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A Three-Dimensional Edge Operator

STEVEN W. ZUCKER AND ROBERT A. HUMMEL

Abstract—Modern scanning techniques, such as computed tomog-
raphy, have begun to produce true three-dimensional imagery of in-
ternal structures. The first stage in finding structure in these images,
like that for standard two-dimensional images, is to evaluate a local
edge operator over the image. If an edge segment in two dimensions is
modeled as an oriented unit line segment that separates unit squares
(i.e., pixels) of different intensities, then a three-dimensional edge seg-
ment is an oriented unit plane that separates unit volumes (.e., voxels)
of different intensities. In this correspondence we derive an operator
that finds the best oriented plane at each point in the image. This
operator, which is based directly on the 3-D problem, complements
other approaches that are either interactive or heuristic extensions
of 2-D techniques, .

Index Terms—Computerized tomography (CT), edge detection, fea-
ture detection, three-dimensional edge operators, three-dimensional
modeling.

L INTRODUCTI ON

The development of noninvasive techniques for imaging the
interior structure of three-dimensional objects is currently
revolutionizing many areas of medicine and industry [1]. One
of the most widely known of these techniques is computed
tomography (CT), which uses either sonar or X-ray energy
sources. In X-ray computed tomography, a number of X-ray
projections are made from different angular positions around
the object. Each of these projections yields a one-dimensional
absorption profile. These profiles are then used to reconstruct
a two-dimensional slice through the object [2]. After several
of these reconstructed slices are made sequentially along the
third axis, they can be stacked into a true three-dimensional
image of the object. Sonar-based tomography yields similar
three-dimensional imagery.

The development of systems for processing and displaying
three-dimensional (3-D) imagery has revealed a number of
new problem areas, such as the need for special hardware
facilities [3], [4] and graphical data structures [5]. Another
essential problem underlying all of these systems is the need
for algorithms for finding structure in 3-D images. Success
in this area would improve both the presentation of the
image content and, eventually, the diagnostic usefulness of
these noninvasive techniques.

Since different physical objects usually give rise to different
image intensities, the first stage in finding the structure re-
quires the location of these intensity differences. In two
dimensions this is essentially the problem of edge detection,
and it can be formulated in the following way: 1) apply a local
operator that responds strongly to intensity differences, such
as a gradient operator, to every point in the image, and 2) in-
terpret the response of this operator into assertions about the
presence (or absence) of edge elements.
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Fig. 1. A 2-D edge segment modeled as a unit line passing through the
center of a square pixel (on the dark side).

To understand our notion of a 3-D edge, recall that edge
elements have an orientation associated with them, such as
that shown in Fig. 1. If pixel (i, ) is part of the edge (on the
dark side), then the orientation of the edge element located
at (i,7) is the orientation of the line passing through the
center of pixel (i,j) that best separates the intensities in
the local neighborhood around (i, /). (Note that, by symmetry,
we also could have placed an oppositely oriented edge element
on the light side of the edge; or, we could have located the
edge element in the interstitial space between pixels.) For an
introductory discussion of many of these issues, together with
techniques for grouping edge elements into longer curves,
see [6].

In a geometrical sense, a 3-D edge is a direct extension of
the 2-D edge model just described. Instead of considering an
edge as a line through a unit square of the image (i.e., through
a pixel), we shall consider it as a plane passing through the
center of a unit volume (or, as Liu [7] called it, a voxel). The
specific purpose of this correspondence is to present a local
operator that defines this plane in an optimal fashion. This
operator is a true generalization of the operators used in two
dimensions.  Also, it supplements the other approaches to
3-D edge detection, which require either interactive assistance
[8] or heuristic decomposition of the 3-D surface detection
problem into the maxima of the three underlying 2-D edge
detection problems (namely, one along each axis) [7]. Apply-
ing our operator and interpreting its response should result in
a smooth surface separating adjacent volumes in the image,
where these volumes (or subimages) correspond to different
intensities. If this were an image of the abdomen, for example,
one such surface could delimit the stomach.

