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Coherent Compound Motion:
Corners & Non-Rigid Configurations

Steven W. Zucker Lee lverson Robert A. Hummel

Abstract

Consider two wire gratings, superimposed and moving across each other. Under certain
conditions the two gratings will cohere into a single, compound pattern, which will appear to
be moving in another direction. Such coherent motion patterns have been studied for sinu-
soidal component gratings, and give rise to percepts of rigid. planar motions. In this paper
we show how to construct coherent motion displays that give rise to non-uniform, non-rigid,
and non-planar percepts. Most significantly, they also can define percepts with singulari-
ties (corners). Since these patterns are more consistent with the structure of natural scenes
than rigid sinusoidal gratings, they stand as interesting stimuli for both computational and
physiological studies. To illustrate, our display with sharp corners (tangent discontinuities or
singularities) separating regions of coherent motion suggests that smoothing does not cross
tangent discontinuities, a point which argues against existing (regularization) algorithms for
computing motion. This leads us to consider how singularities can be confronted directly
within optical flow computations, and we conclude with two hypotheses: (i) that singularities
are represented within the motion system as multiple directions at the same retinotopic lo-
cation; and (ii) for component gratings to cohere, they must be at the same depth from the
viewer. Both hypotheses have implications for the neural computation of coherent motion.
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1. Introduction
1. Introduction

Imagine waves opening onto a beach. Although the dominant physical direction is in-
ward, the visual impression is of strong lateral movement. This impression derives from the
interaction between the crests of waves adjacent in time, and is an instance of a much more
general phenomenon: whenever partially overlapping (or occluding) objects move with respect
to one another, the point where their bounding contours intersect creates a singularity [Zucker
and Casson, 1985]. Under certain conditions this singularity represents a point where the two
motions can cohere into a compound percept, and therefore carries information about possible
occlusion and relative movement. Another example is the motion of the point of contact be-
tween the blades of a closing scissors; the singular point moves toward the tip as the scissors
are closed.

The scissors example illustrates a key point about coherent motion: hold the scissors
in one position and observe that it is possible to leave the singular point in two different
ways, by traveling in one direction onto one blade, or in another direction onto the other
blade. Differentially this corresponds to taking a limit, and intuitively leads to thinking of
representing the singular point as a point at which the contour has two tangents. Such
is precisely the representation we have suggested for tangent discontinuities in early vision
[Zucker. Dobbins. and Iverson, 1989], and one of our goals in this paper is to show how it
can be extended to coherent motion computations.

The previous discussion was focused on two 1-dimensional contours coming together, and
we now extend the notions of singular points and coherent motion to 2-dimensional (texture)
patterns. In particular, if a “screen” of parallel diagonal lines is superimposed onto a pattern
of lines at a different orientation, then a full array of intersections (or singular points) can
be created. The proviso, of course, is that the two patterns be at about the same depth;
otherwise they could appear as two semi-transparent sheets. Adelson and Movshon [1982]
extended such constructions into motion, and. using sinusoidal gratings, showed that coherent
compound motion can arise if one pattern is moved relative to the other.

To illustrate. suppose one grid is slanted to the left of the vertical, the other to the right,
and that they are moving horizontally in opposite directions. The compound motions of each
singular point will then cohere into the percept of a rigid texture moving vertically. Thus the
compound pattern can be analyzed in terms of its component parts.

But compound motion arises in more natural situations as well, and gives rise to coherent
motion that is neither rigid nor uniform. Again to illustrate, superimposed patterns often arise
in two different ways in densely arbored forest habitats (e.g.. Fig. 2 in Allman et al. [1985]).
First, consider an object (say a predator) with oriented surface markings lurking in the trees:
the predator’'s surface markings interact with the local orientation of the foliage to create a
locus of singular points. A slight movement on either part would create compound motion
at these points, which would then cohere into the predator’'s image. Thus singular points
and coherent motion are useful for separating figure from ground. More complex examples
arise in this same way, e.g., between nearby trees undergoing flexible or different motions,
and suggests that natural coherent motion should not be limited to that arising from rigid,
planar objects: non-rigid and singular configurations should arise as well. Second, different
layers of forest will interact to create textures of coherent motion under both local motion and
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2. Nonuniform Coherent Motion Displays

an observer’s movement; distinguishing these coherent motion displays from (planar) single
textures (e.g.. a wallpaper pattern) can also utilize information about depth.

