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Gaussian blur, or convolution against a Gaussian kernel, is a common model for image and
signal degradation. In general, the process of reversing Gaussian blur is unstable, and cannot
be represented as a convolution filter in the spatial domain. If we restrict the space of
allowable functions to polynomials of fixed finite degree, then a convolution inverse does exist.
We give constructive formulas for the deblurring kernels in terms of Hermite polynomials, and
observe that their use vields optimal approximate deblurring solutions among the space of
bounded degree polynomizls. The more common methods of achieving stable approximate
deblurring include restrictions to band-limited functions or functions of bounded norm.
© 1987 Academic Press, Inc.

1. INTRODUCTION

Given an image or signal, the realization of any system for processing it must
introduce some amount of degradation. Since there may be several stages each
contributing to the degradation, the composition is often modeled as a Gaussian
blurring operation. We consider spatially invariant Gaussian convolution defined as
follows. For a bounded measurable input function f(x) defined for x € R", then
the observed blurred output is given by

h(x) = [ K(x~£07(8) dé,
where

2
—{xi* /4
eVl /4

K(x,1)= (47)"‘/2

and ¢ is a fixed positive value parameterizing the extent of the blur. We wish to
estimate f(x) when only h(x) and the amount of blur ¢ are known.

It would be especially nice to formulate deblurring as a convolution operation, so
that

f=D(-,t)*h.
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In general, a universal deblurring kernel D(x,t) does not exist. However, if
sufficient restrictions are placed on the domain of permissible functions f, then
deblurring kernels can exist.

Our interest in deblurring is motivated by two concerns. First, deblurring is of
significant practical importance in many image processing systems, for example in
computerized tomography [1]. There are also applications in physiological optics,
such as the de-focusing that automatically takes place for objects outside the depth
of field of an accommodated eye.

A second motivation is provided by a desire to study stability of image represen-
tations. The mathematical analysis of an image representation must include a study
of the continuity and stability of the transformation. Reconstruction methods are
particularly useful for studying the stability. While blurred versions of an original
signal form a classical unstable representation, many intermediate-level transforma-
tions of image data nonetheless involve some degree of filtering by blurring. For
example, representations involving zero-crossings of Gaussian-filtered Laplacians of
images [2], as well as many other pyramid schemes, [3-6]}, involve Gaussian blur.
Instabilities in the representation may not be important if approximate or pseudo-
inverse reconstruction methods (see, e.g., [7]) can be found that make explicit the
assumptions concerning the input data. In this paper, we present an approximate-
inverse method involving polynomial approximations.

2. THE HEAT EQUATION

2.1. Diffusion

There is a fundamental connection between Gaussian blurring and the heat
equation. Consider a rod of infinite length onto which an impulse of heat is placed.
As time evolves, the heat will diffuse and the original impulse will spread out. By
elementary physics, the resulting distribution will approximate a Gaussian whose
width depends on the elapsed time (see, e.g., the Feynman lectures [8]). By
superposition, the model for the temperature distribution along the rod at any given
time is the initial temperature distribution convolved with a Gaussian. The diffusion
process effectively convolves the initial distribution by a Gaussian whose spread
depends on how much time has evolved. This is the physically realized solution to
the heat equation, which can be formulated as follows [9]. Given f(x) piecewise
continuous and bounded, find A(x, ¢t) bounded and C? for ¢ > 0 satisfying

ah
—37(x,t)=Ah(x,t), x€R", t>0;
h(x,t) = f(xy) as  (x,1) = (x4,0), x,€R",¢>0.

