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Geometric hashing methods provide an efficient approach to
indexing from image features into a database of models. The hash
functions that have typically been used involve quantization of the
values, which can result in nongraceful degradation of the perfor-
mance of the system in the presence of noise. Intuitively, it is
desirable to replace the quantization of hash values and the result-
ing binning of hash entries by a method that gives increasingly less
weight to a hash table entry as a hashed feature becomes more
distant from the hash entry position. In this paper, we show how
these intuitive notions can be translated into a well-founded Bay-
esian approach to object recognition and give precise formulas for
the optimal weight functions that should be used in hash space.
These extensions allow the geometric hashing method to be viewed
as a Bayesian maximum-likelihood framework. We demonstrate
the validity of the approach by performing similarity-invariant
object recognition using models obtained from drawings of mili-
tary aircraft and automobiles and test images from real-world
grayscale images of the same aircraft and automobile types. Our
experimental results represent a complete object recognition sys-
tem, since the feature extraction process is automated. Our system
is scalable and works rapidly and very efficiently on an 8 K-proces-
sor CM — 2, and the quality of results using similarity-invariant

model matching is excellent. © 1995 Academic Press, Inc.

1. INTRODUCTION

Geometric hashing is a method for organizing the
search for matches in a model-based vision system. Us-
ing the title geometric hashing, the technique was first
prominently introduced by Lamdan and Wolfson [11] and
has since been implemented and extended by many re-
searchers [10, 11, 13, 16—19]. The method provides only
the search engine portion of an object recognition sys-
tem; the representation and extraction of the features
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form crucial inputs to geometric hashing as with any ob-
ject recognition system. Geometric hashing, however,
provides a particularly efficient search strategy, by multi-
ply encoding the models with respect to many different
normalizations. The scene is then compared not only
against each of the models, but also against many possi-
ble normalizations of the models. By using a hashing
strategy for indexing from the scene features to the fea-
tures in the database of models, it is possible to achieve
parallelizable, robust, efficient object recognition.

A fundamental notion in geometric hashing is that of a
basis set. A basis set is a collection of features sufficient
to establish a transformation when placed in correspon-
dence with another basis set. Thus for translation invari-
ance, a 2D point forms a basis; for rotation, translation,
and scale (similarity) invariance of 2D point sets, two
points form a basis set; affine transformation requires
three points to form a basis set. In this paper, we demon-
strate similarity transformation invariant matching of sets
of 2D points to databases of models consisting of 2D
points. However, our treatment is more general, and ex-
tensions are possible. In particular, our treatment deals
with patterns of 2D points, but a more general treatment
would deal with patterns of n-dimensional features.

As the degree of invariance increases, the discrimina-
bility of an object recognition system will decrease. For
example, affine invariance allows greater flexibility, and
thus greater numbers of ‘‘false alarm’ matches to
models, especially when the number of models is large.
In geometric hashing, each model is ‘‘normalized”” with
respect to every reasonable basis set chosen from the
model, creating a database of multiply encoded instances
of the model. By prenormalizing the models with respect
to a discrete collection of possible transformations, the
matching process is able to check all transformations for
each model simultaneously. That is, a basis set is chosen
in the scene, and the scene is normalized with respect to
that basis set and then compared with respect to every
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normalized model/basis combination. A hashing ap-
proach is used to reduce the complexity of the mapping
from normalized features in the scene to normalized fea-
tures in the model database. A summary of the geometric
hashing method is given in the next section.

In order to deal with noise, a normalized point (or fea-
ture) from the scene must be viewed as an approximate
location and thus must be allowed to match a range of
locations in the normalized space of features in model/
basis patterns. Because geometric hashing uses a hashing
scheme, quantized bins have been used in all geometric
hashing systems heretofore. Thus normalized scene
points quantize their locations in order to obtain a bin
location that contains entries for points in model/basis
patterns. The size of the bin is a critical parameter. If the
bins are too large, then there will be too many false
alarms. If the bins are too small, then there is insufficient
provision for noise in the input. Gavrila and Groen [7] use
a compromise: they use small bins, but compose a circu-
lar pattern of multiple bins for any given hash.

Analyses of the discriminability of object recognition
based upon matching using fixed-size bins in a normaliza-
tion space provides pessimistic predictions, particularly
for affine-invariant recognition [8]. Problems are less se-
vere with similarity invariance, but fixed-size bins pro-
vide a crude means of dealing with possible error in fea-
ture values.

Costa et al. provide a more reasonable alternative
[4, 5]. They observe that for Gaussian error in the posi-
tion of 2D points, the locations of points normalized with
respect to a scene basis will, to first order, distribute
according to a Gaussian distribution. By adding a noise
model to geometric hashing, they provide a more rational
approach to matching of scene features to possible model
features. That is, each normalized model can be credited
with a weighted vote when normalized scene points lie
nearby. Further, by making an independence assumption
over the scene features, they develop a Bayesian inter-
pretation for the computations that can be performed by
weighted voting.

Our analysis in this paper is similar. We likewise study
the possibility of weighted votes, and we similarly per-
form a Bayesian analysis. However, our assumptions are
different, and thus the resulting formulas are different.
The principal difference arises because we allow the er-
ror range to vary depending on the scene basis set, and
also upon expected errors for particular normalized
model patterns. Notably, we make use of log-probability
ratios in order to avoid certain approximations and term
coalescing.