Thus non-rigid pattern deformations, discontinuities, and depth matter, and our first
contribution in this paper is to introduce a new class of visual stimuli for exhibiting them.
The stimuli build on the planar, rigid ones previously studied by Adelson and Movshon [1982].
but significantly enlarge the possibilities for psychophysical, physiological, and computational
studies. In particular, the perceptual salience of singular “corners” within them implies that
algorithms for the neural computation of coherent motion require significant modification from
those currently available. We propose that a multiple tangent representation, known to be
sufficent to represent tangent discontinuities in orientation selection, can be extended to handle
them, and show how such ideas are consistent with the physiology of visual area MT. Finally,
the interaction of direction-of-motion and depth is briefly considered.

2. Nonuniform Coherent Motion Displays

Compound motion displays are created from two patterns, denoted P; and P, where, for
the Adelson and Movshon displays. the P; were sinsusoidal gratings oriented at 67 and 63,
respectively. Since we shall be primarily interested in the geometry of these patterns, observe
that patterns of parallel curves work as well as the sinusoidal gratings. so the components
can be thought of as square waves (alternating black and white stripes) oriented at different
angles. Random dot Moiré patterns (“Glass patterns”) work as well [Zucker and Iverson,
1987]. and we now show that patterns which are not constant in the direction orthogonal to
their orientation also work. It is this new variation (in the orthogonal direction) that introduces
non-uniformities into the coherent motion display. We consider two non-uniform patterns, one
based on a sinusoidal variation, and the other on a triangular variation. As we show, these
illustrate the variety of non-rigid and singular patterns that can arise naturally.

2.1 Sinusiodal Variation

The first non-uniform compound motion pattern is made by replacing one of the constant
patterns with a variable one, say a grating composed of displaced sinusoids rather than lines
(Fig. 1). Note that this is different than the Adelson and Movshon display. because now the
sinusoidal variation is in position and not in intensity. Sliding the patterns across one another,
the result is a non-constant motion field (Fig. 2). for which three coherent interpretations are
possible (in addition to the non-coherent, transparent one):

1. 2-dimensional sliding swaths, or a flat display in which the compound motion pattern
appears on a non-rigid but flat rubber sheet which is deforming into a series of alternating
wide strips, or swaths, each of which moves up and down at what appears to be
a constant rate with “elastic” interfaces between the strips. The swath either moves
rapidly or slowly, depending on the orientation of the sinusoid. and the interfaces between
the swaths appear to stretch in a manner resembling viscous flow. The situation here
is the optical flow analog of placing edges between the “bright” and the “dark™ swaths
on a sinusoidal intensity grating.




3. Local Analysis of Moving Intersections

2. 3-dimensional compound grating, in which the display appears to be a sinsusoidally
shaped staircase surface in depth on which a cross-hatched pattern has been painted.
The staircase appears rigid, and the cross-hatched pattern moves uniformly back and
forth across it. Or, to visualize it, imagine a rubber sheet on which two bar gratings
have been painted to form a cross-hatched grating. Now, let a sinusoidally-shaped set of
rollers be brought in from behind, and let the rubber sheet be stretched over the rollers.
The apparent motion corresponds to the rollers moving back and forth under the sheet.

3. 3-dimensional individual patterns, in which the display appears as in (2), but only with
the sinusoidal component painted onto the staircase surface. The second, linear grating
appears separate, as if it were projected from a different angle. To illustrate with an
intuitive example, imagine a sinusoidal hill, with trees casting long, straight shadows
diagonally across it. The sinusoidal grating then appears to be rigidly attached to the
hill, while the “shadow™ grating appears to move across it.
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Figure 1 lilustration of the construction of smooth but non-uniform coherent motion
patterns. The first component pattern (left) consists of a field of displaced sinusoinal
curves, oriented at a positive angle (with respect to the vertical), while the second
component consists of displaced parallel lines (right) oriented at a negative angle. The
two patterns move across each other in opposite directions, e.g.. pattern (left) is moved
to the left, while pattern (right) is moved to the right. Other smooth functions could
be substituted for either of these.