Following the mathematical preliminaries in the next sec-
tion, in which we formulate the feature detection problem as
one of functional analysis, we derive our operator. Surpris-
ingly, it turns out to be a rather pleasing generalization of
the (2-D) Sobel operator [9]. And finally, we present the
results of applying the operator to several 3-D images.

II. MATHEMATICAL BACKGROUND

Feature detection can be characterized as the problem of
locating instances of a set of target patterns in data. The
specific target patterns that we shall consider are distributions
of volume elements separated by a flat plane. This plane is
oriented so that dark voxels lie on one side of the plane and
light voxels lie on the other. Mathematically, these ideal 3-D
edge configurations can be described by the set of functions

+1  if ax+by+cz=0

1
-1 if ax+by+cz<0 S

Ea,b,c(x’y;z)={
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which are defined in the sphere
§={Cx,y,2): x2+y* +22<1}.

The vector N =(a, b, ¢) is the unit normal (at the origin) to
the plane

cax +by tcz=0,

(2)

This plane separates the dark hemisphere of the edge con-
figuration (voxels having ideal value +1) from the light hem-
isphere (voxels having value -1). Thus, the edge target pat-
terns admit a parameterization through the variables defining
the normal N, and we can pose our feature-detection problem
in the followmg way [10].

Let I(x, y, z) denote an input image defined on the unit solid
sphere § that has been normalized to have zero-mean and unit
variance. (This requirement will be relaxed in Section IV.)
We seek values for the parameters (g, b, ¢) so that

- Eq bl (3)

is minimized. A convenient norm | -|| is given by the L,-norm
i =ff [f2(x,y,2) dx dy dz]'/*.
$

However, to obtain a practical solution to this minimization
problem (3), we must consider a finite-dimensional subspace
Mof L, (8). If welet {Y/y, ¥, * <+, Y} denote an orthogonal
set of basis functions for M, then the orthogonal projection I’
of I onto M is given by

N
I'x,p,2)= > c¥ilx,»,2)

i=1

where

¢ =JI[ I(x,y,2) ¥;(x, ¥, 2) dx dy dz.
‘ $

Similarly, let E;bc(x, v, z) denote the projection of the pattern
Eape(x,y,2) onto M. Then if M is chosen properly, this pro-
jection will be one-to-one on the class of E-patterns, and the
full minimization problem (3) can be replaced by the finite-
dimensional problem of finding (a, b, ¢) such that
1= Egp,cl (4)
is minimized. (This is the approach adopted by Heuckel [11],
[12], for example, in formulating a two-dimensional edge
operator.)
More formally, the reason that a solution to (4) essentially
provides a solution to (3) is based on the inequality

W' -EN<I1-El|. (5)

This inequality derives from the fact that the projection opera-
tion defined on the Hilbert space L,(8) is linear, continuous,
and does not increase the norm. Its proof follows from a gener-
alized Pythagorean theorem Let F be an element in the
Hilbert space and let F' be its orthogonal projection onto M.
Then

NEWP = IF'1? +IF - FII2
and so
NF'II < ||Fl.

A special case of the inequality (5), which is of particular
interest to us, is
Et;,b,c” <

min || ' - min |7 - Eq4 p .
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Thus, the parameter values for the finite-dimensional problem
provide a lower bound on the full problem. Furthermore, the
above mequahty has three additional consequences [10].

1) If min ||7- E|| is large, then there is no pattern E'
that matches the image I (ie., min || - Eg b, ol is large).
On the other hand, however, if |1 - E, .|l is Iarge a small
value for ||/' - E' H may arise; this p0331b111ty necess1tates a
quality evaluation before acceptmg small | I' - E'|| as an edge;
see Section IV,

2) If I matches one of the E-patterns exactly (ie., if
min |7 - E, p |l = 0), then

min |/’ ~ Eg p .ll=0

is the minimum for (4), and the selected parameters (a, b, ¢)
are exactly those which minimize (3).

3) The parameters (z, b, ¢) that minimize (4) are close to
the parameters that minimize (3) whenever [ is close to an
Eg p,c. This cont1nu1ty assumption is reasonable provided
that the subspace M is chosen properly, and one techmque for
doing this is described in the next section.

