o-independence case is
LMs1,52) =L(A|s1)+ os1,59)-L(A]s52),
and the independent case is given simply by oo=1. Recall that additive constants to all components of L are unim-
portant, so that we can ignore the normalization factor in the denominator of the equation for Prob(A|s,,s,), since it

is independent of A,

Updating of the odds given t-dependence depends upon the prior odds of the proposition P. If we define the

prior odds to be

Prob(H)
H=—""",
OH) Prob( - H)
then the conditional odds update according to
1 Ofs 1,52)
OMH|sy,8,)=O0H]|s)|——OH
(Hlsy,5,)= O(H][sy) 0 (H|s,)

The independent case is again given by oo= 1. Recall that in the case of the odds representation, only the one value,

the conditional odds on the proposition H, forms the entire opinion vector of any given expert ®. The quantity in
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the brackets in this formula, O (H|s,)/0 (H) is the same as the likelihood-ratio: Prob(s,|H)/Prob(s,|- H).

4.4.3. Conjunctive updating, We next consider the case of conjunctive combination of opinions. In this for-

mulation, in a pair of opinions, the most pessimistic opinion dominates. This translates to the formula

Prob(Alsy,s,)= %min{Prob(Ms;),Prob(Msz)}‘
Here K is a normalizing constant that is needed in order to ensure that the left hand side is a valid probability distri-
bution. In practice, the minimum is taken of the two opinions x, (A) and x4, (), and the result is assumed to be
monotonically related to the probabilities. That is, the normalization is ignored, and the collection of values
comprising any given opinion x,(1), - - - ,x4(V) does not even approximate a probability distribution. Since dif-
ferent results would ensue if the normalization were performed for every combination, it might be the case that the
values of the opinions (the ‘‘fuzzy values’’) are not functionally related to probabilities. Heckerman has a detailed
discussion of the use of the ‘min’ operator in MYCIN [31] and its relationship to probabilities. The conjunctive
combination rule is an example of a fuzzy logic rule [16,32] which is nonetheless applicable in some situations. A
conjunctive combination is most common in the two-label case, and applies only to one of the two labels, and thus
will be considered only in terms of the ‘‘odds formulation’ for the representation of the opinions. For this case, the
conjunction formula is
OH|s1,52) =min{ O H|s,),0H]|s,)}.

The renormalization necessary to maintain an underlying probability distribution happens automatically by allowing
the “‘not H” proposition to absorb discarded probability weight. Generalized combination rules for other logical
connectives of propositions can be handled in a similar manner. Bayesian networks, for example, use ‘‘noisy-or

gates,”” ([6], Section 4.3.2) and other methods to model kinds of dependence in a related fashion.

4.4.4. Functional updating. In general, anything is possible for the combined distribution. Knowltedge of
Prob(A|s,) and Prob(A]s,) in no way constrains Prob(k|s,,5,). Each of the N outputs is an arbitrary function of the
2N input values, subject only to the conditions that the inputs and outputs are probability distributions. We can
write

r=17 5, P9,
where p and q are the probability vectors with components Prob(A|s;), A=1, - - - ,N for i=1,2 respectively, and r is

the resulting probability vector formed from the components Prob(?»{s,-,sj). Depending on the information sy,s,
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T may be known, unknown, or known imprecisely. It commonly occurs that ®, , is only known reasonably

51,82 1,82

well in a subregion of its domain. Under certain assumptions, 7, , is known over the entire domain and has a sim-
ple form. In the functional updating case, it is assumed that a model for m,, , is constructed for every instance of a
pair of information sources (§1,55).

Each of the previous cases constitute an assumption on the form of the function =, ,,. For example, in terms

of m,, s,, conditional independence asserts that

1 | P1dyr P2q42 DNGN
3 pj'?j noon Y
j=t Y

where the y; are a vector formed from the prior probabilities Prob(A) for A=1"--- N. Likewise, conjunctive updat-

nsl,sz (P,‘]) = N

ing gives a simple formula for =, ,,. One can design other examples of functionals 7 ., that might be applicable

152

in certain cases.

4.5. Summary of the options

Table 1 contains a summary of the options that can be used in developing the models. Each column contains
the alternatives for a particular component of the system, and the choice for each column is substantially indepen-
dent of the other columns. That is, in order to build a model for evidential reasoning with uncertainty, the designer

should choose one from column A, one from column B, etc.

