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Abstract: We consider a particular problem which arises when
applying the method of gradient projection for solving constrained
optimization and finite dimensional variational inequalities on
the convex set formed by the convex hull of the standard basis
unit vectors. The method is especially important for relaxation
labeling techniques applied to problems in artificial intelligence.
Zoutendijk's method for finding feasible direcﬁions, which is
relatively complicated in general situations, yields a very simple
finite algorithm for this problem. We present an extremely simple

algorithm for performing the gradient projection and an independent

verification of its correctness.

Section 1. Formulation of the Projection Probler.

We treat the following optimization problem:

Let IK be the convex set defined by

IX = {§ e R® l
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X = O, vy 2 0 whenever X, = 0}.

- The set of feasible directions at x is defined by



= Dimm

where 1+l is the standard Euclidean norm.
Given a "current point" X ¢ IK, and an arbitrary direction

=hs .
g e JRn, we consider

Problem P: Find 1 € F; such that
q+u > q-v  for all ¥V ¢ Fx.

Clearly, Problem P is a liﬁear optimization problem with
quadratic and linear constraints.

Problem P arises in the context of labeling problems in
artificial intelligence, where iterative techniquessimilar to
gradient ascent in IK have been studied for their use in reducing
ambiguity and achieving consistency [1l,2]. The convex set IK is
especially appropriate for labeling problems. The set IK can be
viewed as the convex hull of the standard unit vectors
Ei = (0,0;¢07/070;c02,0), 1=1,2,...,;0. The vector Ei is assigned
to an object to denote the labeling of that object with label
number i. If the identity of the object is ambiguous, and no label

can be assigned with complete certainty, a compromise vector E e IE

can be assigned to the object, so that

-> -
Pp= (ajr-..sa) = Zaiei
denotes the labeling of that object with label numbers 1 through
n, with degree of certainty a; through ay respectively.
The optimization problem P arises in a solution method
proposed for solving a variational inequality on IX [3]. It also

arises if one is solving a nonlinear optimization problem on IK by



the method of gradient ascent (steepest ascent). To motiyate
problem P, we present a brief discussion of the latter case,

Consider the problem of maximizing F (X) among all X e K,
where F is a real-valued differentiable nonlinear function. If
one uses the method of gradent ascent; then the procedure is to
update successive values of X by replacing X with the vector
; + aG, where 0 is a small positive scalar, and U is chosen so
as to maximize the directional derivative at ;. Of course, u is
constrained by the requirement that it must lie tangent to the
space K at X and x + GG is a numerical way of moving X infinite-
simally in the direction G. Further, since the directional
derivative of F at ;, DEF(;), is scaled by the magnitude of E,
it suffices to consider directions defined by vectors of unit
length or less. Since DGF(g) = grad F(?)'G, U can be found by
maximizing E°E among all vectors G > F;, where a = grad F(§).
Thus u solves problem P.
Section 2. Solution methodology

Problem P is simply the problem of projecting the given vector

a onto the convex set formed by the tangent set T;, and then
normalizing the length of the result. If X is an interior point
in IX, (i.e., no combonent X, is zero), then T; is a subspace, and
the solution U is simply the length-normalized orthogonal projection

of a onto the subspace. This is accomplished by the trivial formulas
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Thus, Problem P is interesting only when X lies on a face or
edge of IK. Topologically, X is a simplex of degree n - 1, and
has boundary surfaces of all lower degrees. However, if X lies
on one of these surfaces, the set T; is a convex set (shaped like
a "wedge“), and the solution to Problem P is more complicated
than projecting onto the boundary surface. For example, if a lies
in T;, then the projection is simply the identity. On the other
hand, if 3 lies in a direction that points away from all tangent
directions in the wedge T;, that is, if 3-3 e 0 for all v ¢ T;,
then the solution ; is the zero vector. In between, there will
be regions in which ; projects to boundary surfaces of each order
greater than or equal to the order of the boundary cn which %
lies.

Note that a boundary facéi(or edge of ahy given order) is
itself a simplex. However, the solution vector U is not necessarily
a simple projection of E onto this boundary simplex, as noted ahove.

-A solution method exists, and can be obtained by applyin
algorithms from the theory of feasible directions tc the specific
geometry defined by IK. In particular, Zoutendiik offers finite

algorithms [4] for solving problems of the form

M 1'mi" '+.-)- . >
aximize qg-u, given q,

subject to
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Problem P can be formulated in this way, with B = I, the n by n
identity matrix. When Zoutendijk's algorithm is applied to Problem
P, certain simplifications can be applied because B = I and because

IX is especially easy to define (i.e., the matrix A has a verv
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simple form). These simplifications are equivalent to an
extremely simple finite algorithm for solving Problem P, which we
present in Section 3.

Despite the fact that Zoutendijk's algorithm has been available
for over twenty years, and in spite of the algorithm's simplicity
when applied to Problem P, alternative schemes are commonly used
for projecting direction vectors a onto the set of feasible directions
from a point on the probability space. These schemes typically
do not solve Problem P, but rather yield feasible directions a
which are "more or less" ih the same direction as E. For example,
the "nonlinear probabilistic model" used in many applications

of relaxation techniques to labeling problems defines

p. (1+aqg.)
where p', = = - '
i ) p.(l+aq.)
3 J J

and where o > 0 is a small fixed constant.

It is easily verified that Ve TE as long as o is sufficiently
small. Note, however, that if P; = 0, then v, = 0. That is, an
iterative scheme based on these formulas can never leave a face
or edge of the space IK.