I. THE OPTIMAL OPERATOR

In order to apply the theory of feature detection outlined
in Section II, we must select the finite-dimensional space M
such that the patterns E' are a good approximation to £. In
other words we must find the best orthogonal basis functlons
{gy, - xpN} so that the difference between £ and E' is
minimal If we assume that all patterns £ have zero-mean and
unit norm (this can be assumed without loss of generality,
since the patterns can be normalized), then a formal selection
criterion for M can be obtained by requiring that the expected
value of ||E - E'|| be minimal (with respect to the L, norm on
the sphere). This expectation is taken over the full set of tar-
get patterns E, and is weighted by the probability density of
occurrence of the patterns E. Since the set of target patterns
is parameterized by (g, b, ¢), we can regard each of them as
the events comprising a random field with probability density
pla, b,c). Thus, the problem of minimizing the approxima-
tion error between E and £’ can now be posed as one of find-
ing the basis functions ¥y, Y, * -+, Y such that

N
E- % oy

i=1

SIE-E'| =6 l N (6)

is minimal, where & is the expectation operator and where

a; -.20]- E(x,y,z) ¥;(x,y,z)dx dy dz.
§

The solution to-this minimization problem is given by the
Karhunen-Loeve basis functions [13], [14], i.e., the {; are
solutions to the integral eigenvalue problem

J‘ij(x,y, z,x',y, 2y Y (x", ¥, 2"y dx" dy' dz'

=NiYi(x,p,2) @)
where the autocorrelation function is ‘

RGx,y,z,x',y',2)= 6{E(x,y,2) - E(x', ¥, 2')}

=fj fEa,b,c(x>y,z)
avb vYe

Egpo0',y',2") " pla, b, o)
~da db dc. (8)
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TABLE 1
NumericAL COMPUTATION OF THE EIGENVALUES FOR A DiscreTE’ KERNEL
(90 X 90 MATRIX APPROXIMATION)

FATRIX SIZE N = 90

s

E=VALS USING EVALS2 ARE

3,18353277 3.18353224 3,12446919 0.23006920  0.23096919
0.22801190 0,22801139 0,21769301 021769299 1419314003
0.11093594_'M_qgthozsppai 0.,08025963 0,07336430 _ 0,07336430
0,07208134 0,07208133 2,07040049 7.07040043 Ne05273520
0,05062414 N.041R1748% 2.04181746 N.04092541 104092541
_.0.03881804_  0.0388l804 _ 0,03451853 _ 0,03451353 . 0.03126117
0,03028448 0.03028448 0,02797319 0.02797319 0.02675114
0.02614300 0,02614300 0,N02503894 1,02503394 0002493048
0,02165859 0.02}(;"58_59 0,02152425 0.,05152425 0e02143747
0,00000000 n.,00000000 7,00700000 PR LTI RtsYs} 1600000000
0,020000MN 100000000 1,20200000 D.0NIN0TNN 700000000
0,00n0000" ~0,00000009 -3.00007060 =T O0005I00 -3 000000NC
-0.00000000 «0,00000009 ~2.0N00%000 «50N000700 ~Ne 00000000
~0.000C060350 -~0,00000007 -0.009700000 =740097Ca00 ~1¢00300000
-0,00000070 «N,0000000N0 -2.20000000 =3, 00000000 =1 00000000
-0.,00002000 ~0.N000200072 -0, 00n0r00n ~74370007300 =2 00000000
~0,00070090 ~0,00000097 =2,00000000 ~2.000000AN -2 00000000
<O 0000600 ~0,00000077 =2.,00000000 [t Ts ko Takatets!