5. The tables of uncertainty calculi

We proceed to describe the calculus for each reasoning model that can be obtained from the table. We will
treat sequentially the three possibilities for the form of representation of the opinions, namely as probabilities, log-
probabilities, and the odds formulation. We will only consider the mean and covariance statistics — the case of
mean and standard deviation statistics can generally be obtained as a special case of the mean and covariance. The
case of complete statistics, for our formulations with continuous-valued opinions, is accomplished simply by track-
ing all opinions, and thus is omitted. Within each heading, we have choices for the combination of experts and the
method for combining opinions, leading to a two-dimensional table. Finally, we develop a somewhat different cal-

culus based on Kalman filtering in the next section. The updating formula involves a product instead of a sum in

Page 27



Combination Calculi for Uncertainty Reasoning

Representation Statistics Combining of Combining of
of Opinions to retain Sets of Experts Opinions
Probabilities Complete Union Conditional independence
Log-probabilities Mean & covariance Pairwise matching o-dependence
Odds formulation | Mean & std deviation Product Conjunctive
Product measure Functional
Noncommutative by means
Commutative by means

Table 1. Summary of the options for the models.

these cases.

We reiterate that the Dempster/Shafer calculus fits into the scheme, but with different choices: namely, using
a boolean representation for the opinions. In that case, the Dempster/Shafer calculus can be shown to arise when all
statistics are tracked (not just the first-order means and second-order covariances, but all order statistics up to N, the
number of labels), assuming a product set combination of sets of experts and independent updating of experts.
However, the principal limitations, as mentioned earlier, are that boolean opinions are less interesting than proba-
bilistic ones, and that the full set of statistics involves 2" variables, whereas the simpler means and covariance

statistics use only O (N 2) variables.

To describe the combination formulas, we assume that we have two states; the current knowledge is
accounted for by the state ' having means u,(A) and covariance matrix C;(A,A); the state x® to be combined
with the current state has means p,(A) and covariance matrix C,(A,A+). In addition, when needed, we assume that

the total weights of the respective states are M and M,.

For simplicity, we denote by o the value for as,,s,), and by o, the value for as,,s;). Throughout, we use
W, Wy, and p, to denote the vectors with components u(A), y (A), and py(A), and C, C;, and C, to denote the
matrices with entries C(A, A7), C{ (M M), and C,(A,M). Also, we use the notation x* for the vector outer product of
an N-vector with itself: x-x’. This is an N by N matrix whose A, A» component is x(A).x(As). The termwise product
of two matrices, A and B, is here denoted by AB, and yields a matrix whose A,A» component is A (A, A7)B (A, A7)

The termwise product of two vectors is denoted by x.y, and yields a vector with components x(A)-y(A). The vector
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a stands for the N-vector all of whose components are o, and similarly for o; and e, and -1, and a vector raised to
a vector x¥ is just termwise exponentiation; in particular, v has components 14y, for A=1, - -+, N. The values m;

and m, are the masses M ; and M, normalized so that m; + m, = 1. A table of all abbreviations is given in Table 2.

We now make some initial global comments on the formulas.

The union method of updating leads to the same formula, regardless of the method of combining opinions, as
noted before, since there is no pairwise combination of opinions that takes place. In fact, the formulas for the
revised mean and covariance when the union method is used are the same formulas for the probabilities, log-

probabilities, and the odds form of representation of the opinions.

Abbreviated Notation Actually Denotes
oy, o oS 1,52)
0 0us2,51)
H (WD), u2) V)
K (1), 1 2), - i (N))
C CAM) 500
C Ci(A M)
A
M, M,
i o M+M," M, +M,
x° xx' = {x(i)'x (j)} iy
AB [A(x, x,)‘m,x,)] »
X.y @y, - x Ny AN)
o (o, 0, 0, 00)
x7 (x(APW, v x(NY®)
' (W, o W)
(w, C) of min of two
Oy, Cr,12,Cy) Gaussian random variables

(Formulas (5.1) and (5.2) below)

(p, C) of min of constant
Wy, 1, Cy) with Gaussian random variable
(Formula (5.3) below)

Table 2. Abbreviations used in the formulas.

Page 29



Combination Calculi for Uncertainty Reasoning

The product measure method for combining experts leads to the same formulas as the product method. The
fact that the two sets of experts might have unequal weights has no effect on the formulas. This is a consequence of
the fact that we endow a committee of two experts (;,m,) with the product of their respective weights, and that we

normalize the averages by dividing out by the product of the total weights MM ,.