Other projection schemes have been studied in connection
with relaxation labeling. We mention the Product Rule [5],

Bayesian analysis [6], and single component desaturization [7].



There is also an obvious "truncation method" of setting negative
updating components to zero when the corresponding xi's are zero.
Note of these schemes yields a solution to Problem P. The
connections between relaxation labeling, projection onto a convex
set, and Problem P are not fully addressed in the cited references.
However, in an accompanying paper by Hummel and Zucker, an
algorithm for relaxation labeling is presented which requires,

as a subroutine, an algorithm to solve Problem P.

Why should a problem which seems to be geometrically simple
lead to so many different partial solution methods? Part of the
answer is related to the formulation of the problems: the need
for the projection operator is not always recognized. More
importantly, the geometry is not quite as trivial as it first
seems. Computing the regions of R" in which ; is projected to
different order boundary surfaces requires a lot of care. The

algorithm presented in the next section performs this computation.

Section 3. The projection Algorithm

The following algorithm solves Problem P.

0. Accept as input XeX and d e R” .
P q

1. set k=1, S =¢,D={i[x; =0 }.
2. LOOP:
L )
t, := (= (8
k n #Sy iisk i
Sk+l := {ieD |qi < tk}



=

T£ Sk+l = Sk’ then EXIT LOOP
k :=k + 1
END LOOP

3. Compute §, where

0 if i e Sk
v. - _ .
i q; -ty it i ¢ Sy
=S
4. Output u, where
-
0 if y =0

»
I =
§/H§H otherwise

One way to verify that the resulting vector is the
correct solution is to observe that G satisfies the Kuhn-Tucker

conditions (at least when a # 0), which is equivalent to solving

the constrained optimization problem [8]. In this proof, the
Lagrange multiplier ) belonging to the constraint Zui = 0 has
the same value as the final threshold tk' We now present an

alternate proof. This proof is self-contained, and handles
the G = 0 and G # 0 cases uniformly.

Before showing that U is the desired solution, however,
we show that the algorithm terminates in a finite number of

steps.

Proposition: The Sk's are nested, and thus the algorithm

terminates with at most #D + 1 passes through the loop.



Proof. Since Sl = @ Sl c 52 . We assume by induction that
e S

Sk-1 € Sy - Since i implies that q; < t,._;

k

(n - #S.)t, = } q. = ) g. - .z q;
s 1 W - SN -y
(n - #8, 1)t ~ (#8) =#Sy 1)ty _1 = (n=#S )t 4

so tk > tk-l' Then clearly Sk C sk+l' by the definition of the

Sk's. The proposition follows since the loop terminates when

Section 4. Proof of the Algorithm

Let k = N denote the maximum value of k attained during
the last iteration through the loop (step 2). Denote by W the
space

-+ .
W= {veTy |vy =0 for i e Sg}.
Note that if vV ¢ W and IVl < 1, then V ¢ Fs .

. > > > . . =
Lemma. The maximum of g-v, Vv ¢ F; is attained among v ¢ W N F;.

Proof: Suppose that Ve F; maximizes 3-3, and that v o> 0 for

some i ¢ SN . Define w by
0 if j =1
wj = < vJ if j e SN\ {i}
v. + = R I e A -
.3 n - #SN N




=G

Since V ¢ F;, v. >0 for j e D, and thus wj > 0 for j € D.

Further, ij = Zvj = 0. Finally,

lwh? = zw§ = ] v§ + ] (vy + a‘tlig‘ Vi)2
JESN jﬁSN N
3#1
2v
2 1 2
=LV e i e I v,
g I Ry RSy Es 3
2V,
S D RSN R
N jes -

Here we used v > 0, and j € SN implies Vj > 0. Combining,

>
we have shown that w € F; . But

EI)';; = z g.v. + 2 q.(v. +

j#i
B
= g-v qlvi + thl

-> > >

>
g.v + (tN-qi)vi > gev ,

since i ¢ Sy implies q; <t and since v, > 0. This is a

N r
. . . e e <A P =
contradiction, since g*v is maximum among Vv € F;. Thus we

must have v, = 0 for i ¢ SN' That is, v € W.

Theorem: The output vector U solves Problem P.

Proof: According to the lemma, it suffices to show that a € F;,

and q+4 > q*v for all v € W N F3.
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Clearly, ¥ calculated in step 3 of the algorithm satisfies
¥y = 0 for i ¢ SN’ Further, if i € D, i ¢ SN’ then a; > tN

according to the definition of S

N’ and so ¥y =dyi= ty 2 0. So
y; 20 for all i € D. Finally Zy; = 0 by direct computation.
—>
Thus y € W.
In fact, as can be easily seen, step 3 merely performs

an orthogonal projection of a onto the subspace W. That is,

—>
for any v ¢ W,

(g=-y)+v = 0.

So 3-3 = §-3 for all ¥V ¢ W.

The output vector 4 calculated in step 4 is simply a length

. . - > ., A . => -
normalization of y, and so u is in W also. Since lul< 1, u ¢ P,

>
Next, observe that since u € W,

> > > > >
q'u = Y'u = “y“ o

The last equality follows form the definition of E in step 4.

Let ; be any vector in W N Foxs Then ﬂzﬂ_il, and so
gV = yov < Iyl-19l <131

using the Cauchy-Schwartz inequality. We have therefore shown that
U e Fy 3 E-E 3 3-3 for all v € W N Fy .

This proves the theorem.
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