The use of the Bayesian voting scheme given in Sec-
tion 4 provides dramatically better discrimination ability
to a geometric hashing system. Using these methods, we
demonstrate a system that is able to recognize models

from a database of 32 models, each with 16 feature-
points, in scenes containing typically a couple hundred
features. The system is able to deal with positional error
in the scene that is several percent (2-3%) of the size of
the objects in the scene. Performance of the system with-
out Bayesian weighted voting depends on the size of the
bins and other parameters, but essentially fails at all tasks
that are demonstrated in Section 7. A related analysis of
the discriminability of binning using simulation data is
presented in [15], where a particular bin size is chosen
and a hypothetical database of 500 models is generated.
An error analysis based on binning is also given in [12].
These studies, together with those in [8], suggest that
binning in conjunction with scene noises poses severe
problems. We believe that the use of Bayesian weighted
voting largely addresses these problems, especially for
low-order transformation invariance, such as similarity
invariance.

2. AN OVERVIEW OF GEOMETRIC HASHING

We begin with a brief overview of the geometric hash-
ing approach to object recognition. In the feature extrac-
tion stage, features such as points, linear and curvilinear
segments, and corners are extracted. Any such collection
of features can be represented by a set of dots: each dot
represents the feature’s location, and associated with
each dot is a list of one or more attributes (the feature’s
attribute list) that depends on the corresponding feature’s
type.

We can thus confine ourselves to the problem of recog-
nition of patterns of point features (dot patterns), with an
attribute list associated with each point.

Suppose that we perform recognition of patterns of
point features with empty attribute lists, where the pat-
tern may be translated, rotated, and scaled (similarity
transformations). Two points are needed to define a ba-
sis. Figure 1 shows a model (M) consisting of five dots
with position vectors qi, q2, g3, qs4, and gs respectively.
We begin by scaling the model M, so that the magnitude
of q4q; in the Oxy system is equal to 1 (Fig. 2). Suppose
now that we place the midpoint between dots 4 and 1 at
the origin of a coordinate system Oxy in such a way that
the vector q4q; has the direction of the positive x axis.
The remaining three points of M; will land in three loca-
tions. Let us record in a hash table, in each of the three
bins where the remaining points land, the fact that model
M, with basis (4, 1) yields an entry in this bin. This is
shown graphically in Fig. 2. The bins may be infinitesimal
and are needed only to facilitate fast access to regions of
the ‘‘hash space.”

Similarly, the hash table contains three entries of the
form (M, (4, 2)), three entries of the form (M,, 4, 3)),
etc. Each triplet of entries is generated by first scaling the
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FIG. 1. Model M, consisting of five points.

model M, so that the corresponding basis has unit length
in the Oxy coordinate system, and then by placing the
midpoint of the basis at the origin of the hash table in
such a way that the basis vector has the direction of the
positive x axis. The process is repeated for each ordered
basis, and each of the models in the database. As a result,
the final hash table data structure will contain a list of
entries of the form (model, basis) in each hash table bin.

In the recognition phase, a pair of points, (p,,, Py,)
from the image is chosen as a candidate basis. This or-
dered basis defines a coordinate system Oxy whose cen-
ter coincides with the midpoint of the pair; the direction
of the basis vector p,, — p,, coincides with that of the
positive x axis. The magnitude of the basis vector defines
the ‘‘unit’’ length for Oxy.

The coordinates of all other points are then calculated
in the coordinate system defined by the basis. Each of the
remaining image points is mapped to the hash table, and
all entries in the corresponding hash table bin and nearby
bins receive a vote. Figure 3 shows this graphically.
Here, we merely make use of the fact that any point p in
the plane can be represented in the selected basis,
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namely, there is a unique pair of scalars («, v) such that

PP = u(pﬂ-z - Pﬂ-l) + U(p,u-z - pﬂ-l)l’

where po = (p,, + Pp.,)/2 is the midpoint between p,,
and p,,.

If there are sufficient votes for one or more (model,
basis) combinations, then a subsequent stage attempts to
verify the presence of a model. In the case where model
points are missing from the image because they are ob-
scured, recognition is still possible, as long as there is a
sufficient number of points hashing to the correct hash
table bins. Recognition should occur once a basis is cho-
sen in the scene such that all the points belong to a single
model. It does not matter which points in the model cor-
respond to the chosen basis, which accounts for the effi-
ciency of the search. Classification or perceptual group-
ing of features can be used to make the search over scene
features more efficient, for example, by making use of
only special basis tuples.

3. WEIGHTED VOTING IN GEOMETRIC HASHING

We now generalize the formulation of the geometric
hashing technique. Let us suppose that we are given m
models M, M,, M5, . . . , M,,, each consisting of a
pattern of n points, say qx,;, . . ., qi, for model M;, with
each q,; € N2 For similarity-invariant recognition, the
hash table consists of a collection of mn(n — 1)(n — 2)
entries, each of the form (x, y, M,, i, j, [). Each entry
means that model M,, using basis (qy,;, g ), gives rise to
a hash value at location (x, y) when the coordinates of gy,
are computed in the appropriate coordinate system. We
typically use the hash function and coordinate system as
described in the previous section. There will be a sepa-
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FIG. 2. Determining the hash table entries when points 4 and 1 are used to define a basis. The models are allowed to undergo rotation,

translation, and scaling.
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rate entry in the hash table for every ordered triple of
distinct points (i, j, [) and every model M;.

