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Robert Hummel and Haim Wolfson
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Abstract

We begin with a selected overview of
computer vision research at New York
University, emphasizing work on represen-
tation of images, and on model-based
vision. We then focus on a technique for
fast matching of shape descriptions of
objects to preprocessed models. The match-
ing process permits general affine transfor-
mations of the shape, and thus is applicable
to the problem of recognizing flat, or nearly
flat, objects viewed from an arbitrary angle
and distance in 3-D. Different methods
apply when the boundary of the objects con-
sist primarily of line segments, or general
(non-convex) curves, or (the most difficult
case), convex curves. We also discuss the
case of recognizing 3-D objects, as opposed
to flat objects. The novelty of the approach
and the computational efficiency is achieved
by a hashing technique indexed over possi-
ble affine transformations.

1. A selected summary of Computer
Vision research at NYU

In Table 1, we list a number of
researchers, their titles and affiliations
within NYU, and topics of research interest.
Within recent years, computer vision
research has become a speciality in the
departments of computer science and
psychology at New York University.
Research in the psychology department has
focused on computational vision studies
through psychophysics and cell recordings,
whereas research within the Courant
Institute’s computer science department has
included high-level vision and sensor design
within the Robotics Laboratory, and

theories of low-level vision and mathemati-
cal analysis of feature extraction within the
interdisciplinary ‘‘representation of images”
sponsored research program. Most of the
researchers listed in Table 1 independently
direct a group of students, programmers,
and other staff. We describe some of the
activities of these groups below.

1.1. Representation of images

Professor Robert Hummel, in colla-
boration with Professor Michael Landy in
the Psychology Department, has been direct-
ing a research project on low-level vision, in
which they attempt to take a methodical,
analytical, and mathematically sound
approach to a comparative analysis of
representations that can be useful for the
analysis of images. The work is motivated
by knowledge that human visual processing
is mediated by center-surround receptive
fields of various sizes in early stages of the
visual pathway, and by directional and
motion selective processing in subsequent
stages. Accordingly, the research has
focused on representational issues involving
pyramid data structures, scale-space struc-
tures, and on methods for extracting infor-
mation from low-level cues, such as depth
from motion perception, and on methods for
combining information from multiple cues
to provide higher-level inferences.

Three methods are used to evaluate a
representation. First, a proposed represen-
tation should be analyzed mathematically, to
the extent possible. Questions of complete-
ness, continuity, and stability are the stan-
dard mathematical questions that must be
addressed. Next, the information content of
a representation can be assessed by using
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psychophysics to determine the information
that is used by the vision system to induce
perceptual effects. For example, we can
produce a reconstruction, and conduct
experiments to compare the information
content in an original image with the impo-
verished reconstruction. Finally, a
representation can be shown to be
worthwhile if a useful vision system can
make use of the construct. We next
describe how several subprojects support
this methodology of representation evalua-
tion.

1.1.1. Solving ill-conditioned inverse
problems

Many problems in vision involve the
solution of inverse problems. Interpolation,
segmentation, motion extraction, shape-
from-shading and other cues, and many
other standard problems in vision can be
viewed as inverse problems. Moreover, the
problem of reconstructing image data from a
representation is also frequently an inverse
problem. At the Courant Institute, interest
in inverse problems is a hallmark of
research work over the past fifty years.

Nearly all inverse problems are ill-
posed, in the sense that either no solution
exists, or many solutions exist, or if one
exists, there are many other candidate solu-
tions which are nearly as good. The latter
situation, when many images project to
nearly the same representation, character-
izes the case of an ill-conditioned inverse
problem. A prototypical example is the
deblurring problem: to recover the image
data from a Gaussian-blurred version of the
original image. In [1], we examined a novel
filtering approach to deblurring. More
practical instances of vision-related ill-
conditioned inverse problems include recon-
structions from zero-crossings, interpola-
tion, and reconstructions from sparsely sam-
pled filtered data. These topics have been
addressed in subsequent studies.

One way to approach certain ill-
conditioned inverse problems, formulated as
variational minimization problems, is to add
a regularization term. When done carefully,
the result is an image or function that is not
quite a solution to the original problem, but

satisfies some smoothness constraints. By
allowing for controlled continuity, it is even
possible to allow for some discontinuities.

A major contribution of research effort
by Professor Hummel and Dr. Moniot has
been to show the utility of a different
approach. The method, called minimization
of equation error, is applicable whenever the
inverse problem involves the specification of
information in scale-space. To date, the
technique has been applied to deblurring [2]
and to reconstructions from zero-crossings
[3]. The results in both domains have been
excellent. A principle advantage of the
approach is that there is no explicit smooth-
ness constraint. Instead, there is an assump-
tion that the supplied information came
about from a sampling in scale-space.

1.1.2. Scale-space representations

In a number of publications and
presentations, researchers at NYU have
become major proponents of the scale-space
viewpoint on pyramid data structures [4, 5].
The idea of using the Heat Equation to
model the process of representing image
data by a continuum of Gaussian-blurred
images is not new, but has become the basis
for much of our mathematical analysis of
related representations. In particular, we
have shown that the “evolution property of
zero-crossings,” the famous property that
says that in scale-space zero-crossing con-
tours are never created as one passes from
fine to coarse resolution, is mathematically
equivalent to the Maximum Principle for
parabolic equations [5].

Zero-crossings in scale-space have
become a popular proposed representation,
especially since the zero-crossings are corre-
lated with edge information. One difficulty
with zero-crossings is that they do not vary
continuously with the image data; a second
problem, as we have established, is that the
representation is unstable. Nonetheless, by
working on reconstructions from zero-
crossings, we have been able to establish
that the information carried in the zero-
crossings is a rich description of image
information, and that the reconstructions
contain many recognizable features of the
original data. This suggests that the zero-
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crossings enhanced with slightly more infor-
mation should suffice for a good representa-
tion.