The pairwise matching formulation, with the appropriate independence assumptions, leads to the same formu-
las as the product methods. This occurs because the independence assumptions are precisely the ones needed to
disregard the ‘‘cross terms’” in the combinations of experts that the product method includes explicitly. The pair-
wise method of combination is the more common assumption in stochastic modeling and systems approaches to
dealing with measurement inaccuracies, as with Kalman filtering. The product method, on the other hand, is the
foundation of the Dempster rule of combination, and of other uncertainty calculi. Our results, thus, point out the

distinction between the approaches, but unify the methods by exhibiting equivalent results.

Whenever the conjunctive method of combination of opinions is used, formulas are given that will require
special numerical procedures supplied by software. However, whether the computation requires a few multiplies or
a few thousand multiplies will have little impact on the actual computational time required for uncertainty reasoning
since the main cost will be borne by the processes to compute constituent uncertainty values. The fact that sophisti-
cated numerical methods might be required should not deter one from using the most appropriate combination for-
mula possible. The computations that are required for conjunctive combination involve computing the mean and

covariance of the minimum of multinormal random vectors. We can formulate these computations as follows.

Suppose that x is a random vector with mean p; and covariance C;, and that ¥ is a random vector with

mean p, and covariance C,. The corresponding density functions are given by

B 1 ~E)'CT (Epy)]
fxw (€)= O LdeiC, 7 eXp{ 3 ;
B 1 ~(E10)"C7 (Epy))
&)= QrN[detC,]" eXp[ 2 i

Now let x = min(x'”,x®) be a random vector defined by

x = (min(x(1),y(1)), -+, min(x (N),y(N)) ),

i.e., a random vector whose components are the minimum of the two respective random variables. Assuming that

the sample space of x is obtained from independent trials from E; and E,, then the product method results for the
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combining of experts. The mean and covariance of x can be computed from

u= J jmill(§1,F;z)fxm(&1)fx<2>(§2)d§1d§2: (5.1)
RVRY
C= _f j [min &, &) — > fx0 (&1 )fx@ (§2)dE,dE,. (5.2)
RVRY

Although there are no trivial closed-form formulas, the computations are not as unformidable as it might first seem.
We are aided by the fact that the marginal densities of fyn and fy@ are Gaussian, and by the existence of fast
numerical approximations to the error function (e.g., erf, which is a built-in function in some programming
languages), defined by
erf(x) = @A) jo" exp(—12)dt.

In the absolute worse case, numerical quadrature methods must be employed in order to find the resulting mean and
covariance. Alternatively, an indeterminate approximation method might be invoked by generating a random col-
lection of samples, and computing the resulting mean and covariances after taking pairwise minimums. In the
tables, we denote the result of the multi-variate computation as

(H, C) = ¢(l11 ’ Cl ’HZ’C2)’
where p is given by Equation (5.1), and C is given by (5.2).

When the combination method of the two bodies of experts is the either of the ‘‘combination by means™
methods, then the updating involves a gaussian distribution with a constant value, rather than two gaussian distribu-
tions. The same formulas may be used, however, by using a zero covariance matrix for the constant distribution:

(1, C) = 0(py, 0,2, Cy), (5.3)
We will denote the resulting pair with the notation (u, C) = y(u;,p,,Cy).

Many of the formulas presented in the next three subsections involve considerable algebra for their deriva-
tions. We omit all such details, in the interest of brevity. In some cases, our terseness masks nonobvious manipula-

tions.

5.1. Probabilistic opinions

We suppose that the opinions x,(A) are estimates of the conditional probabilities Prob(A|s), where s is the
information known by the set of experts £. The means and covariances are then obtained from the x,(A) data. The

individual estimate vectors are X, and are not necessarily probability vectors, i.e., the components may not sum to
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one. The mean opinion vector g contains the components p(A), and will likewise not necessarily be a probability
vector. Of course, we can at any time normalize the individual opinions, or normalize the mean opinion. Although
normalizing the mean opinion is not the same as taking the mean of the normalized opinions, it is not an unreason-
able approximation, providing the opinions mostly lie close to the probability space. This is because the normaliza-
tion process moves vectors in a direction that is approximately normal to the probability subspace. Similarly, the
covariance matrix is not disturbed too badly providing the vectors are close to probability vectors.