During the recognition phase, a collection of scene
points p;, . . . , ps, are observed, with each p, € R2
Candidate basis pairs are selected, say p, and p,, and the
remaining scene points are used to compute hash loca-
tions in the coordinate system determined by the basis
(p»» P»). When a point hashes to a location (u, v), we
desire to locate all entries in the hash table that lie nearby
the point (u, v), and register a weighted vote for each
such entry. That is, every hash table entry of the form (x,
y, My, i, j) should receive a weighted vote when (x, y) is
close to (u, v). The weight of the vote should depend on
the distance between (u, v) and (x, y). Generally, the
weight of the vote should drop as the distance increases.
This process is more fair than the simple-minded binning
strategy which registers a single vote whenever (u, v)
lands in the same quantized bin as (x, y). There is a more
graceful degradation in the total number (i.e., weight) of
votes for a model/basis combination as noise corrupts the
positions of the hash locations.

What weight should we give to a vote for a record (x, y,
M,, i,j, ) given a hash to location (u, v)? Several heuris-
tic functions are easy to define. We could choose some
decreasing function of the Euclidean distance between
(x, y) and (u, v), such as the inverse of the distance, to
determine the weighted vote. To simplify the process, the
weighted vote could be a linear function of the Euclidean
distance, dropping to and being clipped at 0 beyond some
threshold distance. Alternatively, and closer to our ac-
tual practice, we could analyze the expected distribution
about (x, y) of the expected hash location of a noise-
corrupted model M,, using basis pair (i, j), embedded in
the scene, based on expected variations in the positions
of the basis points and the point that is being hashed, to
define a statistical covariance C. The weighted vote in

Determining the hash table bins that are to be notified when two arbitrary image points are selected as a basis. The allowed

response to a hash to location («, v) can then be related to
the Mahalanobis distance [(d;, d,) C "' (d,, d,)' where (d,
d)=(w-—x,v-y).

What is startling, and what we will show in the next
section, is that a Bayesian formulation may be used to
provide a precise formula for a well-justified weighted
voting approach, using an exponentially decreasing func-
tion of a scaled Mahalanobis distance.

4. A BAYESIAN FORMULATION

In this section, we present the Bayesian extension to
the geometric hashing algorithm. Although we will treat
only the similarity transformation case, the approach is
more general and can be applied to other transformation
classes. A more detailed analysis that is transformation
independent appears in [15].

Recall that the model database consists of models
{M;}, for k = 1,. . ., m, and that we are also given a
scene with a set of S points, ¥ = {p;}i-,. We assume that
two points of ¥ are chosen as a basis pair, say, B = {p,,,
p.}. Thus, given ¥, we wish to determine if a model is
present with & as a basis.

If an adequate model is not found by a verification step
as a result of using % as a basis, then the entire analysis
must be repeated with other choices for the basis pair.
We set

i.e., ¥’ comprises the points of the scene less the two
points in %B. The set ¥’ provides the evidence that will be
used to determine if a model is present.

We pose the following query: What is the probability
that model M, is present, with points i and j of the model
respectively matching p, and p, of the chosen basis set %
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in the scene based on the information given by ¥’? We
use the following notation:

* (My, i, j, %) means that the model M, is present with
point i of M, matching basis point p, and point j of M,
matching point p,, using the basis pair & = {p,, p,} C .

* ¥’ means that a collection of hash values (corre-
sponding to the points of set ¥’) are computed and
present, corrupted by noise, relative to the basis set %.

Using this notation, we compute

Pr((Mk, i’j’ %) | SP,)’ (1)
which is the probability that model M; is present, with
points i and j of the model respectively matching p, and
p. of the basis set &, based on the information from the
hash locations as computed by the scene points &’ rela-
tive to the basis set.

A maximum-likelihood approach to object recognition
results if we ask to find the maximum of Eq. (1) over all
possible M, i, j, and %. The resulting model/basis combi-
nation is the most likely match given the collection of
hash values generated from &’. Note that the collection
(M,, i, j, B) are not mutually exclusive. If the model M, is
present, then there will be multiple possible pairings of
model features to scene basis sets. A reasonable assump-
tion for practical purposes is the following: ‘‘If there is no
match, then the probability value of even the maximum
winner will not be large, whereas if there is a match, then
for some choice of B (and most likely, multiple choices)
there will be a large probability value for some (M, i, j,
9%).”” If there are multiple models present, then several
model/basis combinations will share a large probability.
Since one can always pass the winning combinations to a
verification phase, it suffices to find the few combinations
that lead to the largest probabilities. We will determine
the relative probabilities, and not the actual values.

Next, we make certain conditional independence as-
sumptions. Let p, be one of the points of ¥, and let ¥” be
any nonempty subset of ¥’ not containing p,. We make
the assumption that

Pr(p§ | 97”’ (Mk’ i1 ja %)) = Pr(Pf I (Mk’ i9 j’ %)) (2)

for every possible (M, i, j, ®B). These are conditional
independence assumptions, and the meaning can be sum-
marized as follows. Under the assumption that some
model M, matches points in a scene with points i and j in
the model matching the basis % in the scene, then the
expected probability distribution of a hash point relative
to the basis A is independent of any collection of other
hashed values, whether they corroborate the model or
not. That is, once the assumption is made that a match
occurs, then the density function for hash values is fixed;
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namely, there is a large expectation of hash values near
the points in the hash table where (M, i, j) hash entries
occur, and a uniform density (or some fixed density) else-
where, regardless of what other hash values are known to
occur. The assumptions are reasonable if the features are
chosen judiciously.