2.2 Triangular Variation

Replacing the sinusiodal grating with a triangular one illustrates the emergence of percepts
with singularities (tangent discontinuities). The same three percepts are possible, under the
same display conditions, except the smooth patterns in depth now have abrupt changes, and
the swaths in (1) have clean segmentation boundaries between them. See Fig. 3 and 4. Such
discontinuity boundaries are particularly salient, and differ qualitatively from patterns with
high curvatures in them (e.g.. high-frequency sinusoids).



3. Local Analysis of Moving Intersections

Figure 2 Calculation of the flow fields for the patterns in Fig. 1: (upper left) the
normal velocity to the sinusoidal pattern; (upper right) the normal velocity to the line
pattern; (bottom) the compound velocity.

3. Local Analysis of Moving Intersections

Given the existence of patterns that exhibit non-uniform compound motion, we now show
how the characterization of rigid compound motion can be extended to include them. To begin,
observe that one may think of compound motion displays either as raw patterns that interact,
or as patterns of moving “intersections” that arise from these interactions. Concentrate now
on the intersections, and imagine a pattern consisting of gratings of arbitrarily high frequency.
so that the individual undulations shrink to lines. Each intersection is then defined by two
lines, and the distribution of intersections is dense over the image. (Of course, in realistic
situations only a discrete approximation to such dense distributions of intersections would
obtain).

Now, concentrate on a typical intersection, whose motion we shall now calculate. (Observe
that this holds for each point in the compound image.) The equations for the lines meeting
at a typical intersection x = (z,y) can be written:
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3. Local Analysis of Moving Intersections
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Figure 3 lllustration of the construction of non-uniform coherent motion patterns with
discontinuities. The first component pattern (left) consists of a field of displaced
triangular curves, oriented at a positive angle, while the second component again
consists of displaced parallel lines (right) oriented at a negative angle. The two patterns
move across each other as before. Again, other functions involving discontinuities couid
be substituted for these.

n1-x=c1+v1t
nz-x=c2+v2t

where n;,¢ = 1,2 are the normals to the lines in the first and the second patterns, respectively,
¢; are their intercepts, and v; are their (normal) velocities. Observe that the simultaneous
solution of these equations is equivalent to the Adelson and Movshon [1982] “intersection of
constraints” algorithm (their Fig. 1). In matrix form we have:

(nu n12) (z(t)) _ (Cl + v1t>
na1 na2/ \u(t) ¢y + vat
where (n11,n12) = ny and (ny1,n97) = ny. We can rewrite this equation as
Nx(t) = c+tv.
Differentiating both sides with respect to t, we obtain
Nx(t) = v,

where v = (v, v7)%.

Thus the velocity of the intersection of two moving lines can be obtained as the solution
to a matrix equation, and is as follows (from Cramer's rule):

z(t) = vingy — vonyqy
A
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Figure 4 Calculation of the flow fields for the patterns in Fig. 3: (upper left) the
normal velocity to the triangular pattern; (upper right) the normal velocity to the line
pattern; (bottom) the compound velocity. Velocity vectors at the singular points of the
triangle component are shown with small open circles, indicating that two directions
are associated with each such point. In (c) the open circles indicate what we refer to
as the singular points of coherent motion, or those positions to which two compound
motion vectors are rect.

y(t) = —viny +vanyy
A
where A is the matrix determinant, A = nyy1ny — nyyngq. and x(t) = (z(t), y(t)).

Several special cases deserve comment. Suppose that ny and nj are perpendicular, so
that the two lines meet at a right angle. Once again, assume that the normal velocities of the
two lines are v and vy respectively. Then the velocity of the intersection is readily seen to
be the vector sum of the velocities of the two lines:

X(t) = vy-ng + vyp-nj.

The simplest case involving a distribution of intersections is two sets of parallel lines,



4. Implications for Neural Computation

each set having orientations given by ny and njy, and moving with a uniform (normal) velocity
of vy and vy, respectively. Then all of the intersections will have the same velocity, given by
the solution x to the matrix equation. As Adelson and Movshon found, the overall percept in
this situation is a uniform motion of x.