—2aD0A00N0N

The autocorrelation in (7) forms the kernel of a symmetric,
positive definite, compact operator, which implies that there
will be a countable number of positive, real eigenvalues A;
[15]. These can be ordered from the largest to the smaﬂest
A; =\, >, and the finite-dimensional space M is formed
from the elgenfunctions corresponding to the largest eigen-
values. These eigenfunctions minimize the truncation error
introduced by a finite value for N in (6). Clearly, as more
eigenfunctions are used, the approximation becomes better.
The mathematical computation of the autocorrelation func-
tion (8) is technically complicated; however, a few geometric
considerations allow us to describe R more clearly (we will
assume that p(a, b, ¢) i s umformly distributed). To begm w1th
note that R(x,y,z, x' y z')=1 when (x,y, z)and(x y z)
are vectors in the same d1rect10n and R(x,y,z,x’ y z )-— -1
when the two vectors point in opp031te d1rect1ons Between
these extreme points, R(x,y,z,x',y’, z') drops off lmearly

as the angle between the vectors (x ¥,2) and (x' y z") in-

creases from 0 to m. (Recall that the dot product of two unit
vectors is just the cosine of the angle between them.) Thus,

2
R(x,y,z,x",y" 2")=1- = arccos (xx' + yy' + zz2").
m

Using the notationu = (x,y,z)and v = (x',y', z'), observe that
R(u, v) depends only on u *v. We can translate the eigenvalue
_ problem (7) into this notation: it can be shown that (7) is
equivalent to the eigenvalue problem,

ffR(u, v) ¥;(v) dSy = N ¥ (u). )

Now the integration is taken with respect to v over the surface
of the unit sphere, and dS, denotes surface measure. We can
now formulate the following theorem.

Theorem 1: Let

$1(x,y,2) = x/Vx? + y? + 22

$2(x, ¥, 2) = y[v/x? + y? + 22

¢3(xsy:z)=z/\1$ +y2+22 .
The functions ¢y, ¢;, ¢5 are eigenfunctions of (9), with
eigenvalues all equal to 7. Furthermore, these are the only
eigenfunctions corresponding to this eigenvalue. O

The proof of Theorem 1 is given in the Appendix, along
~ with a description of the full class of eigenfunctions for (9).

Furthermore, a full class of eigenvalues has been computed
numerically (see the details in the Appendix and Table I).
This computation reveals not only that 7 is the largest eigen-
value, but that all of the others are smaller than A\ = 0.25.
Thus, the approximation introduced by using only the first
three basis functions to define the operator should be a
good one.

The three basis functions are radially constant and can be
written in the simpler form

¢1 = x/r
) ¢2=y[r ‘
¢ =zfr
where

r=a/x2+y2 4+ 22,

It is these basis functions or, more exactly, a discrete approx-
imation to them, which define our local operator. Two ap-
proximations are shown, the first in which the unit sphere is
partitioned into a 3 X 3 X 3 unit cube (Fig. 2), and the second
into a 5 X5 X 5 cube (Fig. 3). Since the three operators are
simple rotations of one another along the different axes, only
the approximation to ¢; (oriented along the x-axis) is shown.
¢, looks the same, but is oriented along the y-axis, and ¢ is
oriented along the z-axis.

IV. APPLYING THE OPERATOR

There are two stages in the application of the operator
shown in Figs. 2 or 3: 1) the unit surface normal (g, b, c) de-
fining the best edge through each voxel (a,f8,y) must be
determined; and 2) the quality of the match in 1) must be
evaluated.

Theorem 2: A surface normal defining the best edge at
(e, B, 7) is obtained by convolving the ¢; with the (not neces-
sarily normalized) input image, i.e.,

a= <¢1,1>=Jff G010, y,2)I(x -,y -B,z-v)dx dy dz,
§

b= <¢2y I)a
¢ = <¢3, . 0
The proof is in the Appendix.
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Fig. 2. 3 X 3 X 3 operator.

The result of this convolution is the surface normal (a,b,c)
at (o, B,7v). The effect of input image normalization is to
change the length of the computed surface normal, i.e., to
multiply the vector by a scalar. .