Indeed, in more recent experiments,
we have established that stable reconstruc-
tion is possible when zero-crossings are
enhanced with gradient data along the zero-
crossings. The fact that such a representa-
tion is complete was conjectured by Marr,
established theoretically by us in a paper a
couple years ago, but only established in
stable numerical experiments by us this past
summer.

It is also possible that the structure can
be simplified to make for a more useful
image representation, using alternatives to
zero-crossings altogether. Specifically, the
visual cortex seems to have cells that
respond to local bandpass filters of visual
data, and to directional derivatives of that
data. By sampling data and derivatives of
data in a Laplacian-of-Gaussian scale-space,
we believe that an effective representation
can be constructed. Others have similarly
been concentrating on ‘“‘oriented pyramids,”
for example using the ‘“‘wavelet’” transfor-
mation, and we find much of this work to be
persuasive. We expect to use our recon-
struction techniques and mathematical
analytical methods to study these and related
representations. Ultimately, we seem to be
focusing on a representation involving sam-
pling in scale-space, and cortical computa-
tions for reconstruction of a representation
that encodes the complete Laplacian
pyramid.

1.1.3. Kinetic depth effect and depth
perception

Another way to probe the information
that is retained by our image analysis system
is to determine the cues that are important
for certain perceptual effects. Professor
Michael Landy, in collaboration with post-
docs and students, has extended understand-
ing of the kinetic depth effect, by conduct-
ing many experiments varying motion cues
and evaluating depth perception. A key to
this work is our ability to measure the per-
ceptual effectiveness of the kinetic depth
effect in particular psychophysical experi-
ments, based on a collection of three-

dimensional shapes. It is important to iso-
late the cues presented to subjects in order
to assess independently the information that
is used in the computation of shape parame-
ters. For example, we are able to remove
local dot density as a cue, and still retain
shape identification from moving dots.
Further, we have shown that while visual
motion is the essential input stimulus that is
responsible for the kinetic depth effect, the
optic flow perception need not be computed
by a Fourier energy detection system, such
as the Reichardt model. Moreover, pairs of
features do not seem to be important in
depth perception. We conclude that the
kinetic depth effect is based on a representa-
tion of optical flow that is preattentive and
based on global computations. We are thus
developing a model of optic flow computa-
tion feeding a model for generating a kinetic
depth effect [6].

Another interest has related to depth
perception from stereo. The cooperative
psychology and computer science group has
begun to develop a multiresolution model of
stereo perception. However, the model sug-
gested a number of experiments for psycho-
physical investigation, and these experi-
ments have been conducted by students in
our Psychology department. At interest is
the kinds of interpolations that are used
when the stereo information is sparse. By
discovering that smooth interpolants seem to
dominate, we have constrained models for
stereo perception.

1.1.4. Knowledge aggregation

A large body of research in Al is con-
cerned with the combination of knowledge
from different sources of information. In
computer vision, cues can come from edge
data, texture, orientation, dynamic process-
ing of temporal data, color, models, and
other sensory sources. To make inferences
from disparate sources of knowledge
requires a representation of information in a
fashion that permits incremental modifica-
tion.

We have long been associated with
relaxation labeling methods for image

analysis [7]. We have developed a number
of relaxation labeling models, and continue
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to show their effectiveness at handling low-
level visual tasks. However, there are many
related alternatives to relaxation labeling,
and we have pointed out relationships
between relaxation labeling, stochastic relax-
ation methods, brain state models, neural
networks, and the Dempster/Shafer theory
of evidence [8].

The latter topic, the ‘‘theory of evi-
dence,’”” has a large and dedicated set of
advocates in the AI community. By bring-
ing a mathematical and statistical viewpoint
to this field, and by contrasting the methods
involving the theory of evidence to other
knowledge aggregation methods, we have
been able to explain the foundations of the
Dempster rule of combination, and show
that the basis of the formula is Bayesian
combination of opinions, where the state of
the system is represented by the statistics of
more than one opinion. Using this
viewpoint, we are able to suggest alternative
formulations, which end up looking remark-
ably like Kalman filtering [9,10]. One of
our extensions, presented at the last IJICAI
meeting, incorporates a notion of
parameterized independence, relaxing nor-
mal assumptions of complete (conditional)
independence.

1.2. Computational neuroscience

Professor Eric Schwartz directs a large
group concerned with computational neuros-
cience. Using studies of the visual cortex of
monkeys, complex patterns of functional
areas have been identified. In this project,
we are especially concerned with the map-
pings along the visual pathway, and the
algorithms that are suggested by the data
structures created by the precise organiza-
tion of information. Attempts at under-
standing the nature of visual cortex pose a
wide range of problems in computer graph-
ics, image processing, computational
geometry, and numerical methods. In a
series of studies, computer graphics and
image processing methods have been used to
develop accurate three-dimensional models
of the retinotopic map, and to represent
these maps by numerically flattening layers
using a method of minimal metric error
[11,12]. Using results obtained from these

methods and dioxyglucose studies, subse-
quent work has suggested a number of algo-
rithmic methods that arise from the func-
tional neuroanatomy. In particular, a novel
computational method for stereopsis has
been suggested based upon the striations in
primary visual cortex [13,14]. A shape
representation scheme has also been
presented, and recent work centers on pat-
tern recognition interpretations of cortical
functional maps.

1.3. Representing shape

In addition to studying representations
of grayscale image data, members of the
Courant Institute Robotics Laboratory have
been concerned with more symbolic specifi-
cations of image constructs. In particular,
we have been concerned with the specifica-
tion of two and three-dimensional shape
information. In this study, our principle
evaluation criterion for a shape representa-
tion is its effectiveness in an object recogni-
tion system.