With the above assumptions, and using standard prob-
abilistic derivations based on Bayes’ theorem [3], the
probabilities of Eq. (1) may be rewritten as

Pr(My, i,j ) | ¥') = K - Pr(M, i, j, B))

[ PO g B) | po
p:EY’ Pr((Mk’ i’ j, %))

3

The constant of proportionality K will be independent of
(Mg, i, j, B), and it is noteworthy that only the condi-
tional independence assumptions (Eq. (2)) are necessary,
and not unconditioned independence assumptions. Ap-
plying Bayes’ theorem once more, each term in the prod-
uct of the right-hand side of Eq. (3) can be written as

Pr(Pf I (Mk’ i’ j’ %))
Pr(p,)

Since the logarithm function is monotonic, maximizing
the probabilities (1) over model/basis combinations is
equivalent to maximizing the logarithms of those proba-
bilities. We can thus apply the logarithm to both sides of
Eq. (3), noting that the constant of proportionality be-
comes a constant additive factor, whence we see that we
must maximize

Pr(pf | (Mk’ i9 j’ %)))

log(Pr((My, i, j, B)) + 2 log ( Pr(p,)

P:EY’

“

over all possible model/basis combinations and basis
selections.

This is in essence what geometric hashing does. We
first posit a fixed basis set % from the scene points. Each
and every model/basis combination then accumulates
votes, looking at individual points from the scene and
their hash locations in the hash table computed relative to
the basis %B. The model/basis combinations receiving a
lot of votes (or a large weighted vote) is a probable in-
stance of a model with the basis combination from that
model matching the chosen basis %.

Note that it is not necessary to exhaustively consider
all model/basis combinations and basis selections in or-
der to come up with an answer. Due to the redundant
representation, there is more than one i, j, B combination
that induces the recovery of model M,.
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As Eq. (4) dictates, the contribution that a particular
hash value based on a point p; in the scene should lend to
a model/basis combination (M, i, j) wil be equal to a log-
probability ratio

Pr(pf I (Mka i7 j’ %))
log ( Pr(pe) )

The ratio compares the probability of ‘‘hashing’’ to the
location where p; hashes using &, under the assumption
that model M, is present with the basis (i, j) matching the
chosen basis %, to the probability without this assump-
tion. The probability of hashing to a given location is
simply the probability density value of a given location in
hash space. Hash value probability densities for a variety
of feature distributions and transformations have been
studied and are presented elsewhere [15].

The log-probability ratio measures the logarithm of the
factor by which the probability increases or decreases
due to the conditioning hypothesis. We ‘‘weight’’ the
hashes by a quantity that depends on the actual hash
value. Most of the hash values occur near the origin of
the hash space. In essence, this means that hashes that
occur in the less populated regions of the hash table (dis-
tant from the origin) will be given more weight.

The log-probability ratio will be based on the unnor-
malized density functions of hashes of scene points in the
hash space. By unnormalized, we mean that the integral
of the expected density functions will give the total num-
ber of points, and not unity. In our case, the probability
density value increases by a large factor in the regions
near hash locations of the points of M, computed using
the basis (i, j).

We also note from the first term of Eq. (4) that initially
each combination should have a bias amount equal to the
logarithm of its a priori probability. If every model/basis
combination and basis selection is equally likely, then
this term may be dropped.

5. DENSITY OF ENTRIES IN HASH SPACE

The previous section shows that geometric hashing,
with the appropriate weighted voting, can be interpreted
as a Bayesian maximum-likelihood object recognition
system. The weighted voting scheme, which extends the
binning notion of geometric hashing as presented by
Lamdan, is critical to this interpretation.

To compute the weights that should be used, we must
analyze the unnormalized density functions of hash val-
ues in the hash space, under assumptions of a particular
model/basis combination and a particular basis set selec-
tion in the scene. Accordingly, in this section, we com-
pute density functions for similarity transform hashing,

using the hash function computation indicated in Sec-
tion 2.
Our interest here is to compute the log-probability ratio

Pr(Pf | (Mk’ i’ j’ %))
log < Pr(p;) ) ’

as used in Eq. (4).

We denote by (u, v) the location in the two-dimen-
sional hash space to which p, hashes; we use the similar-
ity transform invariant hash function of the point p, under
the basis %. We assume that the two points of & corre-
spond to points i and j of model M,, possibly corrupted
by noise. The probability ratio depends on density func-
tions which are given below. However, it is important to
note that the probabilities depend on the existence of
some point p,, which happens to hash to a location (u, v),
and not the probability that a given, specific point hashes
to a particular location. In the latter case, the integral
over all space will give a unit value. In the former case,
the integral of the values over space will give the ex-
pected number of points in the scene.

Let us denote the n — 2 locations in the hash table
corresponding to entries due to model M, with basis (i, j)
by {(xg, y)}2zi. If (u, v) is distant from all of the points
(%4> ¥4), then in all likelihood the point p, has nothing to
do with the model M;, and thus the assumption that
model M, is present has no influence on the probability of
a hash to location (u, v). Thus the probability ratio is
close to 1, and the log-probability ratio is close to 0. Thus
we will be able to discard hash points («, v) that do not lie
close to any of the (x,, y,). We will define ‘‘close’’ more
precisely soon.