Once (a, b, ¢) have been computed, the quality of the edge
that they define must be evaluated. The fastest measure is
the norm of (a, b, ¢): a large value usually indicates a strong
match (i.e., a high-contrast edge), while a small value indicates
-a poor match. More precisely,

”(ay b, c)“Euclidean = ” [,(x> Y, Z)“LZ(S
)

where I' is the projection of the (unnormalized) image 7 onto
M. Thus, the length of (a, b, c) is a coarse measure of the
image contrast after projection. Fig. 4 contains a printout
of the magnitude of (¢, b, ¢) for a slice through a 3-D image
of a cube using the 3 X 3 X 3 operator. Note the typical re-
sponse gradient across the edge with the maximal response
directly on (the dark side of) the edge. Thus, a threshold can
be used to select the maximal edge responses for this example,
and the unit planes [see (2)] through each voxel can then be
displayed (Fig. 5). Note also that since each unit surface passes
through the center of a voxel, the borders of these unit planes
may not coincide even though orientation is varying smoothly.
(This artifact of the display process could be reduced by simply
smoothing the edges of these unit surfaces.) .

The resolution of the 3-D object boundaries that are even-
tually built out of these local surface elements is directly de-
pendent on the sampling density. Fig. 6 contains a higher
resolution image of the surface of a torus that was also made
by thresholding the detector’s responses. This display gives
a much closer description of the object in the image than the
coarsely-sampled cube in Fig. 5.

Our model for edges has two possibly restrictive features.
First, it was derived using continuous mathematics, but is
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Fig. 4. Cross section of gradient vector magnitudes.
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Fig. S. Display of the unit planes cofnprising the surface of a coarsely
sampled cube. -
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Fig. 6. Display of the unit planes comprising the surface of a torus.

Fig. 7. Three consecutive CT images of a human head through the eyes.

applied in a discrete approximation to.sampled imagery. The
previous examples demonstrate that this approximation does
not introduce any serious problems. The second restriction
is that the model is based on a three-dimensional step edge.
However, practical experience with two-dimensional imagery
has shown that other edge configurations, such as roofs and
peaks, also occur [16]. Thus, it is necessary to evaluate the
operator over a more realistic image; Fig. 7 contains an ex-
ample from computerized tomography. Note that both the
overall magnitude and the directional components of the oper-
ator’s response (Fig. 8) are in apparent agreement with the
original intensity distribution.

‘Because of the weighted combinations of intensities within
our operator it is theofetically possible for them to combine
in a way such that the norm of (g, b, ¢) is large, but the edge
quality is poor. Such situations can be detected by computing
an edge quality measure after the putative edge normal(a, b, ¢)
has been determined. A very simple quality measure, the
length of (g, b, ¢), has already been described. A slightly more
elaborate quality measure Q is given by

Q{Ea,b,c(aa B, 1} =J:’]- Ea;b,c(x, y,2)
$

Jx-a,y-B,z-v)dxdydz
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Fig. 8. The response of the 3 X 3 X 3 operator over the image in Fig. 7;
the magnitude x-, y-, and z-projections of the surface normals are
shown. .

where

+1  if ax+bytcz=0

Ea,p,00x,7,2) -1 if ax+by +cz<O0.

Another quality measure could be the mean-square difference
between the normalized input image centered at (¢, B, y) and
the ideal edge E, ; .. However, in the experiments that we
have conducted up to this point, the simplest quality measure
II(a, b, c)ll has proved satisfactory.

It is, of course, well known that the interpretations of the
responses obtained from edge operators evaluated over local
portions of images are not unique, and that other kinds of
processing are necessary to disambiguate them. One such
possibility is to use a relaxation process analogous to that in
[17], in which case these various quality measures could be
used in computing the initial certainty of each possible inter-
pretation; or, one could evaluate a sequence of operators at
different sizes and attempt to parse the coarse through fine
responses into various edge assertions {18].

V. CONCLUSIONS

The introduction of true three-dimensional images by
modern scanning devices has created the need for appro-
priate image processing and analysis techniques. While it

‘may be possible to extend existing 2-D techniques in certain

circumstances, in others the 3-D structure may change the
problem requirements. In this correspondence we began
with a problem formulation in three dimensions and derived
a surface edge operator. Although this operator can be viewed
as a generalization of a two-dimensional (Sobel) operator in
retrospect, the optimal properties of its 3-D counterpart would
have been much harder to predict.