More generally, as we showed there may be many lines and edges. oriented and moving
as a function of their position. Thus there will be many intersections moving according to
the above matrix equation. If the line elements (with normals ny and nj) are associated with
objects that are themselves moving with velocities v and v;. then the normal velocities of
the lines are obtained from the projections vy = vy :nqy and v = vy - ny. The velocity of
the intersection point then satisfies the matrix equation Nx = (vq,vp) at each instant ¢.

4. Implications for Neural Computation

It it widely held that theories of motion need not treat discontinuities directly, and that
“segmentation” is a problem separate from motion. This view has lead to a rash of “regu-
larized” algorithms with three key features: (1) smoothing is uniform and unconditional; (2)
single, unique values are demanded as the solution at each point: and (3) discontinuities,
if addressed at all, are relegated to an adjoint process [Buithoff, Little, and Poggio, 1989;
Wang, Mathur, and Koch, 1989: Yuille and Grzywacz. 1988]. We believe that all three of
these features need modification, and submit that the current demonstrations are evidence
against them:; if regularization-style algorithms were applied to the sine- and the triangle-wave
coherent motion patterns, the smoothing would obscure the differences between them. To
properly treat these examples, algorithms must be found in which discontinuities are naturally
localized and smoothing does not cross over them. Furthermore, single values should not be
required at each position, but rather representations that permit multiple values at a position
should be sought. Such multiple-valued representations are natural for transparency, and, as
we show below, are natural for representing discontinuities as well.

Before beginning. however, we must stress that there is not yet sufficent information to
state precisely how the computation of compound motion is carried out physiologically, or what
the precise constraints are for coherence. The analysis in the previous section represents an
idealized mathematical competence, and its relationship to biology remains to be determined.
Nevertheless, several observations are suggestive. First, it indicates that one need not use the
Adelson and Movshon [1982] “intersection of constraints” algorithm literally, but. now that
the mathematical requirements are given. any number of different become viable formally.
Biologically it is likely that the computation involves several stages, and the evidence is that
initial measurements of optical flow are provided by cells whose receptive fields resemble
space-time filters, tuned for possible directions of (normal) motion [Movshon, Adelson, Gizzi,
and Newsome, 1985]. Abstractly the filters can be thought of as being implemented by (e.g.)
Gabor functions, truncated to local regions of space-time. Such filters provide a degree of
smoothing, which is useful in removing image quantization and .related affects, but which
also blurs across distinctions about which filter is to signal the actual motion. An additional
selection process is thus required to refine these confused signals, and it is in this selection
process that the inappropriate regularization takes place.



4. Implications for Neural Computation

To illustrate, a selection procedure for compound motion was proposed by Heeger [1988]
from the observation that a translating compound grating occupies a tilted plane in the fre-
quency domain. (This comes from the fact that each translating sinusoidal grating occupies
a pair of points along a line in spatial-frequency space; the plane is defined by two lines, one
from each component grating.) After transforming the Gabor filters’ responses into energy
terms, Heeger's selection process reduces to fitting a plane. However, the fitting cannot be
done pointwise; rather, an average is taken over a neighborhood, effectively smoothing nearby
values together. This is permissible in some cases, e.g., for the planar, rigid patterns that
Adelson and Movshon studied. But it will fail for the examples in this paper, rounding off
the corners within the triangle waves. It cannot handle transparency either. because a single
value is enforced at each point (only one plane can be fit). Other variations in this same
spirit. based on Tikhonov regularization or other ad hoc (e.g.. “winner-take-all") ideas, differ
in the averaging that they employ, but still impose smoothness and single-valuedness on the
solution [Bulthoff et al., 1989: Wang et al. 1989; Yuille, and Grzywacz, 1988]. They cannot
work in general.