For description of 3-D shapes in a
manufacturing environment, it is reasonable
to assume the existence of 3-D depth data,
obtained from a depth sensor. In this
regard, the NYU Robotics Laboratory has
pursued the development of a novel light-
striped depth sensor, yielding simultaneous
intensity and range data [15,16]. Using
depth data extracted by this depth sensor,
and also by the laser-based “White
Scanner,” descriptions of 3-D objects have
been developed.

For 2-D object description, Yaron
Menczel in his thesis work demonstrated
that shape information can be effectively
encoded by a graph structure that is derived
from the orientation of boundary points
[17]. Specifically, each point in a region is
labeled with an orientation tag based on the
orientation of the nearest boundary point,
and the orientation field is quantized to pro-
duce regions of similarly labeled points.
The resulting graph is used for matching and
recognition, and proved successful for appli-
cations such as character recognition with
variable fonts and connected letters.

A principle motivation in the study of
shape information is that shape
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identification is possible in the presence of
occlusion and obscuration. Thus it is evi-
dent that shape analysis for this purpose
should be local, enabling partial matching
techniques. Since 2-D objects are fully
described by their boundary curves, both
globally and locally, and 3-D objects may
also be represented by sets of characteristic
curves, (e.g. ridges, curves of sharp inten-
sity change, curves of specularity), consider-
able effort has been done to develop effi-
cient curve representation and matching
algorithms both in 2-D and 3-D (using range
data, as described above). This effort was
initiated by the work of Professors J. T.
Schwartz and M. Sharir and their co-
workers, and has been carried on and
expanded in the last two years by Dr. H. J.
Wolfson and graduate students associated
with the Lab [18-22]. A landmark in appli-
cation of this method in the 2-D case, and a
clear demonstration of its sensitivity and
robustness, was its use to assemble (graphi-
cally rather than physically) all the pieces of
two intermixed hundred-piece commercial
jigsaw puzzles from separate photographs of
the individual pieces [23].

The work is founded on a new tech-
nique for geometrically hashing two-
dimensional and three-dimensional curves
[24-26]. Curves are represented by local
features that are invariant to rigid transfor-
mations, and feature values are used to gen-
erate an attribute of a curve called its foot-
print, which enables us to efficiently index
the appropriate local information to the
object for recognition purposes.

This effort has been recently extended
to local representation of 2-D curves in an
affine invariant way [27]. We will elaborate
on this issue in Section 2.

In a separate but related project, some
particularly elegant work on affine invariant
global shape representation has been com-
pleted recently by Professor J. Hong and
Dr. X. Tan, who are currently visiting our
Lab [28].

Finally, we have applied an interest in
parallel algorithms to shape analysis. Much
work in parallel image processing focuses on
SIMD architectures, where many simple
processors perform the same function

distributed over an image. However, it is
clear that in biology, there is a diversity of
function in massive parallelism, so that
models of multiple program streams
(MIMD) are in a sense more realistic. We
have done a limited amount of work on con-
nected component algorithms for image
analysis, focusing on issues of MIMD paral-
lelism [29,30]. NYU has a large group of
researchers involved in parallel algorithm
development, parallel architecture studies,
and parallel system design. In particular,
the ‘“‘Ultracomputer” project works closely
with IBM’s RP3 project to develop an
MIMD shared-memory machine with a com-
bining network, together with an highly
parallel operating system based on Berkeley
UNIX. Many image processing and vision
research projects (for example, the matching
algorithms based on the footprint technique),
will be greatly facilitated by the accessibility
of this unique parallel machine.

1.4. Model-based vision

Our work on representation and
description of scenes has led to a large pro-
gram of work on object recognition using
the techniques of model-based vision. A
number of methods progressing along com-
plementary lines have been developed.

The curve matching techniques using
footprint representations, which were men-
tioned in the previous section, led to the
development of an experimental 2-D object
recognition system enabling us to recognize
overlapping 2-dimensional objects selected
from large databases of model objects
without significant performance degradation
as the size of the data base increases [24].
Experimental results from databases of size
about 100 make this technique appear quite
promising.

A complete, working model-based sys-
tem, SCERPO, was developed by Professor
David Lowe while at NYU [31]. Several
graduate students at NYU continue working
on this system, under direction of Professor
Lowe (although David has now returned to
the University of British Columbia). For
example, Robert Goldberg is extending
SCERPO to the case where the models have
articulation joints [32].
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The existing, functioning, SCERPO
system is one of the first to demonstrate the
recognition of three-dimensional objects in
single images taken from arbitrary
viewpoints, incorporating fast matching
methods using a grouping strategy. The
objects are represented as polyhedral solids.
Features are extracted from the scene by
means of low-level edge feature extraction
[33], followed by simple grouping and
feature description operations. Matching is
done by solving for the three-dimensional
position and orientation of an object directly
from two-dimensional image measurements,
using an iterative, hill-climbing technique to
find the best viewpoint parameters that will
‘“project’” the object model onto the loca-
tions of matched image features. An impor-
tant point is that the evaluation of the qual-
ity of a match, is done in the projected,
two-dimensional image space. Thus
methods to recover 3-D object shape from
image cues are unnecessary. Once a few
initial matches have been formed, it can
make quantitative predictions for the exact
locations of further model features in the
image. This provides a reliable method for
evaluating the correctness of a match
according to whether it is consistent with a
single viewpoint [34].

A second aspect of the SCERPO
research concerns the problem of perceptual
organization. Human vision is able to detect
many different types of significant group-
ings of image elements, such as parallelism,
collinearity, proximity, or symmetry in an
otherwise random set of image features.
This perceptual organization capability has
been missing from most computer vision
systems. Since these image groupings
reflect viewpoint-invariant aspects of a
three-dimensional scene, they are ideal
structures for bridging the gap between the
two-dimensional image and the three-
dimensional model. Probabilistic measures
have been developed for evaluating the sig-
nificance of instances of each of these image
relations that can arise from projective
invariance. The SCERPO system uses these
significance measures to prioritize prototype
matches for object recognition [35].