We denote the operator that takes f to h(-,t) by Q,, i.e, h(x,t) = (Q,f)x). The
solution is given by

(@)(x) = [ K(y=x0f () &,

where K is as defined before. When restricted to a Hilbert space such as L>(R"), Q,
becomes a symmetric bounded linear operator. We will generally interpret f(x) as
an image.
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The space of functions that can be blurred in this way is very large. Indeed, the
condition that f(x) is bounded can be weakened. The solution is still given by
convolution against the “source kernel” K(x,t) [10], h(-,t) = K(-,t)*f. The
source kernel is the fundamental solution to the heat equation on the unbounded
domain R”. We also note that the blurring operator satisfies a semigroup property
—that if a function f(x) has been blurred for some time ¢, by £, , and the resultant
function is blurred by &, , the end result is the same as blurrmg f(x) for a time
t, +t,. Thatis, @,0Q = SZ, +5 The two Gaussian blurring operators, each of which
may have its own physical justification, results in one composite Gaussian operator.
Indeed, by the central limit theorem, other blurring operators will also compose into
approximate Gaussians when iterated.

2.2. Deblurring

Deblurring is the inverse problem to blurring, and can be modeled as a diffusion
process running backwards in time. Formally, the problem of reconstructing f(x)
given a blurred function A(x) and a blurring amount ¢ > 0 is the inverse heat
equation problem, and poses technical difficulties not present in the forward heat
equation problem.

First, finding an inverse to {2, presupposes that {, is one-to-one. In fact, the
blurring operator is one-to-one providing minor restrictions are placed on the
domain of @,. However, without certain growth restrictions, it is possible to find
distinct functlons f and f satisfying Q,f = Q, £, (see [11]). Second, a solution f to
the problem Q,f = h, given h, exists only if A is sufficiently smooth. In general, an
inverse cannot be found, and even if % is sufficiently smooth, an arbitrarily small
change can destroy the smoothness. John [12] discusses the technical conditions
needed for the existence of an inverse. Finally, in a general function space the
deblurring problem is horribly ill-conditioned. This means that there can exist pairs
of functions f and f that are arbitrarily far apart whose images under 2, are
arbitrarily close. The prototypic example i is f(x) = Asin(wx) and f(x) = 0 in one
space dimension. Then (£, )(x) = Ae~“"'sin(wx), which for w large can be very
close to © f 0.

Deblurring can be understood somewhat better in terms of the Fourier transform.
If we denote the Fourier transform of a function g(x) by g(w), then the blurring
operator {2, is a multiplier operator given by

@0 (o) = ef(w).

By means of this formula, 2, can be extended to operate on the class of temperate
distributions & of Fourier transformable distribution [13]. In particular, Q,f is
defined for any polynomial f. Further, the formula shows that £, is one-to-one on
any class of Fourier transformable functions. Moreover, our earlier observation that
deblurring can not generally be represented by a convolution kernel can be observed
from the formula, since although

f(“’) = et };(w)’

a general convolution formula is not possible since e“"! is not the Fourier transform
of any tempered distribution.
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These difficulties would tend to make one pessimistic about accomplishing image
deblurring, and in particular about discovering deblurring kernels. However, deblur-
ring is a common operation, and is typically accomplished by giving the problem a
variational formulation, which can lead to a well-conditioned problem. We describe
several variational formulations in the next section, and present deblurring kernels
for polynomial domains in the subsequent section.

3. VARIATIONAL FORMULATION

We choose a normed space A4~ and a closed convex subset # C A" so that ,
may be regarded as an operator 2,: # — A, for all ¢ > 0 (note that £, is simply
the identity operator). We may then pose the deblurring problem in the following
form:

Given he A", >0, find f € .4 minimizing ||2,f — A].

If Q, is one-to-one and onto over .4, then the solution f given h is precisely the
inverse image of 4 under Q,, so that the minimization gives a zero norm. In general,
however, .# is restricted in such a way that £, maps into ./, and so the solution f
is a pseudo-inverse of A.

Difficulties arise because the operator £, on the domain .# is in general
ill-conditioned. There are various approaches that one can take to find a good
deblurred signal f stably from a given h. A standard approach is to restrict .# to a
sufficiently small set. We mention five possibilities, and our subsequent treatment
will use one of these approaches (the second one) as a point of departure.