If we assume conditional independence and unconditional independence, then the two estimates x{, and x5
combine using the formula ng.x%.“{_l, just as though all constituent estimateé are probabilities. That is, the com-
bined estimate for label A is given by
xBOxR0)

Vi
where 7y, is the prior probability on A (and is assumed to be a known constant), Providing the input vectors are

x(fm@z)(x) =

approximately probability vectors, then the output will also be approximately a probability vector, because of the

Combining of Combining of Opinions
Experts Condlthnal & Unc?ndmonal a-dependence— Conjunctive
independence
Union L=y gy
C= M1 Ci+ma Cotm y (Wi—p* )y (u3—p°)
p= Y * €)=
Product | = (y (€, Cr i Cr i3 €y 01,1, Co)
Product H=p Y « 1,0 =
measure C= )’ [C, CHpiCr+p3Cy ] o, Ci,1,Cy)
Pairwise M=y « 1,0 =
matching C= (¥ C, Cpi Cr+p3Cy] O(p1,C1512,C)
Noncomm. n= uliuzz.'g“ n= u&‘”j-u_zg'z 0=
by means C=")rucC, C=(pu"y uz) 22 ypg, i,Cy)
_ ~1 H=m gty _
Commutative H=p Y T,y ™ O =my(y,p,Cy)
by means C= {1 m piC+m 2 G, c :ml(ggl 'Zx_al ’°Cy +myy( C,)
1B 1HiL2 +m2(ll12"Y 2)2(32 2W s Hp, Ly

Table 3. Uncertainty calculi for probabilistic opinions. The entries marked ‘*’ mean that a formula is
not possible for this case. Notation is explained in Table 2. Especially, we reiterate that matrix
juxtaposition, such as in €,C, and piC,, denote termwise multipfication, rather than normal matrix
multiplication.
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assumption of unconditional independence, as discussed in Section 4.4.1. Accordingly, we may track the mean and
covariance of the opinions, and normalize the mean opinion when we are finished, or at infrequent intermediate

stages. The result will be similar to tracking all opinions, normalizing probabilities upon every pair of updates.

The pairwise matching method of updating leads to the same results as the product and product measure
methods. For pairwise matching, the full independence assumptions are required of the opinions of the experts from

the two bodies of experts, as discussed in Section 4.3.4.

When we assume o-dependence, then a combination formula is not possible for product, product measure,
and pairwise combination of experts. (Formulas will be possible in the case of log-probability opinions). This is
because the average of the o-th power of a collection of values is not related to the o-th power of the average. If the
statistics were based on a geometric mean instead of the arithmetic mean, then formulas could be developed. When
we say that a formula is not possible, what we mean is that for the given updating method, and for the statistics that
are being tracked to describe the distribution of opinions of the bodies of experts being combined, there is

insufficient information to deduce the desired statistics of the combined opinions.

For noncommutative updating by means, we assume that every expert in £, combines with the mean opinion

of the experts in £ using an o(s,,s) relationship, so that the combined opinion, indexed by experts in E,, is

192.,0
rg(h) = [m(?»)Jaxm ( ).
1

Note that the o-dependence is placed on the mean opinion of the experts in £, and not on the opinions in E,, which
is why the o, = a(s,,5) dependence is assumed. This choice is required in order to achieve an updating formula
based on means and covariances; in fact, for log-probabilities, we will make the opposite choice. Once again, we
require an additional unconditional o-dependence assumption, in order to be assured that the results are approxi-
mately probability vectors, so that we may normalize the mean value in approximating the mean of the normalized

values.

For commutative updating by means, every expert opinion x2 for o € E, combines with the mean opinion of
E, namely p;, using an a(s,,s;) relationship, and every expert opinion of x{¥ for m € E, combines with the mean
opinion of E,, namely p,, using an as,s,) relationship. Once again, the appropriate o-value is always placed on
the mean opinion from the other set of experts, rather than on the opinion. The opposite choice will be used for

log-probability opinions. Also recall that, as discussed previously, it may be unrealistic to assume that both an

Page 33



Combination Calculi for Uncertainty Reasoning

ofs,5,) relationship and an afs,,s,) relationship exist simultaneously.

In Table 3 we present a matrix of the formulations, Each set of formulas defines the method for obtaining the

new mean and new covariance, respectively p and C, from the input means and covariances, p;, py, Cy, and C,.

5.2. Log-probabilities

The case of representation of the opinions by log-probabilities, with mean and covariance statistics and pro-
duct set updating assuming conditional independence, is discussed in [22]. The same situation, but using o-

dependence was introduced in [30]. Thus some of the entries in Table 4 can be found in these works.