If we assume there is no noise and no occlusions, then
the assumption that model M, is present makes it certain
that points will hash to each of the (x,, y,) locations. In
this case, the probability ratio will be infinite at those
points, and 1 elsewhere. However, if we assume that
every point of the model embedded in the scene is subject
to random perturbation, then the probability of a hash is
merely increased in a region about each hash location
(X5 Yq)-

Consider three points from model M, namely basis
(i, j) and a third point /. An entry in the hash table is
recorded for this set of data; the entry will be at a location
(x, ¥) and contain the data (M,, i, j). Suppose that the
model is rotated, translated, and scaled into the scene,
and that the points are perturbed by Gaussianly distrib-
uted location inaccuracies with variance o 2. The three
points give rise to three corresponding scene points, p,, =
(m1, w2), pv = (1, 12), Pe = (&1, &), respectively. If the
first two points are chosen as basis points, and the third
point is used as the point for hashing, the resulting hash
location (u, v) will satisfy the matrix equation
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(Vl — M Tyt P«z)(”) B (51 = (u + Vl)/2) )
V2 — M2 Vi — M/ \V & — (u2 +1)/2 .

If we assume Gaussian perturbations of the positions
of the three points, we can show that the resulting distri-
bution of the computed invariant («, v) is in the first-

order Gaussian centered at (x, y), and with covariance C
given by

_ W+ +3) o

c
2. — pP

1, (6)

where I is the identity matrix (see [17, 18]). Note that the
covariance function is diagonal and depends on both the
location of the hash point (x, y) in the noise-free case as
well as on the separation distance between the basis
points in the scene.

Accordingly, if we know that model M, is in the image,
and that the positions (x,, y,) are the hash locations due
to the n — 2 nonbasis points of the model, then the ex-
pected density function in hash space is simply the super-
position of n — 2 Gaussian distributions, each centered at
a distinct point (x,, y,) and each with an appropriate
covariance:

n—2 1

f(u,v)=q§=:];\/—m

1 _
exp (—— E(u — X V=) Cy ' — x40 — y,,)’).
@)

Here, C, is the covariance matrix at (x,, y,) given by Eq.
(6). Note that the total mass of the density function is n —
2, reflecting the fact that n — 2 points are expected based
on the knowledge that M, is present.

Next, suppose that three random scene points are cho-
sen, with two points as the basis pair, and the third point
is used for hashing to a location, using again Eq. (5). The
distribution function of the hash location (u, v) will de-
pend on the distribution of the points in the scene. Sup-
pose that the scene points are distributed according to a
Gaussian distribution with a fixed but unspecified vari-
ance; the center of the distribution is assumed to coincide
with the origin of the scene coordinate system. The ex-
pected distribution of hashes (u, v) in hash space, as
determined by the solution to Eq. (5), will be independent
of the actual variance value in feature space and is given
by

12 I
7T (42 + v?) + 3)¥

glu, v) = ®

A derivation of this result appears in [16]. A large value
for the variance will result in a distribution of points that

is approximately uniform over the scene ‘‘window’’;
however, the distribution of hashes in hash space will still
follow Eq. (8). Since there are roughly S expected scene
points, then the expected density function, without any
other assumptions, is S - g(u, v).

We are now ready to compute the log-probability ratio.
We already know that the density function in hash space,
due to hashes from scene points, is S - g(u, v). If we
know that the model M, appears, then this adds n — 2
points and adds to the expected density function with
Gaussian distributions centered at the locations (x,, y,),
by means of the function f(u«, v). Thus the resulting den-
sity function is S - g(u, v) + f(u, v). The log of the ratio
gives us the formula

(Pr(p; | (My, i, j, B)\ _ fu,v) )
log( Pr(p;) ) = log <1 e g(u,v))’ ©)

where point p, hashes to location («, v) using basis &, fis
given by Eq. (7), and g is given by Eq. (8). Accordingly,
Eq. (9) provides the formula for the weighted accumula-
tion amounts that contribute to the log-probabilities, as
computed in Eq. (4).

The function fdepends on (M, i, j, B) in the sense that
f(u, v) requires knowledge of the location of the hash
entries of model M, using model basis (q; ;, qx;) and ex-
plicitly depends on the scene basis separation (namely,
[p. — p.|- Accordingly, let us denote by fy, ., and the
hash location of p, under basis B by (u,, v;). We thus
have that the log-probabilities log(Pr((My, i, j, B) | ¥')),
for a fixed %, are ordered in the same order as

Su i'%(ug, Ug))
I (1 okt Tel |
p;%" o8 S - glug, ve)

(10)

It is the function of the geometric hashing algorithm to
compute approximates to Eq. (10) for a variety of
My, i,j, B).

Let us now consider how the parameters of the prob-
lem are reflected in Eq. (10). For a given scene basis %,
each scene point p; € ¥ contributes to votes for model/
basis combinations (M, i, j, B). The contribution de-
pends on the location (i, v,) to which p, hashes using the
basis &B. The contribution will be close to 0 (NB: log(1) =
0) as long as fuy, ; j&(ue, Ue) is small. Thus for a given hash
(u¢, ve) based on a fixed basis %, nonzero contributions
will go only to model/basis combinations (M;, i, j) such
that fiy, . a(ue, ve) is large. This value is large only when
(ug, ve) lies near an entry (xq, ¥4, My, i, j, l;) among the
n — 2 entries generated by model M, with basis qy,;, q,.
Here, ‘‘nearness’’ is measured in terms of the covariance
matrix C, associated with the entry. Accordingly, for a
scene point p; and its hash location (u, v;), we only need
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to increment accumulators for model/basis that have en-
tries that lie near (g, vy).