(1) A= L% and # = {f € H|f(«) = 0 for || > p}, for some fixed constant
p. Restricting to the space of band-limited signals (with a specified cutoff) allows
stable deblurring of a blurred signal 4 by means of the formula

flo) = { €7/ h(@) lel<p,
0 |w] > p

The function f can also be written as a convolution against h: f = K, * h, where the
Fourier transform of K, is e“’ /% for |w| < p, and zero elsewhere. This is a standard
method for deblurring, although it is well known that K “rings” over a large spatial
extent. _

In a discrete setting, a similar (discrete) convolution deblurring kernel can be
formulated, yielding appropriate band-limited discrete approximations to original
signals. It turns out that this method is completely equivalent to computing a
pseudo-inverse of the matrix representing the blurring operator by means of a
singular value decomposition.

(2) #'= L*e *" dx), and # = polynomials of degree N or less (fixed N),
which we will denote by P,. We will see (in the next section) that &, is closed on
P,,. Thus the pseudo-inverse problem can be solved as follows. First, & is projected
onto P, by the linear orthogonal projection operator of 4" into Py. The resulting
polynomial is deblurred by the convolution kernel D, to be defined in Section 4 to
yield the solution polynomial f.
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The problem with this possibility is that images are typically far more general
than polynomials of degree N. Thus to get even moderately reasonable deblurring,
N has to be very large, and then applying D, becomes difficult and numerically
unstable. Although we will make use of the deblurring kernels D, designed to
deblur polynomials, our implementations (Sect. 5) are more general than finding the
pseudo-inverse f among the class P,.

(3) #'=L*R), and A= {feN|f> 0}. This situation, studied by John
[12] leads to partially stable deblurring, as long as the given function # is sufficiently
“blurry.” Specifically, suppose T > ¢, and h = Qrg, some g € #. Then the prob-
lem is to find f & .# such that Q,f = h. John studies bounds on the deblurring
error, where deblurring is accomplished by exactly the same linear process to be
discussed in the next section. That is, he constructs an approximation f to f by
convolving A with a scaled version of the kernel Dy given in Section 4. The result is
that the error in reconstructing f, || f — /I, can be controlled to depend continuously
on the error in representing h. That is, small errors in representing 4 can lead to
errors in representing f, but the maximum size of the errors can be bounded.
Interestingly, unlike customary notions of stability, the dependence is not linear.!

(4) #'=L*R), and A = (f|0 < f < M), for some fixed M. With M = 00,
this is nearly the same as case (2). Now, however, we consider the possibility of
nonlinear deblurring methods. Peleg et al. [14] has implemented a deblurring
scheme based on a conjugate gradient iterative minimization of 1R, f — hj|, con-
strained by f € #. The constraints are handled, in Peleg’s case, by remapping the
interval [0, #] to [— o0, 0], and then solving an unconstrained minimization
problem. By limiting the number of iterations, they obtain only an approximate
solution, although the results look very good. They do not study the stability
question, but one would expect the same kind of nonlinear stability for partial
deblurring as discovered by John.

(5) A= L*R), # = {f< L?|||f]| < M), some fixed M. This case is treated
by Carasso et al. [15]. They give a relatively simple nonlinear deblurring method,
making use of Fourier transforms, to solve the variational problem. The method is
not iterative. They also study the stability, and obtain the same kind of stability
estimates (for partial deblurring) as John.

An alternative approach to obtaining stable deblurring is to begin by specifiying
the algorithmic form of the deblurring method, and to optimize with respect to a
statistical norm. For example, we can insist on a convolution kernel for deblurring,
and seek a kernel k minimizing

E{lik*.f = flI},

where E{-} is an expectation operator which presupposes some distribution of
unblurred functions f. Other operators, such as worst-case norm, are also possible.
Such methods are studied in the province of information-based complexity [16].