Yet another project in model-based
object recognition from single 2-D images is
being directed by Dr. Haim Wolfson. This
system is based on affine invariant point,
line, and curve matching, and uses the
affine approximation of the viewing
transformation to facilitate efficient match-
ing procedures. The system will be able to
deal efficiently with both polyhedral and
non-polyhedral scenes with considerable
occlusion. Some of the algorithms have
been already successfully tested in recogni-
tion of flat objects in 3-D scenes from an
arbitrary viewpoint [27,36], and it is
currently being extended to enable recogni-
tion of general 3-D objects. This work will
be addressed in detail in Section 2.

2. Efficient matching

We now present a design and results of
work by H. Wolfson, in collaboration with
H. Lamdan, and J. Schwartz, on object
recognition in the presence of arbitrary
affine transformations of the models.

We develop new techniques for
model-based recognition of 3-D objects from
unknown viewpoints. The method is espe-
cially useful for recognition of scenes with
overlapping and partially occluded objects.
An efficient matching algorithm, which
assumes affine approximation to the per-
spective viewing transformation, is pro-
posed. The algorithm has an off-line model
preprocessing phase and a recognition phase
to reduce matching complexity. The algo-
rithm has been successfully tested in recog-
nition of flat industrial objects appearing in
composite occluded scenes.

2.1. Introduction

Recognition of industrial parts and
their location in a factory environment is a
major task in robot vision. Most practical
vision systems are model-based systems (see
the survey in [37]). Object recognition
using model-based vision presents many
challenges in image understanding, but
offers the possibilities of well-formulated
tasks and rigorous algorithm evaluation.

We consider the object recognition
problem, where the vision system is faced
with a composite scene of overlapping parts
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(thus partially occluding each other), taken
from a data-base of known objects. The
task is to recognize the objects in the scene
and to specify their location and orientation.

No restriction on the viewing angle of
the camera is assumed. We begin by con-
sidering the recognition of flat objects arbi-
trarily positioned in space. At the end of
this section, we discuss the use of these
methods for the general case of 3-D objects.
The recognition is done from 2-D intensity
images. The algorithms that we describe
have been actually tested for the recognition
of objects comprising composite scenes of
industrial tools, such as pliers, wrenches,
etc., (see Figs. 4-8).

Since we are concerned with recogni-
tion of partially occluded objects, the use of
global features is precluded. Accordingly,
we must describe our objects by a set of
local features. This same conclusion is
applicable to the human vision system,
which is also capable of recognition in the
presence of considerable occlusion. The
local features can be points, line segments,
curve segments, borders, or other structures
developed from local description operations.
Initially, we restrict ourselves to the use of
special points, which we denote as interest
points. The point sets of the various model
objects are matched against the point set of
the composite overlapping scene using a
small number of corresponding points.
Once a prototype correspondence is esta-
blished, we find the best transformation in
least-squares sense to establish the correct
position of the model object in the scene
image. A key aspect of our scheme is its
computational efficiency, based upon a divi-
sion into a preprocessing stage and a recog-
nition stage. Our model point sets are
preprocessed off-line independently of the
scene information, thus enabling an efficient
on-line recognition stage. A major advan-
tage of the proposed matching algorithm is
the ease with which both the preprocessing
and recognition stages can be parallelized.

The problem of object recognition in
2-D scenes is a common one [24,38-41].
Three-dimensional object recognition sys-
tems are discussed in [37,42]. Recent
image understanding results not mentioned

in the above surveys include [31, 43, 44].

The method described here differs
from other existing model-based matching
systems. Our method, which uses a hashing
scheme indexed on the affine transformation
and model type, is more algorithmic and
more parallelizable than Lowe’s SCERPO
system [31]. In [44], a clustering approach
is used to discover the transformation
between the model and the scene images.
The hashing scheme here is more efficient
and more predictable. In [43], there is an
emphasis on the classification of the model
and image features to reduce the complexity
of matching, while the matching algorithm
itself is straightforward. We, on the other
hand, consider the case where no such effec-
tive classification can be done (this is also
the assumption in [44]), and, hence, our
emphasis is on the development of an effi-
cient feature matching algorithm, which
processes the models and the scene images
independently allowing fast recognition. In
case feature classification is possible it can
be incorporated in our algorithm in a natural
way to improve its efficiency.

2.2. Definition of the Problem

We initially assume that we view par-
tially occluded flat objects from an arbitrary
viewpoint. These initial assumptions are
similar to those in [43]. We also assume
that the depth of the centroids of the objects
in the scene is large compared to the focal
length of the camera, and that the depth
variation of the objects are small compared
to the depth of their centroids. Under these
assumptions it is well known that the per-
spective projection is well approximated by
a parallel (orthographic) projection with a
scale factor (see for example p.79 in [45]).
Hence, two different images of the same flat
object are in an affine 2-D correspondence:
namely there is a non singular 2x 2 matrix A
and a 2-D (translation) vector b, such that
each point x in the first image is translated
to the corresponding point Ax + b in the
second image.

Our problem is to recognize the objects
in the scene, and for each recognized object
to find the affine transformation that gives
the best least-squares fit between the model
of the object and its transformed image in
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the scene.

2.3. Choice of ‘Interest Points’

The matching algorithm, which is
described in the next section, is based on
matching ‘interest points’, extracted in both
the scene image and the model. These
should be database dependent, so that dif-
ferent databases of models will suggest dif-
ferent features for ‘interest points’. For
example, a data base of polyhedral objects
naturally suggests the use of polyhedra ver-
tices as ‘interest points’, while ‘curved’
objects suggest the use of sharp convexities,
deep concavities and, maybe, zero curvature
points. ‘Interest points’ do not have to
appear physically in the image. For exam-
ple, a point may be taken as the intersection
of two non-parallel line segments, which are
not necessarily touching. An ‘interest point’
does not necessarily have to correspond to a
geometrical feature. The Moravec ‘interest
operator’, based on high variance in inten-
sity, is described in [46] and was used in
[47].