Recall that the log-probabilities are defined as the quantities:

Prob(A|s)
Prob(A) |’

L(\|s)= log{
and that the x,(A) are estimates of this quantity. The values can be either positive or negative, and are unbounded.
Once again, u(A) represents the mean the opinions x,(A), and can be positive or negative; C(A,A) are the com-
ponents of the covariance matrix of the values, and will generally define a matrix giving the ellipsoidal one-sigma

distribution boundary of a multinormal (Gaussian) distribution fit to the set of opinions.
When the log-probability opinions are combined, the result is computed as though the estimates were true
L(A}s) values. Thus for unconditional independence, we have that

x(ml ,02) (7\') = xgl) (7&)4‘}7%2) (7")'

In reality, we should subtract logK on the right hand side, where

B [Prob(s,s,)]
"~ Prob(s;)-[Prob(s,)]

However, if we assume unconditional independence, then logK is zero. If we don’t assume unconditional indepen-

dence, then we can still omit the logK term, because log-probabilities are defined modulo an identical additive con-

stant, and logK is constant over A. This is a major advantage of the log-probability representation.

For a-dependence, our formulas assume only an a(s;,5,) relationship, except for commutative updating by
means, where a two-way ¢-dependence is assumed. In the normal situation, we combine the opinions of the experts

E | with the opinions of experts E, with the a-influence on the E,-opinions, yielding
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Combining of Combining of Opinions
Experts Conditional
independence o-dependence Conjunctive
; H=mipy+moly
Union C = my CymyCotm, (ud— sy (u3—422)
p ¢ B=ptp B= Py oy (n,
rodue C=C1+G, C=C+o’C, 001, Cio s, C)
Product H= Py H= oy (B,
foduc C= C1+C2 C= C1+(X2C2 q)(ul?Cl’uQ: C2)
p H= ot il A ) (,
roductmeasure | =G, C=C i+’ G, 011, Crba, Co)
Pairwise B =ity = POl (ROE
matching C= C1+C2 C= C1+U, C2 ¢(H1 ,Cl,u2,C2)
Noncommutative B =gy = Oy H (P, C) =
by means C=G C=0’C, Wi, Cy)
Commutative B= Pty p=m [u1+0% uz]+mz[gau1 +iy] n,C)=
< C=m,05C;+m,07Cy+ my(py, py, Co+
by means C=mC+m,C L2 12 2 2 1A 11 1
Y PR | g (0 =) o (o o= | ma (i, i, C,)

Table 4. Uncertainty calculi for log-probabilistic opinions using notation explained in Table 2.

Ko ,00) (}") = X&) (7\')‘*'0“%% 0\')

Once again, the true formula should include a subtraction of logK on the right, where K is given by

~ [Prob(s;,5,)]*
~ Prob(s; )[Prob(s,)]*

However, if there is unconditional o-dependence, then this term is zero, and in any case the term is unnecessary

because it is independent of A, and thus constitutes an identical additive constant over the label set.

For pairwise matching, we no longer need complete independence of the sets of opinions x (W) and x2 Ov).
Instead, it suffices to have the orthogonality condition as given in Section 4.3.4.
For non-commutative updating by means, each expert in £, updates with the mean opinion from £ using an
oy = 0fs,8,) relationship, yielding:
Xy (W) = V) + ax) ().
Note that this is a different choice than made for the probability opinions. The alternative, placing the o-
dependence term on the mean opinion, may be treated similarly, and leads to different formulas. For commutative

updating by means, the experts in £, use an o(s,,s) to combine with the mean opinion in E |, whereas the experts
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in £ use an o(s{,5,) relationship to combine with the mean opinion in £,. We may write this as:

o xP ) +w (V) for we B4
me\') - M1 ()\«) + (Xlxg) ()\4) for UJEE2

Table 4 presents the matrix of formulas.

5.3. Odds formulation

We now suppose that there are two labels, A, and A,, denoting respectively the truth of a proposition H or its

falsity, -H. In this case, each expert, using the information s, estimates the odds:
Prob(H]|s)

Prob(=H|s)
and this single value is his opinion x,,. The mean opinion is an average value p, and the variance of the opinions is

O(H|s)=

the single value C. Thus u represents a nominal odds, and C is the inverse confidence that is placed in that value.
Note that both 1 and C are scalars. Throughout, vy stands for the prior odds on H, i.e., O (H), and is assumed to be a

known constant.