1Suppose that 4 is the representation of 4, and that f is the approximate reconstruction of f using .
Usual notions of stability would require ||f - f < €|k - hj, using appropriate (and perhaps differ-
ent) norms. The nonlinear stability that is used in this case, however, asserts that ||/~ f|| < ¢-
I1h - h)[*/%, for some integer k& > 1. Thus in order to achieve an accuracy of ¢ in the reconstruction of f,
it is necessary to represent h to an accuracy of (1/%)e*. This might be viewed as polynomial stability.
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If the distribution of f’s is concentrated on, or limited to, polynomials in Py,
then all the functions £, f will also be polynomials, and we expect that the optimal
deblurring kernel k will be the one that deblurs polynomials in P, (namely, D,,
given in the theorem of Sect. 4). If the distribution consists of functions that are well
approximated locally by polynomials in P,, the optimal kernel will not change
much.

In the next section, we present the kernel D, such that D, *Q,f = f for all
f € Py (with ¢ = 3). Since , is closed on Py, this kernel may be used to deblur all
polynomials 4 € P,. However, motivated by John’s studies (case (2) above) and the
comments on optimal kernels, we will apply D,, to functions 4 that are not in fact
polynomials.

The results may be analyzed in terms of local approximations by polynomials.
Suppose that the initial unblurred data f is written

f=p+e,

where p € P, and ¢ is an error term. Spemﬁcally, p should be the projection of f
onto Py in the space L2(e™* dx), so that p is a good polynomial approx1mat10n to
f near the origin, but may differ from f significantly away from the origin. Applying
the deblurring kernel D, to the blurred version of f yields the approximate
deblurring

f~=p+DN*Q,s.
Thus
f_f~=£—DN*Qt8’

whose norm (in L?( e dx)) can be bounded by ¥ - ||¢||. Since the norm measures
errors only locally, the result is that we have stable, accurate deblurring for signals
that are well approximated locally by polynomial data.

4. POLYNOMIAL DOMAINS

The monomials {1, x,..., x¥} form a basis for P,. If this basis is orthonormal-
ized with respect to the inner product

(f.8) = f_wwf(x)g(x)e"‘z dx,

then the basis of Hermite polynomials { H,, H;, ..., Hy} result. The Hermites can
be represented explicitly,

_ [n/2] _ N (2x)n—2m
HJ”_"ZEf iy ok

or by the Rodrigues formula,

n
—?
~(e™").

H,(x) = (~1)"e"~
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Without loss of generality, we will specialize to the case ¢ = 1, and denote 2, /4
by 7. We now prove the aforementioned

OBSERVATION 1. 7 is closed on P,.

Proof. We will show that I H, € P, for n < N.

(TH)() = [ e, (x) de

_ b -y 2xy( _ "d -x?
—f_we Y'e2xr(-1) dx”(e ) dx

n—1

X _ 29y n—1 d —x2
=2yf_°°e Ye2xr(-1) dx”_l(e ) dx
= Vn2y(TH,_,)(y).
Solving this recursion relation, using J H,, = 1, we have

(TH,)(x) = 2"x". O

As a result of Observation 1, J is an isomorphism of P,. The inverse of J on
P, is clearly given by

N . N g
Pk Z (aixl) = Z ?Hi(x)'
i=0 i=0

Our main result is that ! restricted to Py can be represented by a convolution
with an explicit kernel Dy(x):

THEOREM. Forf€ P, and g = T f, then
f=Dy*g
where

A (-1)*

Dy(x) =e™* kgo msz(X)-

We will give a proof below using direct integration (as opposed to using Fourier
transform distributions). Note, however, that Dy(x) is not the unique function
representing 7! on Pj. In general, the kernel can be translated by any function
which yields a zero convolution against P,. This includes all functions of the form

e *H (x), n>N.

The stated kernel is unique among the class of functions of the form e‘xZP(x),
where P(x) is a polynomial of degree N.
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F16.1. The deblurring kernels Dy, for N = 5, 9, and 13 for (a), (b), and (c), respectively. Figures (a),
(b), and (c) are drawn on the same vertical scales. Figure (d) shows the deblurring kernel Ds (the same as
Fig. 1(a)) with a different vertical scale to emphasize the structure. The corresponding blurring kernel is
/= )e"‘z, so that one standard deviation o is equal to x = + V2 /2.