The amount of the increment to a particular model/
basis combination is equivalent to one of the summands
of Eq. (10). Assuming that the entries in hash space for
model M, with basis (i, j) are separated, then the nearest
entry to (uz;, vy dominates the computation of
Suija(ue, ve). That is, only one term in Eq. (7) domi-
nates, and the closer (u, v) lies to its nearest entry (x,,
Yq), relative to C,, the larger the contribution.

The f(u,, ve) term is modulated by the number of scene
points, &, representing the amount of background clutter
and also by the background distribution, evaluated at the
hash location, g(ug, vy).

The larger the number of clutter features (‘‘noise’’),
the larger the value of the denominator, and thus the
smaller the relative contribution from the imaged object’s
features (the ‘‘signal’’). Above a certain amount of clut-
ter, the contribution will become insignificant and the
signal, will not be distinguishable from the background
noise; i.e., the imaged object will not be recognizable.

The background distribution serves a similar function.
Hashes to locations near the origin, which are common,
contribute relatively less than hashes that are far from the
origin, which are more indicative of a match to a model.

The impact of occlusion on the ability to recognize an
imaged object is incorporated in the numerator of the
argument of the log function. Occlusion will result in
fewer visible model features and consequently in a
smaller contribution from the f(u,, v,) terms. In the pres-
ence of scene clutter, a highly occluded imaged object
will not be recognized.

One can use expression (9) to produce reasonable esti-
mates for thresholds to determine whether a hash is close
to an entry. An alternative approach for determining such
thresholds has been discussed in [9]: the recognition
problem is modeled as a statistical occupancy problem
and thresholds are derived as a function of sensor uncer-
tainty, and the scene and model complexities.

6. THE BAYESIAN GEOMETRIC HASHING ALGORITHM

We now summarize the algorithm that allows us to
extend the geometric hashing method to a Bayesian max-
imum-likelihood model-matching system.

First, in the preprocessing phase, every model and
every basis pair within that model computes the hash
locations of every other point within the model. Each
such hash location (x, y) is accompanied by the informa-
tion of a model M,, a basis pair (i, j), a model point / other
than the basis points, and a predicted normalized covari-
ance radius, which is simply 7 = (4(x*> + y») + 3) - ¢2. Of
course, 7 can be reconstructed from the location (x, y)
but it is often useful to store the precomputed value.

Records containing this information are organized in
such a way that given a location (u, v), all such records
having an (x, y) value lying nearby are easily accessed.

In the recognition phase, feature points are extracted
from the scene, and then a pair of these points are chosen
as a trial basis, say p, and p,. For every other point in the
scene, the coordinates of the point are computed relative
to the basis set, and a hash takes place to a location (u, v)
in the hash domain. All nearby records of the form (x, y,
M., 1i,j, 1, 7) are accessed. For each such nearby record,
we record a weighted vote for the model/basis combina-
tion (My, i, j). From Eq. (9), the amount of the vote
should be equal to

Z = log (1 GRS 1; S3T)2||Pu - pJ?
) —[l(u, v) = (x, Y)|? (11)
exP( p. — PP ) ) '

By nearby, we simply mean that z is greater than some
threshold. Note that the formula incorporates the value
of o, the expected error in positioning of the scene
points, the number of scene points, §, and the basis-pair
separation distance. The value z is an approximation of
the quantity (Eq. 9), which is the total contribution of the
hash (u, v) to the model/basis (M, i, j), obtained by
neglecting all terms in f except for the entry at (x, y).

As a simple enhancement, we can make sure that no
scene point contributes more than one vote for a particu-
lar model/basis combination, by the following method.
When a point hashes to location («, v), and an increment
z is to be recorded for a particular record (x, y, My, i, j, [,
1), we record the value z along with the location (u, v) of
the hash point. If another hash (u’, v') results in a com-
peting increment z' to the same entry, then we compare
the positions of (u, v) and (1, v') with the entry locations
(x, y) and update the recorded increment corresponding
to the hash that lies closer in the sense of the covariance
radius r, which amounts to using the larger of z and z'.
After all scene points are processed, then the vote for a
particular model/basis combination (M,,, i, jo) is deter-
mined from the sum over / of increments z recorded for
entries of the form (x, y, My, io, jo, [, 7).

When all weighted votes are tallied, model/basis com-
binations whose total accumulated evidence exceeds a
threshold may be passed onto a verification process. If
the maximum accumulated evidence for no model/basis
combination exceeds the threshold, the algorithm con-
tinues by iterating through different candidate basis pairs
from the image.

A major advantage of the geometric hashing approach
to model-based object recognition is its inherently paral-
lel nature. There are a number of ways that the geometric
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hashing algorithm can be parallelized. Two basic algo-
rithms (based on a ‘‘connectionist’’ view of the method
and a ‘‘hash location broadcast’’ model respectively) to-
gether with some variants are described in [19].

7. IMPLEMENTATION DETAILS AND RESULTS

In this section, we describe in greater detail the auto-
matic feature extraction and basis selection mechanism
and present our experimental results. Our object recogni-
tion system employs real-world images such as photo-
graphs from books, or actual street scenes. Many alterna-
tive object recognition systems have used either
synthetic or controlled-environment (laboratory) scenes
of real objects; moreover, in many cases, the segmenta-
tion and/or feature extraction/selection was done by
hand.