Otherwise, the situation is similar to the probabilistic case. There is no need for an unconditional indepen-
dence assumption at any time, since the odds are never normalized, nor intended for normalization. The formulas

are given in Table 5.

Although the two-label case may seem like a severe restriction, in fact most reasoning systems and inferenc-
ing networks operate in this domain. Indeed, since the labels in a multiple label-case can generally be formulated as
the leaf nodes of a binary tree, the multi-label case can typically be handled by a number of two-label binary propo-
sitions, each representing a node of the tree. Accordingly, if we can simultaneously infer a collection of two-label
problems, then we implicitly can do a multi-label case. However, this leaves open the question of representing
uncertainty in a probabilistic labeling of multiple leaf labels given uncertain probabilistic labels of nodes in a binary

tree.

6. Kalman filtering

In computer vision, robotics, and various other application domains, Kalman filtering is now often considered
to be the preferred method for handling uncertainty reasoning [33-35]. Kalman theory, a well-developed branch of

filtering and estimation in stochastic processes, is generally offered as an alternative approach to uncertainty reason-
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Combining of Combining of Opinions
Experts Conditional o~dependence Coni .
, onjunctive
independence
. =1 U+ g
U
e C = my Cy+my Comy (i ytmy (G —%)
M= My po/Y * WC)=
Product
rocue C=[C, Corpi €13 Co Y O, C1,19, Ca)
Product b=y /Y , * 10 =
measure C=[C; Cotpi C1H3 ol U1, C1,12,Co)
Pairwise TERUNYAY * (u,C) =
matching C=[C,Cotpi C1H ColY (U1, C1, 12, C))
Noncommut. H= /Y =y ‘%2/3;% WC)=
by means C=piCoiy C= (i’ 2)Cy Y, b, Ca)
T 0
_ p=myipipy /Y _
Commutative = gAY 1, u‘f‘j ™ Q’,az 1,0 =m by, u, €y )
by means = 20 2 C=m(u' /" Y Cy
C=[mp3C+mpiC 7 (WA C, Moy, Cy)

Table 5. Uncertainty calculi for opinions based on odds. In this table, all values are scalars, in that p
denotes an average value for the opinion of the odds, and C denotes its variance.

ing, and is not connected to calculi of the sort developed in the previous sections. Treatment of the general theory
may be found in standard texts such as [36]. In this section, we will relate Kalman filtering in the static case to the
“‘opinions of experts”” formulation developed in this paper, thereby establishing relationships between the Kalman
theory and, for example, Dempster/Shafer theory, and providing guidelines for applicability. (Shenoy has also
noted the relationship of these two theories [37].)

There are many ways of deriving the Kalman filter. We will treat only the static case, and use the framework
of multiple opinions of experts. The main differences from the calculi as developed in Section 5 lie in the choices
for the representation of the opinions and the updating method.

In the static case (which forms a very special case of the Kalman machinery), there is a single value or single
vector value x that must be estimated. Further, we will assume that the observations are identity projections of the
state x with noise. Thus we are given a sequence of observations x;, for i=1,2, - - - n, together with the covariances
of the noise, C;, i=1,2, - - n. In this especially simple setting, the Kalman filter says that the updated state, and thus

the best estimate of the value x, is given by:
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n
X = ZCC;IXi,
o

=

cl=3cl

i=1

1l

Essentially, the estimated state is a weighted sum of the constituent estimates, with linear (matrix) weights related to
the inverse of the respective covariance matrices, left normalized to sum to the identity matrix. The updating may
be done sequentially, so that successive measurements may be combined with the current state to yield the same
final outcome. For example, if the initial state is represented by the pair (x;,C), and then new measurement X, is
presented with its covariance C,, then the updated state is given by (x,C), with
}2 = CCII X1+CC§:1 X9,
with
C=(Ci' + My
If this process is repeated » times, then the outcome is as given above for the combination of n states. Because we

are only treating the static case, the combination process is associative and commutative.

Clearly, this calculus resembles some of the calculi in the tables of Section 4. It is different from all of them,
however. In order to interpret this calculus in the “‘opinions of experts’” framework, we must impose different

choices on the components of the formulation.