It is interesting to compare the form of D, (x) with standard enhancement filters.
For example, for N = 3,

R 2 o L e 141
s(x) = et (1= x%) = e 2 d i\ ©

Thus
D =11 - L 2 T
3*g 2 , 2 g’

which is a not uncommon high emphasis filter (see, e.g., the papers by Mach in [17;
18]. In Fig. 1, we display plots of D, for several values of N.
The proof of the theorem depends on several lemmas.

LEmMMA 1.
f°° 1 0, nodd,
4,= —e 'x"dx = n!
VT /2 n even.
LEMMA 2.
O’ p < k
o 1 ’
Cae,2p = f— —‘/;-e""ZHZk(x)xzi’dx = 2p) sk

227=%(p — k)1’
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Proofs. Lemmas 1 and 2 may be found in [19, Sect. 4.16, Example 1].

LEMMA 3. Forn > k,
Oy k Odd,

d, = fwwDN(x)x"dx =\ (-1)*?

k even.

2%(k/2)!”

Proof. For k odd, and using the definition of Dy(x), we observe that D, (x)x*
is an odd integrable function, and so integrates to zero. For k = 2 D,

A (-1)’

*® kg — (% -x A 2
f_wDN(x)x dx—/_we ,Eo ‘/;i!ziHZi(x)x ? dx
'%2‘(—1)" ¢ ()" (2p)
TS i w T & Tt 23T, )
2p) 2 p! e
~ 27p! Eoi!(p—i)!(—l) 172)
_ (@p)! (2p)!

(-1/2)" = (-1)*

27p! 2%Pp1”

Proof of the theorem. From the formula for  H, computed in Observation 1, it
suffices to show that Dy *(2"x") = H (x), n > N. We have

(Dy*2x")(y) = [ 2Dy (x)(y = 2)" dx

= [ () £ (-1 )it

n 2"n!

O LR
. (-1)*"2n o @m)t
N "'EO (2m)i(n — 2m)! (0" Zmr?
(="

=n! )

n—2m.,n—2m _
mao mi(n — 2m)!2 Y H(y)- 0

The theorem could have been proved using the convolution theorem and by
computing the Fourier transform of D, (x). Although we have not taken this
approach, we will nonetheless compute D, in order to show that the multiplier for
Dy approaches, pointwise, the inverse of the multiplier for the operator .7, i.e.,

OBSERVATION 2. Dy (w) = e“’/* pointwise as N — co.
Proof.

A (N2 (1) 2

DN(“’) = Z W?[e'xllz,c(x)](w),

k=0
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where & stands for the Fourier transform operator. Now,

F e H(x)] (o) =3*’[<—1)”§;7<e-*2)](w> = (i)Y - e=/4

Thus
b e (-t b ok —uise
Nw)_kzo VY k12k (1) wme
k=0 K:
Hence

lim D, (w) = e~ /%% /2 = /4. O
N—co

It is interesting to observe that the kernel Dy, is a multlpher where the Fourier
transform is the Taylor series approximation to the function e® */2, multiplied by the
window e~ /4.

Also as a consequence of Observation 2, we see that Dy(x) does not converge
pointwise to any funcuon as N — oo, since otherwise the Fourier transform of that
function would be e“*/4, which is impossible. D(x) does converge in L% (e™*’ dx),
but that does not 1mply pointwise convergence to any function. We accordingly
have stable deblurring when using the kernels D, (x), where stability i is measured in
terms of deviation from a polynomial of degree N, and the L3(e™*' dx) norm is
used as the metric.