The results that we present here are those from an
implementation of our system on an 8K-processor Con-
nection Machine 2. Since this implementation was done,
the language Concert/C [1] was used to implement a sec-
ond-generation geometric hashing object recognition sys-
tem based on a distributed model of computation [20].
Both systems produced good results, although it is nota-
ble that the distributed implementation on 16 worksta-
tions runs faster than the 8 K-processor Connection Ma-
chine 2 implementation. Here, however, we present
results based on the CM-2 implementation.

The system incorporates an automatic feature extrac-
tion mechanism: the mechanism makes use of a bound-
ary-following algorithm (eight-connectivity is assumed)
applied to the output of the edge detection stage. We
used the Cox-Boie edge detector [2], which gives good
results and has been in common use at our lab for a
number of years. Edge detection is followed by a divide-
and-conquer polygonal approximation algorithm [6]. The
output of the edge detection stage is typically a collection
of curves, and polygonal approximations for each of
those curves are determined. Curves shorter than 100
pixels are not considered. The vertices of the different
approximating polygons compose our feature set.

More sophisticated approaches, such as spline fitting,
could be used to determine the point feature set. We have
used a simple feature extraction process and have dis-
carded all information about the features other than the
coordinate positions in order to concentrate on the
search aspects of geometric hashing. In order to select
among basis sets during the recognition phase, we simply
chose randomly among the different bases: the two basis
members were selected, with replacement, uniformly
from the scene point-feature set. A basis set might be
discarded if the basis separation is too small or too big;
the cutoff values for our experiments were 130 and 550
pixels respectively, whereas our test inputs were 512 pix-

els on the side. Our scenes contained between 80 and 170
feature points, at most 16 of which belonged to a model in
the database, which is a small signal-to-clutter ratio. Us-
ing the simple randomized algorithm for selecting bases
requires that on average approximately 35 basis pairs be
selected before recognition occurs. More elaborate basis
selection mechanisms are also possible. In particular, it is
possible to use grouping strategies to select likely basis
pairs; alternatively, a partial randomized accumulation of
weighted votes can be used to screen out poor basis se-
lections.

The database used for our experiments contained 32
models: 14 of the models were military aircraft, whereas
the remaining 18 were automobiles (six vehicles seen
from three different viewpoints each). For the aircraft
models, profile drawings of 14 military aircraft from [14]
were scanned using a Microtek 300 color/gray-level scan-
ner. These drawings are not photographs but are instead
schematic drawings that we assume are drawn roughly to
scale. Although our scanner is capable of a resolution of
300 dpi, we used 120 dpi resolution to digitize the draw-
ings. For the automobile models, we obtained photo-
graphs of six different automobiles seen from three differ-
ent viewpoints: the camera was at the height of the
midline, with its optical axis pointing at the middle of the
automobile’s long side. The three viewpoints corre-
sponded to azimuth values of roughly —45°, 0°, and +45°.
The average distance from the automobiles was approxi-
mately 15 m. The photographs were subsequently
scanned at a resolution of 75 dpi. The 14 aircraft and 18
automobile models contained in our database appear in
Table 1.

The digitized images were then processed using the
Cox-Boie edge detector [2]; the value of the filter’s o
was typically equal to 2.0. We call the result of this stage
the edge map. No other filtering or preprocessing was
performed. Example edge maps of the models are shown
in Fig. 4.

Next, 16 points were manually subselected from the
contour of each model. The points were chosen to coin-
cide with points of discontinuity in the tangent direction
of the model’s contour (i.e., vertices or points of very
high curvature), or with points of maximum curvature.
Within a class of models (i.e., aircraft or automobiles) we
made a point of selecting the same feature on all the
models: the tip of the radar in all aircraft, the tip of the
rudder, etc. The intention behind this choice was to make
the task of the object recognition system more difficult by
decreasing the number of distinguishing feature markers.

The model point selection is performed manually dur-
ing the construction of the database and thus takes place
off-line. Candidate feature points may be presented by
means of the edge tracking algorithm. Figure 4 shows the
points selected for three of the database models: the F-16
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FIG. 4. The edge maps and the selected feature points for the database models of the F-16 Falcon, the Ford Econolinel50, and the Sea Harrier.

RIGOUTSOS AND HUMMEL

TABLE 1
The Models of the Database

A-4 Skyhawk

F-14 Tomcat

F/A-18 Hornet

Mig-29 Fulcrum

Sea Harrier

Chevrolet Astro (lateral)
Dodge Dart (lateral)

Ford Econolinel50 (lateral)
Chrysler Horizon (lateral)
Honda Civic (lateral)
Volvo S.-W. (lateral)

A-6 Intruder

F-15 Eagle

Mig-21 Fishbed

Mig-31 Foxhound

Panavia Tornado

Chevrolet Astro (oblique frontal)
Dodge Dart (oblique frontal)

Ford Econolinel50 (oblique frontal)
Chrysler Horizon (oblique frontal)
Honda Civic (oblique frontal)
Volvo S.-W. (oblique frontal)

A-10 Thunderbolt
F-16 Falcon
Mig-23 Flogger
Mirage 2000

Chevrolet Astro (oblique rear)
Dodge Dart (oblique rear)

Ford Econolinel50 (oblique rear)
Chrysler Horizon (oblique rear)

Honda Civic (oblique rear)
Volvo S.-W. (oblique rear)
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Falcon, the Sea Harrier, and the Ford Econolinel50 (lat-
eral view).