In particular, we no longer use probabilities nor log-probabilities nor odds in this formulation. Instead, the
opinions represent estimates of some measurement or vector of measurements. This is the fundamental difference
with the Kalman filter, and drives the application domains. Clearly, the statistics that are maintained are the means
and covariances, and for the sake of argument, we will assume that the method for combining sets of experts is the
product method. Because the values are no longer representative of probabilities, nor of values related to probabili-
ties, the updating of pairs of opinions is not based on Bayesian analysis or probabilistic theory. Instead, pairs of
opinions are updated using a ‘‘weighted average approach.” In particular, any pair of experts ®; and ©, combine
their respective opinions x{}) and x{) using a linear sum

X = Ax&) + Bxgz)

where A and B are matrices constrained to sum to the identity matrix:

A+B=1

Here and in the following, matrices act on vectors and other matrices as in normal matrix products (and not
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termwise multiplications, as in Section 5).

‘What matrices A and B should the experts choose to combine their opinions? The answer depends on a cer-
tain amount of ‘‘common knowledge’’ among the experts. In the same way that the experts in the updating by
means know about the mean value among the other experts, we will assume that each expert participating in the
updating knows the means and covariances of both the set of experts to which the expert belongs and the set of
experts to which the expert is combining. In particular, both 0, and ®, know C; and C, and the fact that all other
pairs share the same information. In this case, the pair (®;,m,) can predict, in advance, that the outcome state will
have covariance AC AT + BC,B”. Since they also know in advance that A+B = I, they can determine an optimal A
and B. In particular, they can determine that the variation in A by a symmetric matrix S leads to a first variation of

A(CHCy) S —CyS,
s0 that whether they want to minimize the trace, determinant, or any other positive multilinear measure of the result-
ing covariance, they are led to deduce that

A=Cy(C+Cy)™, B=C(C+Cy)™

With simple algebra, these equations are equivalent to:
A=CCP', B=CCR
with C = (C7' + C3' )7
Since every pair of experts (®;,®,) will deduce the same pair of matrices A and B, the updated mean and
covariance matrices, based on the product of experts ExE, of experts £, having mean p; and covariance C; and

experts £, having mean p, and covariance C, will be

p=CCilp + C-Clpy,

=+ G

These are precisely the updating equations as given by the Kalman filter for the static case.
There is an alternative logic whereby each committee (w;,®;) can deduce that their updated value should
equal CC'x{) + CC3'x$). In this formulation, the experts know that they are trying to estimate a constant vector

x. The committee (@;,®,) knows that the realization of a gaussian random vector with mean x and covariance C;

yields the value x&) , and the realization of a different gaussian random vector, also having mean x but this time hav-
ing covariance C,, yields xgz) Under the assumption that their best estimate X of x is itself a Gaussian random vec-

tor, they can deduce that the probability density function of X is a Gaussian with mean C-Ci'p, + C-C3tp, and
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covariance C = (C7! + C3!)™'. Accordingly, the maximum likelihood guess for x by committee (@, ®,) is the same
linear combination:

X9 = C-CT iy + -Gl .
Based on these updates over the entire product space of experts, the same uncertainty calculus results as before.

Once again, we have assumed that all committees of experts know both covariance matrices C'; and C,.

Our treatment has assumed the product combination of sets of experts. As before, the product measure com-
bination gives the same results. It is also possible to extend the treatment to obtain a similar result using the com-
mutative by means method. Likewise, the pairwise matching formulation gives the same result, providing we
assume orthogonality of the deviations of the experts from their means. This is the more usual formulation of sto-
chastic processes, although it is not necessarily the most obvious formulation for every application. In particular,
note that although all experts are attempting to estimate X, the mean of the individual estimates {x; };1 is p, which
may not necessarily equal x. Nonetheless, it is the components of the errors {(x;— p)}:;l that we assume are

orthogonal between sets of experts.

In summary, we see that the Kalman updating equations for the static case can be interpreted in terms of com-
bining opinions of experts. The values that are represented are measurements, and not probabilities. The statistics
are means and covariances, and the combining of sets is by means of the product, product measure, or pairwise
matching method. Finally, the updating of pairs of opinions is based on common knowledge of the covariances
matrices of the constituent sets of experts, and can be formulated either as an optimization on the resulting covari-
ance of opinions, or can also be formulated as a maximum likelihood estimate based on conditional distribution

functions.