The design of an operator that responds to intensity differ-
ences is only the first stage in computing descriptions of
surfaces in three-dimensional images. Resource limitations
in processing these images demand that the operator be
evaluated over fairly small subimages, and thus subsequent
processing must be responsible for achieving appropriate
consistencies between descriptions in neighboring subimages.
The operator described in this correspondence should be use-
ful fog providing input to these mqqf global processes.
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APPENDIX
PROOF OF THEOREM 1

In this Appendix we prove that: 1) the ¢; given in Section III
are the eigenfunctions corresponding to the three eigenvalues
equal to 7 in (9); and 2) that these are the largest three eigen-
values. Thus, these functions define the best approximation,
in the Karhunen-Loeve sense, on which to base the edge
operator. We further identify all of the eigenfunctions of the
integral equation as the spherical harmonic polynomials of odd
degree restricted to the unit circle. .

The proof of 1) begins with the following lemma.
~Lemma 1: Let e; =(1,0,0). Then

ffR (el,v)(Pi(U)dSv:WSl,i, i=1,2,3

(A1)
where
1 if i=1
51,:’ = { .
0 otherwise.

Proof: To evaluate the integral in (Al) we must first
specify the surface measure in appropriate coordinates. Let.
(x,9),-1<x <1, -7 <0 <7, be a coordinatization of the
surface of the unit sphere in which a point (x, ®) on the sphere
corresponds to a point (x, y, z) in three-space according to the
following relations [see Fig. (9)]:

xX=x
y=(1- ch)l/2 cos ©
z=(1- x*)? ¢in O.

Note that the point (x, v, z) is necessarily on the unit sphere,
ie.,, v=1. In terms of the (x, ®) coordinates, surface measure
is simply d® dx. Thus, the integral in (A1) becomes

ffR (ey, v) ¢, (v) dS,
1 kid 9

= f f [l ~ — arccos (x)] ‘x  dO®dx
-1 Yog n

1
= f (2mx - 4x arccos x) dx
-1

1
=-4 f x arccos x dx = -4 (—E)=n
-1 4
and
”R (e1,0) $(0) dS,

Lo, 5
= f f (1 - —arccos x) (1 - xH'? cos O®dBdx
-1 v w

1,

=0

2 ™
(1 - — arccos x) (1- xH)/2 j cos BdBdx
n -

Similarly, using ¢3(v) yields a sin © instead of cos ® in the in-
ner integral with the same result.

Using this Lemma 1 we can now prove that the ¢;,i =1, 2, 3,
are eigenfunctions corresponding to eigenvalues equal to 7. We
first show that ¢, is such an eigenfunction.
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(K8

Fig. 9. (x, ®) coordinates on the unit sphere.

Proposition 1:

jJ‘R (u,0) 91 (v) dS, = 7, (u).

Proof: Fix u = (xq, Vo, Zo)* and let © by any orthogonal
transformation (i.e., a rotation) taking e; to u. (There are an
infinite number of them.) The 3 X 3 matrix representation

a1y a1z di3

O=|ay ay axp (A2)

a3 d3; di33

has determinate one, which implies that the Jacobian of the
transformation v = Qv is one. Further, since O e; = u

a1 =X
a1 =Yo
a3 T Zg.

Now, since R depends only on u * v, and
wOv=01 y-v=e,-v

we have, by change of coordinates, that

HR (,0) §1 () dS,

= ffR (1,0 v) ¢; © v) dS,

=ffR (eb v) d)l (O U) dSu

To evaluate the integral (A3) we need to calculate ¢; (Ov).
Recalling that ¢; (x, y, z) = x/r, and noting that© v is a unit
vector, we obtain

(A3)

1 1 1
apx;tapy tagsz

|Ov]

=a1101(0) + 2P, () +a130; ).