The problem of extracting stable, use-
ful ‘interest points’ is a delicate topic
equivalent, in many ways, to the shape
representation problem. Although a suc-
cessful approach to this problem is required
for any model-based vision system, we will
assume here that a sufficient number of
stable points can be extracted from the
relevant images. Our emphasis then, in this
paper, is on the matching problem, and not
on the model representation or image
description.

In our experiments with 2-D objects,
we used points of sharp convexities and
deep concavities along the borders (see Figs.
4c, 4d, 5b, 6b).

2.4. Recognition of a Single Model in a
Scene

For the sake of clarity we describe our
algorithm in the simpler situation, where the
database consists only of one model. How-
ever, the presentation given here applies to
the general case where a number of models
may appear in the scene.

It is well known that an affine
transformation of the plane is uniquely
defined by the transformation of three non-
collinear points (see, for example, [48]).
Moreover, there is a unique affine transfor-
mation, which maps any non-collinear triplet
in the plane to another non-collinear triplet.
Hence, we may extract ‘‘interest points” on
the model and the scene, and try to match
non-collinear triplets of such points to
obtain candidate affine transformations.
Each such transformation can be checked by
matching the transformed model against the
scene. This is also the basic approach in
[43].

However, the complexity of such a
scheme is quite unfavorable. Given m
points in the model and »n points in the
scene, the worst case complexity is
(mXxn)3 xt, where ¢ is the complexity of
matching the model against the scene. If we
assume that m and n are of the same magni-
tude, and ¢ is at least of magnitude m, the
worst case complexity is of order n7. One
way to reduce this complexity ([43] ) is to
classify the points in a distinctive way, so
that each triplet can match only a small
number of other triplets. We consider,
however, the situation were such a distinc-
tion does not exist or cannot be made in a
reliable way (see [44]). Hence, we present
a more efficient triplet matching algorithm.
Our method has the advantage that when
distinguished points are classifiable, or when
the transformation can be restricted to a
smaller class, the complexity will be
reduced.

The algorithm consists of two major
steps. The first one is a preprocessing step
which is applied to the model points. This
step does not use any information about the
scene and is executed off-line before actual
matching is attempted. The second step,
matching proper, uses the data prepared by
the first step to match the models against the
scene. The execution time of this second
step is the actual recognition time.

In order to separate the computation
into two such independent steps, we have to
represent the model and scene point infor-
mation in a way that is both independent
and still allows comparison of corresponding
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structures.

The crucial observation is that once an
affine basis is specified by a triplet of non-
collinear points, then the coordinates of all
the other points, given in the coordinate sys-
tem of the triplet, are affine invariant. That
is, if e;9, €, and ey, are three non-collinear
points, then any other point v, with coordi-
nates (¢£,m):

v = §(ej0 — ego) + m(eg; — egp) + ego

will still have coordinates (£,w) if the entire
figure is translated by the affine transforma-
tion T:

Tv = E(Telo - Teoo) +
M(Teo; — Teg) + Tego

assuming the same triplet of points, now
Tego, Teyp, Tep; are chosen as the basis.

Accordingly, our data structure for
representing a given object will be based on
a collection of mappings from the set of all
non-collinear triplets into a list of quantized
coordinate pairs. Actually, we will form a
hash table, where each quantized coordinate
pair, i.e., a box represented by (¢£,7), con-
tains a list of all object models and their
basis triplets that contained an interest point
that mapped to that box.

Our algorithm will efficiently compare
these sets of coordinates belonging to dif-
ferent bases. The algorithm is as follows:

(A) Preprocessing

Assume we are given an image of a model,
where m ‘interest points’ have been
extracted. For each ordered non-collinear
triplet of model points, the coordinates of
all other m —3 model points are computed
taking this triplet as an affine basis of the
2-D plane. Each such coordinate (after a
proper quantization) is used as an entry to a
hash-table, where we record the number of
the basis-triplet with which the coordinates
were obtained and the number of the model
(in case of more than one model). The
complexity of this preprocessing step is of
order m* per model. New models added to
the data-base can be processed indepen-
dently without recomputing the hash-table.

(B) Recognition

In the recognition stage we are given an
image of a scene, where n ‘interest points’
have been extracted. We choose an arbi-
trary ordered triplet in the scene and com-
pute the coordinates of the scene points tak-
ing this triplet as an affine basis. For each
such coordinate we check the appropriate
entry in the hash-table, and for every pair
(model, basis-triplet), which appears there,
we tally a vote for the model and the
basis-triplet as corresponding to the triplet
which was chosen in the scene. (If there is
only one model, we have to vote for the
basis triplet alone).

If a certain pair (model, basis-triplet) scores
a large number of votes, we decide that this
triplet corresponds to the one chosen in the
scene. The uniquely defined affine transfor-
mation between these triplets is assumed to
be the transformation between the model
and the scene. If the current triplet does not
yield a model and triplet that scores high
enough, we pass to another basis-triplet in
the scene.

For the algorithm to be successful it is
enough, theoretically, to pick any three
non-collinear points in the scene belonging
to one model. The voting process, per tri-
plet, is linear in the number of points in the
scene. Hence, the overall recognition time
is dependent on the number of model points
in the scene, and the number of additional
‘interest points’ which belong to the scene,
but did not appear on any of the models.
Although, in the worst case, we might have
an order of n* operations, in most cases,
especially when the number of models is
small, the algorithm will be much faster.
For example, if there are k model points in
a scene of n points, then the probability of
not choosing a model triplet in ¢ trials is
approximately

k
p=(1- (5
Hence, for a given €>0, if we assume a
lower bound on the ’density’ d=% of
model points in a scene, then the number of
trials ¢ giving p<e is of order —loge

log(1-d3)’
which is a constant independent of n. Since
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the verification process is linear in n, we
have, in this case, an algorithm of complex-
ity O(n), which will succeed with probability
of at least 1—e.