We see that the domain of applicability of the static Kalman filter is much different than the calculi developed
in Section 5. The principal point is that the updating is not based on Bayesian formulas or updating of probabilities;
rather, the system is attempting to estimate a fixed collection of measurements, which in the formulation that we
have given, are not changing. The updating, accordingly, is essentially averaging, with the weighting inversely pro-

portional to the covariance of the respective estimates.
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7. Discussion

There are at least three different broad classes of ways to express uncertainty: (1) Allow the probability for
propositions to express the level of uncertainty; (2) Treat uncertainty as a range of opinions, and track that range as
the opinions update; (3) Treat uncertainty as a separate entity that is affixed to each probability, and update uncer-
tainties through predetermined functions that provide measures of uncertainty for each given mix of evidence (i.e.,
extrinsic uncertainty). In this paper, we have focused on the intermediate level, class (2), although we track uncer-
tainty as a separate entity affixed to each probability (as in method (3)). Class (1) is well-known to be inadequate to
distinguish between uncertainty and improbability, whereas (3), which might in some cases be necessary for real-
ism, can become quite complicated if all the functional dependencies comprising the external uncertainty are accu-

rately modeled.

We’ve established a set of different uncertainty calculi based upon choices in the formulation of the basic
components of systems that track multiple opinions relating to probabilities, We were motivated by the
Dempster/Shafer calculus, which tracks boolean opinions of ‘‘possibilities’ by maintaining complete statistics on
spaces of experts that update by taking product sets of experts and update opinions by intersecting possibilities. We
identify four major choices: the statistics to be maintained, the values that the opinions represent, the method of
combining sets of experts to form a new set of experts, and the method to update individual opinions. For statistics,
we generally rely on maintaining means and covariances. We represent either probabilities, log-probabilities, or
odds, and update pairs of probabilities using either independence assumptions or alpha-dependence. We also
include conjunctive updating of paits of probabilities as an example of functional updating. Finally, we have con-
sidered product sets for creating new sets of experts, as well as product measure, pairwise matching, non-

commutative updating by means, and commutative updating by means.

The uncertainty calculi developed in this paper can be useful for Bayesian networks in two ways. First, we
can represent and update information within the network using one of the calculi discussed earlier. For example,
rather than maintaining probabilities at each node, we might maintain log-likelihoods. Or, independence relations
can be replaced by alpha-independence relations, where alpha might vary throughout the network. Then, the nodes
can include a representation of the uncertainty at the node, viewed conceptually as the statistics of multiple opinions

about the state of the node.
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Second, we could define a method for combining two equivalent networks. That is, given two states of a
Bayesian network, we can combine the two by combining pairs of values at each node, and using the outcome as
new information for the node. (Actually, the information impacts the node through the use of a “‘virtual”” node.)
This method for combining two states can also apply when the Bayesian network has been modified to use an uncer-

tainty calculus for propogating information.

In examining the formulas, we see that the product, product measure, and pairwise matching forms of combi-
nations of experts are equivalent, assuming that the necessary orthogonality conditions are placed on the experts iﬁ
the pairwise updating case. The reason for treating all three cases is to point out this equivalence, thereby relating
considerably different formulations. The noncommutative combination by means is presumably not very useful,
because the level of uncertainty is always totally dependent on the level of uncertainty of the latest set of experts.
The commutative updating by means, on the other hand, is potentially more interesting. In general, the assumption
of independence of the evidence in the updating of individual probabilities results in the phenomenon that the
increase in uncertainty when combining sets of opinions is independent of the separation of the means of the two
sets. This is also true for the case of alpha-dependence when the product combination (or equivalent forms) are
used. However, in the case of alpha-dependence and commutative updating by means, and in all cases when con-
junctive updating is used, the degree of uncertainty will be affected by the separation in the means of the constituent

bodies of opinions.

Overall, the formulas bear a considerable resemblance to one another, and to the Kalman updating procedure
as well. In general, means mix in a diffusive pattern, and uncertainty levels represented by covariance mafrices
combine together, If a more elaborate or subtle combination of uncertainty is desired, then it is likely that the full

approach of modeling extrinsic uncertainty {option (3) above) will be required.

Our theory manages to integrate a wide range of calculi, and yet presents separate formulations for each set of
formulas, due to the choices that must be made in the components of the systems. As opposed to building a single
parameterized algebraic system that subsumes all approaches, we believe that our ‘‘menu approach’ is the more
realistic and intuitive way to understand the relationships between the various candidates for uncertainty reasoning.
Most especially, a knowledge of the underlying assumptions and components of a system will aid in the sensible use

of the calculus in realistic applications.
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