We then selected a number of photographs of the same
military aircraft, but from a different source [21]. The
photographs were chosen on the basis of being taken
from approximately the same viewpoint as the drawings
in the model database. That is, since the model drawings
are side views, and since our recognition algorithm uses
only similarity invariance, recognition will only be possi-
ble with views taken generally from the side. Notably,
finding such photographs is not easy, since the pictures
must be taken by chase-planes. However, we emphasize
that the test images are real photographs and not draw-
ings nor simulated data. Nor are the models taken from

9

FIG. 4—Continued.

the same source as the photographs. The only thing that
the test images and the model database have in common,
other than the chosen viewpoints, is the aircraft types.

We also obtained additional photographs of automo-
biles. The automobiles in our test photographs were from
various locations in New York City. The only thing that
the automobiles in the test photographs and those
used to build our database have in common, other than
the approximately similar viewpoint, is the automobile
type.

All the test photographs were digitized using an uncali-
brated CCD camera. The result was that distortions and
warpings were introduced, not only from the perspective
projection of the 3D plane onto the photograph, but also
from the digitization process. However, such distortions
might be typical of a working vision system, and all such
distortions are approximable by a similarity transforma-
tion. Edges were extracted from the resulting gray-level
images, using the Cox—Boie edge detector that was also
used with the models. Again, no preprocessing or other
filtering of the test images were performed. A polygonal
approximation of the different edge maps provides the
points of the feature set. Figures 5 through 7 show the
digitized photographs for three of our test inputs together
with the corresponding edge maps and extracted point
features.

In Fig. 5, we can see that the original photograph of the
F-16 was taken with the camera positioned below the
airplane’s midline and toward the back of the aircraft.
Further, the airplane is banking to the left. A total of 80
feature points were extracted from the edge map of this
test input. The extraneous-features-to-model-features ra-
tio for this test input was 4: 1.

The original photograph of the Sea Harrier (Fig. 6) was
very small; a juxtaposed pencil helps estimate the actual
size of the original image. The original picture was taken
with the camera positioned in the front of the aircraft, as
evidenced by the visible interior of the left engine intake.
The airplane appearing at the bottom of the photograph is
a Hunter T-8M. In the edge map of this test input, we
identified a total of 169 feature points. This represents an
extraneous-features-to-model-features ratio of 9.5: 1.

The photograph of the Ford Econolinel50 (Fig. 7) was
taken from the driver’s side of the automobile, unlike that
of the model which was taken from the passenger’s side.
Instead of augmenting our database with entries corre-
sponding to that viewpoint, we reversed the test input
and used its reflection around the vertical axis as a test
input; this explains why the lettering on the front door of
the vehicle appears backwards. In more recent work, we
have endowed the recognition system with left/right re-
flection invariance, but that work is not presented here.
The extraneous-features-to-model-features ratio for this
test input was 5.3: 1.
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FIG. 9. The output of the implementation of our system on the Connection Machine. The test input (Sea Harrier) is shown at the top left. The
edge map together with the automatically extracted point features is shown at the top right; the basis selection that led to recognition is also
marked. A total of four basis selections were required, and the elapsed time was 15.7 s for the voting accumulation over all four trials on an 8K
CM-2. The nine panels below show the top model/basis combinations for the 4th trial, where the basis is indicated with white square dots. The bars
above each panel provide a length encoding of the total accumulated log-probability value for the model/basis combination. The top scoring
database model, scaled, rotated, and translated by placing the bases in correspondence, is shown overlaid on the test input.

In Figs. 8 through 10 we show the output of our sys-
tem’s implementation for three test inputs. The database
model that receives the maximum weighted vote is
scaled, rotated, translated, and shown overlaid on the
test input. In the bottom half of each screendump, the
nine top ranking model/basis combinations are shown in
order of decreasing accumulated evidence (column-major
order). For each of the nine combinations, the model
name and the corresponding retrieved basis are indi-
cated. The point features of the retrieved basis are
marked along the contour of the corresponding model.
Above each model, bars providing a length-encoded rep-
resentation of the evidence (which is a log-probability)
are also shown. In this implementation, we perform rno
verification: whenever the maximum accumulated evi-

dence exceeds the present threshold (see Section 5) we
stop the basis pair selection and display the results for the
nine top-ranking winners. It should be noted here that the
recovery of the transformation was based solely on the
basis pair and not on a best least-squares match between
all the corresponding model and scene feature pairs.

In all our experiments, the true model/basis combina-
tion has been discovered as the pair with the largest
weighted vote, i.e., evidence. However, even if the cor-
rect model were not found as the maximum winner, a
postprocessing stage could be used to verify the sug-
gested matches: for our database of 32 models, there are
7680 possible model/basis combinations; if the generated
nine top-ranking model/basis combinations are checked,
we will have still achieved a considerable speedup over
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CM TIME

9.1 sec

FIG. 10. The output of the implementation of our system on the Connection Machine. The test input (Ford em Econoline150) is shown at the
top left. The edge map together with the automatically extracted point features is shown at the top right; the basis selection that led to recognition is
also marked. A total of four basis selections were required, and the elapsed time was 9.1 s for the voting accumulation over all four trials on an 8K
CM-2. The nine panels below show the top model/basis combinations for the 4th trial, where the basis is indicated with white square dots. The bars
above each panel provide a length encoding of the total accumulated log-probability value for the model/basis combination. The top scoring
database model, scaled, rotated, and translated by placing the bases in correspondence, is shown overlaid on the test input.

the alternative of exhaustively checking all possible
matchings. Extensive experimentation has shown that
the accumulated evidence for the ninth model/basis com-
bination is considerably smaller than the evidence for the
winning model/basis combination, indicating that the
method is robust.
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