This method assumes no a-priori clas-
sification of the model and scene points to
achieve matching candidates. If such infor-
mation is available, it can be incorporated
into our method by assigning weights to the
correspondence of different triplets to the
model, and by checking the triplets in an
appropriate order.

Numerical errors in the point coordi-
nates are more severe when the basis points
are close to each other compared to the
other model points in the scene. To over-
come this problem, we may introduce the
following procedure. If a certain basis tri-
plet gets a number of votes, which, on one
hand, are not enough to accept it as a ‘can-
didate’ basis, but, on the other hand, do not
justify total rejection, we may change this
triplet to another triplet consisting of points
that were among the °‘voting’ coordinate
pairs, and are more distant from each other
than the previous basis points. In the
correct case this procedure will result in a
growing match, as the numerical errors
become less significant. Even if a basis-
triplet belonging to some model did not get
enough votes due to noisy data, we still
have chance to recover this model from
another basis-triplet.

A major potential advantage of the
suggested algorithm is its high inherent
parallelism. Parallel implementation of this
algorithm is straightforward.

2.5. Finding the Best Least-Squares
Match

Suppose that for a particular basis tri-
plet chosen in the scene, a high number of
votes are obtained for a given (model,
basis-triplet). Each vote implies the
existence of a match (by close proximity) of
an interest point in the scene with some
point in the specified model. This match is
valid for the affine transformation that maps
the basis triplet in the scene to the basis tri-
plet of the model receiving many votes. We
can then improve this affine transformation,

and potentially find more matches by find-
ing the optimal affine transformation for the
set of matched points. This is efficiently
accomplished if the measure of optimality is
the sum of square distances in errors of the
match (details are given in [ 36]). Other
measures are also possible.

We incorporated this process of affine
transformation improvement in our experi-
ments. In Fig. 6¢c we see an example of a fit
obtained by calculating the affine transfor-
mation from three basis points, and in Fig.
6d the same model is fitted using the best
least-squares affine match, based on 10
points, all of which, by the way, were
recovered as corresponding points by the
transformation in Fig. 6c¢.

2.6. Summary of the Algorithm

Our algorithm can be summarized as
follows:

(A) Represent the model objects by sets of
‘interest points’.

(B) For each non-collinear triplet of model
points compute the coordinates of all the
other model points according to this basis
triplet and hash these coordinates into a
table which stores all the pairs (model,
basis-triplet) for every quantized coordinate
pair.

(C) Given an image of a scene extract its
interest points, choose a triplet of non-
collinear points as a basis triplet and com-
pute the coordinates of the other points in
this basis. For each such quantized coordi-
nate pair, vote for the pairs (model, basis-
triplet), that appear in the hash table at that
location and find the pairs which obtained
the most number of votes. If a certain pair
scored a large number of votes, decide that
its model and basis triplet correspond to the
one chosen in the scene. If not, continue by
checking another basis triplet.

(D) For each candidate model and basis tri-
plet from the previous step, establish a
correspondence between the model points
and the appropriate scene points, and find
the affine transformation giving the best
least-squares match for these corresponding
sets. If the least-squares difference is too
big go back to Step (C) for another
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candidate triplet. Finally, the transformed
model is compared with the scene (this time
we are considering not only previously
extracted ‘interest points’). If this com-
parison gives a bad result go back again to
Step (C). (In our experiments we compared
the boundaries of our objects at equally
spaced sample points.)

This is a short summary of the basic
algorithm. Of course, various improve-
ments can be incorporated in its different
steps. We discuss a number of possibilities
in the next section.

2.7. Reduction of Complexity using
Affine Invariants

When the number of ‘interest points’
on the models is large, various affine invari-
ants can be exploited to reduce the complex-
ity of the method presented in Section 4.
We give one such example. We will use the
following observation (see, for example,
p.73 in [45]). Two straight lines which
correspond in an affine transformation are
‘similar’, i.e. corresponding segments on the
two lines have the same length ratio. The
same statement holds for sets of parallel
lines. Hence, if we have a set of points,
which are located on parallel lines in a
model, and another set of points on parallel
lines in the scene, we can efficiently check
the conjecture that some of these points
correspond.

Let us see how the previous method
can be modified for the case when the
‘interest points’ lie on a collection of lines.
We have again two major steps.

(A) Model Preprocessing

Extract the ‘interest points’ on the model
and group the points into a collection of
lines. (A point may belong to different
lines.) Take an ordered pair of points on a
line and compute the coordinates of all other
model points on this line taking this pair as
the standard one-dimensional basis of the
line. Each such coordinate is used as an
entry to a hash-table, where we record the
number of the basis-pair at which the coor-
dinate was obtained, the number of the line,
and the number of the model.

(B) Recognition

Extract sets of points positioned on the same
line in the image. Choose a pair of points
on such a line as a basis and compute the
coordinates of the other points on the same
line according to this basis. For each such
coordinate check the appropriate entry in
the hash-table, and vote for every triple of
(model, line, basis-pair), which appears
there. A triple that scores a large number
of votes gives the correspondence between
the points on the appropriate lines.
Correspondence of three non-collinear
points (obtained from different lines, of
course), already gives a full affine basis,
and we proceed as before.

The worst case complexity of this
approach is less by a factor of n, since we
now are iterating over pairs of points, as
opposed to triples of points in the scene.
The expected complexity is also less, since
we are more likely to choose a pair of points
belonging to a single model, over choosing a
triplet within a single model.

A different reduction in complexity
occurs if we are confronted with the prob-
lem of recognition of objects that have
undergone a similarity transformation, i.e.,
rotation, translation, and scale. This is the
situation when the viewing angle of the cam-
era is the same both for the model and the
image of a scene. Such conditions can be
achieved, for example, in a factory environ-
ment where the viewing angle of a camera
on a conveyor belt can be kept constant.