5. HIGHER DIMENSIONS

The Gaussian blur operator is given by
Tf(x) = [ 77"~ (y) dy.
R’l

Due to the separability of the kernel and Fubini’s theorem, J can be decomposed
into n iterated blurrings:

T=ToTye w0,
w 1
(TN = [ e (o i )

Consider a polynomial in R”,

f(x)= T ap®

la]l< N

B
3

a=(a1,a2,...,an), aiEZ’aiZ(), lal:Zai,xa=x{‘1...x
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FiG. 2. An origirzlal image (a) digitized to 480 by 512 pixels. In (b), the image has been blurred by a
Gaussian (1/m7)e”*", with the interpixel distance h = 0.15. Figures (c), (d), and (e) show Figure (b)
restored, using the deblurring kernels Ds, Dy, and D5, respectively.
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For fixed n, the function of one real variable
g(y) =f(x1,- s Yiseens %)
is a polynomial of degree no greater than N, so
Dy (7g) =g

where 7 is the standard 1-dimensional blurring operator (2.1). Combining we find
that

f(x) = fWDN(yl)DN(yz) s Dy ) (TF)(x = y) dy

Fi1G. 2.—Continued.
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for any multivariate polynomial f(x). Thus deblurring of blurred polynomials of
degree N can be accomplished by convolution against the kernel

D (x) = Dy(x;)Dy(x,) - -- Dy(x,)-

Thus the situation in higher dimensions is similar to the 1-dimensional case. The
deblurring convolution kernel is separable and will be of the form e~ *'P(x), where
P(x) is a polynomial of degree nN in x € R". Figure 2 shows a plot of D¥ for
n=2, N=3. Using a separable kernel for deblurring has computational ad-
vantages, but can lead to artifacts in diagonal directions when applied to certain
images. We will see these effects in the next section.

6. EXPERIMENTS IN DEBLURRING

We experimented with the deblurring kernels D, using both modest and large
amounts of blur. An original image (Fig. 2a) has eight bits of grayscale information
digitized on a 480 by 512 grid. The image is regarded as a piecewise constant
function of two continuous real variables and is blurred by convolution against the
Gaussian (1/7)e~* =, where for Fig. 2b the interpixel spacing is taken to be
h = 0.15 (corresponding to a standard deviation ¢ = 4.7 pixels). Figures 2c, d, and e
show the results of applying the deblurring kernels Ds, Dy, and D, respectively.
The diagonal artifacts arise due to the use of separable kernels and become more
pronounced for higher N. The computations were done with 12-bit fixed-point
arithmetic on a VICOM image processing computer. The results by using floating
point arithmetic on a general purpose computer (a VAX) were essentially identical,
although the effect of the diagonal artifacts is very slightly reduced.

For comparison, we display in Fig. 3 the results of convolving the blurred image
in Fig. 2b by a kernel K, whose Fourier transform is a truncated version of e“’. The
kernel size is arbitrarily limited to 100 by 100 pixels, and p is chosen small enough

F16. 3. The blurred image in Figure (b) deblurred using a kernel whose Fourier transform is a
truncated version of the deblurring multiplier. The result is a pseudo-inverse under the blurring operator.
Difficulties arise because the deblurring kernel “rings.”
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S i

FiG. 4. The original image blurred by a Gaussian with interpixel distance & = 0.10, and the result of
deblurring using the kernel D,;.

so that the kernel elements are considerably smaller on the periphery of the kernel.
If p were chosen too large, the magnitude of the kernel elements would decay
extremely slowly. Clearly, deblurring by the kernel D, is far superior, due to the
elimination of the sharp cutoff in its spectral properties. The difficulty with a sharp
cutoff is that it leads to “ringing” of the spatial kernel, and evidence of ringing can
be seen in the example of deblurring.

In Fig. 4, we show the blurred image using an interpixel distance of 4 = 0.1
(corresponding to a standard deviation ¢ = 7.1 pixels). The blurring kernel, to
beyond three standard deviations, is roughly a 50 by 50 mask. Figure 4b shows this
image deblurred using the kernel D,;.

The experimental results show that deblurring certainly improves blurred images,
even with the given inherent lack of stability. Better results may be obtainable with
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nonlinear or stochastic techniques, although our experiments certainly demonstrate
the human visual system’s sensitivity to visual quality of deblurrings.
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