A different variation on the selection procedure relaxes the requirement that only a single
value be assigned to each position, incorporates a highly non-linear type of smoothing, and
is designed to confront discontinuities directly. It is best introduced by analogy with orien-
tation selection [Zucker and lverson, 1987]. Consider a static triangle wave. Zucker et al.
[1988. 1989] propose that the goal of orientation selection is a coarse description of the local
differential structure, through curvature, at each position. It is achieved by postulating an it-
erative, possibly inter-columnar, process to refine the initial orientation estimates (analogous
to the initial motion measurements) by maximizing a functional that captures how the local
differential estimates fit together. This is done by partitioning all possible curves into a finite
number of equivalence classes, and then evaluating support for each of them independently.
An important consequence of this algorithm is that, if more than one equivalence class is
supported by the image data at a single point, then both enter the final representation at that
point. This is precisely what happens at a tangent discontinuity, with the supported equiv-
alence classes containing the curves leading into the discontinuity (example: a static version
of the scissors example in the Introduction). Mathematically this corresponds to the Zariski
tangent space [Shafarevich, 1977]): and physiologically the multiple values at a single point
could be implemented by multiple neurons (with different preferred orientations) firing within
a single orientation hypercolumn.

Now, observe that this is precisely the structure obtained for the coherent motion patterns
in the Introduction to this paper—singular points are defined by two orientations, each of which
could give rise to a compound motion direction. Hence we propose that multiple motion
direction vectors are associated with the points of discontinuity, i.e.. with the singular points
of coherent motion. These points are illustrated in Fig. 4 (bottom) by the open circles. But
for such a scheme to be tractable physiologically, we require a neural architecture capable of
supporting multiple values at a single retinotopic position. The evidence supports this, since
(i) compound motion may well be computed within visual area MT [Movshon et al., 1985;
Rodman and Albright, 1988), and (ii) there is a columnar organization (around direction of
motion) in MT to support multiple values (i.e., there could be multiple neurons firing within
a direction-of-motion hypercolumn) [Albright et al., 1984].
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Before such a scheme could be viable, however, a more subtle requirement needs to
be stressed. The tuning characteristic for a direction-selective neuron is typically broad,
suggesting that multiple neurons would typically be firing within a hypercolumn. Therefore,
exactly as in orientation selection, some non-local processing would be necessary to focus
the firing activity, and to constrain multiple firings to singularities. In orientation selection
we proposed that these non-local interactions be implemented as inter-columnar interactions
[Zucker et al., 1989]; and. again by analogy, now suggest that these non-local interactions
exist for compound motion as well. That they further provide the basis for interpolation
[Zucker and Iverson, 1987] and for defining regions of coherence also seems likely.

The triangle-wave example deserves special attention, since it provides a bridge between
the orientation selection and optical flow computations. In particular, for non-singular points
on the triangle wave. there is a single orientation and a single direction-of-motion vector.
Thus compound motion computation can run normally. However, at the singular points of
the triangle wave there are two orientations (call them nq and ng); each of these defines a
compound motion with the diagonal component (denoted simply n). Thus, in mathematical
terms, there are three possible ways to formulate the matrix equation, with (nq,n), (ng,n).
and (nq,ng). The solutions to the first two problems define the two compound motions
discussed in the paper, while the third combination simple gives the translation of the triangle
wave at the singular point.

In summary. we conjecture that

Conjecture 1:Singularities are represented in visual area MT analogously to
the way they are represented in V1. i.e., via the activity of multiple neurons
representing different direction-of-motion vectors at about the same (retino-
topic) location.

We thus have that coherent pattern motion involves muitiple data concerning orientation
and direction at a single retinotopic location, but there is still a remaining question of depth.
That depth likely plays a role was argued in the Introduction, but formally enters as follows.
Recall that the tilted plane for rigid compound motion (e.g.. in Heeger's algorithm) resulted
from the combination of component gratings. But a necessary condition for physical com-
ponents to belong to the same physical object is that they be at the same depth, otherwise
a figure/ground or transparency configuration should obtain. MT neurons are known to be
sensitive to depth, and Allman et al. [1985] has speculated that interactions between depth
and motion exist. We now refine this speculation to the conjecture that

Conjecture 2: The subpopulation of MT neurons that responds to compound
motion agrees with the subpopulation that is sensitive to zero (or to equiva-
lent) disparity.

There is some indirect evidence in support of this conjecture, in that Movshon et al.[1985]
(see also Rodman and Albright [1988]) has reported that only a subpopulation of MT neurons
respond to compound pattern motion, and Maunsell and Van Essen [1983] have reported that
a subpopulation of MT neurones are tuned to zero disparity. Perhaps these are the same
subpopulations. Otherwise more complex computations relating depth and coherent motion
will be required.
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