Our algorithm is obviously applicable
without modification to the case of a simi-
larity transformation, since it is a special
case of an affine transformation. However,
the complexity of both the preprocessing
and recognition stage can be reduced. The
key observation here is that since the simi-
larity transformation is orthogonal, two
points are enough to form a basis which
spans the 2-D plane. (The first point is
assigned coordinates (0,0) and the second
(1,0). The third basis point (0,1) is
uniquely defined by these two points.)
Hence, we may repeat the procedure
described in Section 4 using basic pairs
instead of basic triplets. This reduces the
complexity of the preprocessing step by a
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factor of m, and the worst case complexity
of the recognition step by a factor of n.

2.8. Line Matching

In the previous sections we dealt with
point matching algorithms. However,
extraction of points might be quite noisy. A
line is a more stable feature than a point.
Thus in scenes were lines can be extracted in
a reliable way, e.g. scenes of polyhedral
objects, we might be interested to apply
similar procedures to lines.

All the point matching techniques
given above apply directly to lines, since
lines can be viewed as points in the dual
space. Thus three lines that have no parallel
pairs are a basis of the affine space; each
line has unique coordinates in this basis, and
we repeat exactly the same matching pro-
cedure. We can also make use of line seg-
ments to reduce the complexity of the point
matching when lines can be stably extracted
from the scene. We omit the details here.

2.9. Curve Matching

In this section, we extend the methods
of the previous sections to the case where
the extracted features are no longer simple
‘interest points,” but instead are entire boun-
dary curves. Since the shape of planar rigid
bodies is completely described by their
boundary, object recognition can be accom-
plished by matching these curves. Matching
of curves that have undergone affine
transformation was discussed in the works
of Cyganski and Orr ( [49,50]). Another
elegant global curve matching method was
recently developed by J. Hong and X. Tan
[28]. Their methods, however, require
knowledge of the full curve, and hence are
unable to deal with occlusion. The method
described in this section is based on local
affine invariant features enabling recogni-
tion of partially occluded objects.

The curves are conveniently
represented by vertices of their polygonal
approximations. Ideally, the extraction
includes a smoothing process, such as the
one described in [18]. We discuss separately
the cases of non-convex and convex curves.

2.9.1. Non-convex Curve Matching

As was pointed out in [51], non-convex
planar regions are sometimes easier to han-
dle than convex regions. In the case of an
affine transformation, each concavity sup-
plies us with a stable feature from which the
affine transformation can be recovered.
Specifically, consider the sketch of Fig. 1.
The concavity depicted there is bounded by
a single segment of the convex hull which
we call the concavity entrance. It is a simple
geometric observation that the concavity
entrance is invariant under affine transfor-
mation. An additional point which is invari-
ant under affine transformations is the con-
cavity point most distant from the concavity
entrance line. (If this point is not unique,
we may choose the leftmost.) Thus, one
can extract a concavity-based point triplet
which is affine invariant. This basis triplet
can be used in a recognition scheme similar
to the point matching scheme.

The concavity entrances are computed
as follows. First the convex hull of a polyg-
onal approximation of the boundary curve is
computed. The concavity entrance endpoints
are those convex hull point pairs which are
separated by polygon vertices not belonging
to the convex hull. The computation of the
(leftmost) boundary point most distant from
the concavity entrance is simple. The com-
plexity of the entire process is O(n), where
n is the number of polygon vertices (see
[52], p-93).

Figure 1. A concavity entrance and
basis triplet
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The procedure for recognition of par-
tially occluded non-convex objects in compo-
site scenes may proceed exactly in the same
way as as in the previously described point
matching algorithm (see Section 2.6). Here,
however, the the complexity is highly
reduced, since we consider only basis tri-
plets that are concavity-based. Moreover,
since concavities may be differentiated by
their shape even in the affine invariant case,
we may further reduce the complexity of the
algorithm by comparing only basis triplets
based on affine invariantly similar concavi-
ties. To accomplish it we introduce a
numerical affine invariant shape characteris-
tic that we call a footprint. The footprint
should be a continuous, stable, and easily
computed representation of the concavity
shape. To compute the footprint, we first
normalize a concavity by applying the
transformation which maps its triplet basis
to a standard equilateral triangle. That is,
the concavity endpoints are mapped to
(-1,0), (1,0), and the third point to
(0,V3). To each such normalized shape we
assign a vector of numbers that we call the
‘footprint.” One of the footprint schemes
that we use is illustrated in Fig. 2. For some
constant s (say 5=s=<10), we divide the
upper half plane by s+1 rays based at the

origin, with angle T between two consecu-
s

tive rays. Let a; be the area of the ‘normal-
ized’ shape between rays i and i+1. The
footprint will be s-vector (a; ,a; , - - - ,a; ),
where each component is quantized into one

Figure 2. The footprint of a concavity

of a number of discrete bins.

We now proceed as before, construct-
ing a hash table. Each footprint is used as
an entry to the hash table, where the model
and concavity numbers are recorded. In the
recognition phase, each concavity is used to
compute a footprint, and the appropriate
entry in the hash table is accessed. For each
pair, (model, concavity), appearing in the
hash table at that location, we compute the
appropriate affine transformation to the
associated model, and attempt to verify an
instance of the model in the image.

If the concavity entrances are distinc-
tive enough, the complexity of the recogni-
tion stage will be this time linearly depen-
dent on the number of concavities in the
scene and the number of scene vertex
points, namely, O(kXn).

2.9.2. Convex Curve Matching

In case we have a model with a convex
boundary curve, or if we wish to recognize
non-convex models with all concavity
entrances occluded, a different method is
needed. (It is interesting to point out that
for these cases, the point classification
method of [43] is also unapplicable.) We
must resort to a strategy with a greater time
complexity, since there is no ‘natural’ affine
base, as the one defined by a concavity.
Specifically, to construct the hash table for a
given convex model, we iterate over all
pairs of boundary points. For each pair, we
join the two points with a line, which will be
called the ’base line.” There are two most
distant curve points from the base line, one
on each side of the base line. (If this point
on one side is not defined uniquely, take the
leftmost such point). Each most distant
point together with the endpoints of the base
line form an affine basis triplet. To each
such basis triplet corresponds a convex
region bounded by the base line and the
convex body, containing all three basis
points. This is the ‘basis region’ (see Fig.
3).

As before, we can use a footprint
based on the normalized basis region to
create an entry to a hash table. In this case,
for each pair of boundary points, we have a
separate footprint. Thus the hash table
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Figure 3. A basis triplet of a convex
object.

entries contain the identification of the
model and the identification of the basis tri-
plet. For recognition, we judiciously choose
a pair of points in the scene on the boundary
of a convex curve, find an associated convex
‘basis region,” and compute the footprint.
For this footprint (properly quantized), we
check the appropriate entry in the hash
table, and extract the pairs (model, basis tri-
plet) appearing there. For each such
relevant model with the appropriate basis
triplet, we compute the corresponding affine
transformation between the model and the
scene, and verify their correspondence.

Observe that convex bodies usually
intersect at concave angles (in [24] they are
called breakpoints). Thus for the recogni-
tion step, it will be enough to examine only
one pair of points (one base line) for each
convex ’protrusion’, delimited by two con-
secutive breakpoints. Hence, if a scene has
k convex boundary subcurves (delimited by
consecutive breakpoints), the recognition
stage of the algorithm wil be of the order
kxn , where n is the number of object ver-
tices. That is, the recognition phase will be
very efficient.

2-9.3. 3.D Objects

The methods described in this paper
naturally extend to the recognition of 3-D
objects. In the case where accurate 3-D
depth data is available, an entirely similar
procedure can be developed based on
extraction and matching of points in 3-D,
subject to a rigid transformation. Here, we
discuss the more general problem of recog-
nition of 3-D objects from a single 2-D
view. We assume that the variation in depth

of the objects is small compared to the
depths of the object centroids, so that the
perspective projection is well-approximated
by an affine transformation.

We distinguish three approaches to the
problem. The appropriate method will
depend upon the complexity of the models,
and the robustness of the feature extraction.

If the objects can be approximated by
polyhedral solids, then we may build a data-
base of 2-D models representing the ‘almost’
planar faces of each 3-D model. The prob-
lem then reduces to recognition of these flat
surfaces, according to the methods of the
previous sections. The faces may be partly
obscured by the presence of other 3-D
objects in the line-of-sight to the object.
Complete identification of the object and its
orientation can be verified by the consistent
identification of other faces of the 3-D
object in the appropriate locations [34].

Alternatively, we may discretize the
space of viewing directions, and produce a
nearly flat model of each 3-D object from
each given viewing direction. Recognition
proceeds by identifying objects and the
viewing direction among the database of
models, which may have been subjected to a
similarity transformation. In this approach,
there will be many models, but due to the
fact a similarity transformation is sought
rather than an affine transformation (Section
2.7), there will be a reduced complexity in
the recognition phase.

Finally, in the same way that a triplet
of points in the 2-D case can be used as an
affine basis, four points on the surface of a
3-D model, providing they are non-
coplanar, define a 3-D basis. Suppose that
we choose four points in the scene, and
posit a match with four corresponding points
in a model. The correspondence defines a
3-D affine transformation of the object.
The match can be verified quickly, by
checking whether other points of the model
appear in the scene according to the affine
transformation. The checking can be made
faster by a hashing scheme (although, one
that is different than the hashing method
presented earlier). However, methods to
speed the search for an appropriate set of
four points in the scene can contribute
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greatly to the efficiency of this approach.

3. Experimental Results

We have implemented the point match-
ing, non-convex curve matching and best
least-squares matching algorithms.

In the first set of figures we show
recognition of industrial parts (pliers) in
composite scenes. Here the point matching
algorithm and least squares matching algo-
rithm were applied. Figs. 4a and 4b are the
original gray scale images of two models
(pliers), and Fig. 4c and 4d show the
extracted ‘interest points’ of the models,
which are points of sharp concavities and
convexities. In Fig. 6a we see an image of
the pair of pliers of Fig. 4a rotated,
translated and tilted at about 40 degrees
(observe the different lengths of both han-
dles in the image). The recognition algo-
rithm was performed to obtain a number of
matching basis-triplets. The corresponding
affine transformations were calculated and
for each such transformation the
transformed model was superimposed on the
scene of Fig. 6a. Fig. 6¢c shows such a
transformation computed according to a
basis triplet which gives a somewhat noisy
match. This solution is significantly
improved by the best least-squares match
which is given in Fig. 6d, and was calculated
using all the points which were recognized
as model pointsby the basis triplet of Fig.
6c.

In Fig. 5 we see an image of a compo-
site overlapping scene of the two pliers, the
extracted ‘interest points’, and the recogni-
tion results. Note that in Fig. 5b we have
additional ‘interest points’ that do not
correspond to ‘interest points’ in the original
models, but are created by the superposition
of the two objects. Also, one can see that a
number of the original ‘interest points’ are
occluded in the scene.

The second set of figures deals with
recognition of some household items. Fig.
7a is the original gray scale image of a pizza
cutter. In Fig. 7b the concavity entrances
are marked by the dashed lines, and the
concavity basis triplets are displayed. Fig.
8a is a composite scene of the pizza cutter
and a spatula. The image was taken by a

significantly tilted camera resulting in an
affine distortion of the model. In Fig. 8b
the concavity entrances of the composite
scene are marked, and the basis triplet
points are displayed. The algorithm of Sec-
tion 2.9.2 was applied to this scene, result-
ing in the recognition of the pizza cutter
displayed in Fig. 8c.
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