$:1(0v)=

(A4)
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Substituting this into the integral (A3) yields three terms:

ay J‘JR (e1,0) ¢, (V)Y dS, +agn jJ_R (e, v) ¢, (V) dS,

tags jJ'R (ey, v) 93 (v) dS,

which become, using the Lemma 1,
aym+0+0=mxe = mdy ()

and the proposition is proven. ]

The proof that ¢, and ¢ are also eigenfunctions follows di-
rectly from the observation that if ¢ (v) is an eigenfunction,
then W(v) = ¢ (Ov) is also an eigenfunction. This completes
the first part of the proof of Theorem 1; namely, that ®1, $2,
and ¢3 are the eigenfunctions corresponding to the eigen-
value 7.

By using techniques similar to those just described, it can be
shown that the full class of eigenfunctions for the integral
equation (9) are the spherical harmonic polynomials of odd
degree, restricted to the unit circle. More precisely, we have
the following proposition.

Proposition 2: Let

A¥ cos k® PF(cos®), k>0
Ak sin k@ Pf (cos®), k<0

where Y;‘ is the kth spherical harmonic of order /., -1 Sk <1,
12 0, and for which A;‘ are normalizing constants, P;‘(x) is
the associated Legendre polynomial of degree I, and

Y¥ (8, ®) ={

x =rcos O@sin ©
y =rsin ©sin ©
z=rcos ©.
Then there exist constants {A\;:/ odd} such that
ok=vkF k=-1,--,1

are 21+ 1 distinct eigenfunctions of (9), with eigenvalues all

equal to A\, Furthermore, the collection of eigenfunctions
{¢F}, 1 is complete. O

We will only remark briefly about the proof of Proposition 2
because of its similarity to the proof of Proposition 1. We
have already observed that an orthogonal transformation of
coordinates carries an eigenfunction to an eigenfunction be-
longing to the same eigenvalue. Furthermore, the spherical
harmonics transform into one another with constant degree !
under orthogonal coordinate changes, since the class of har-
monic homogeneous polynomials is preserved under rotations.
Thus, as was the case in the proof of Proposition 1, it suffices
to check the integral equation for the 2/+ 1 functions at a
single point. All but one of these integrals turn out to be zero.

The particular correspondence between the three eigen-
functions given in Theorem 1 and the spherical harmonics is
given by the following equations:

Y9(®, ®)=z/r
Yi' (®,®)=x/r
Y} (©,D)=y/r.

Now that we have determined the eigenfunctions of (8), the
proof of Theorem 1 requires a proof that 7 is the largest eigen-
value. This can be done by using an analytic expression for
the spherical harmonics and actually performing the integra-
tion, or by using the known sequency properties of the spher-
ical harmonics to conclude that eigenvalues decrease as the
sequency increases. Then the above result follows from the
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known eigenvalue of 7 for the lowest harmonic. However, it is
much more illuminating to numerically compute the eigen-
values for a discrete approximation to the kernel R (u, v), and
the results of one such experiment are shown in Table I. In
this example, R (u, v) has been represented by a 90 X 90 ma-
trix, which is sufficiently fine for the largest three eigenvalues
to approximate 7 to within 1 percent. Furthermore, all other
eigenvalues are less than A = 0.25, which indicates that the ap-
proximation introduced by using only the first three eigen-
functions is a good one.

PROOF OF THEOREM 2

We begin with a preliminary lemma about projected vectors,
which is a simple version of Parseval’s theorem.
Lemma 2: || S']]2 = (S, 9102 + (S, )% +(S, ¢3)%.
Proof: Let §' = a;¢; + ayb, + as0s, where g; = (S, p.
Then

1517 = (3 et 3 “i¢f>

i=1 j=1

=2 Z azaj B;, )
i g

3
=Y Y auedy=) ai
' i=1

~“because the ¢; are orthogonal basis functions. O

The proof of Theorem 2 can now proceed by fixing (a, b, ¢)
to be any unit vector and letting u = (x, ¥, 2)t.

Now, let O be any orthogonal transformation (i.e., a rota-
tion) taking e; to (a, b, ¢)'. The 3 X 3 matrix representation

(A2) satisfies ay; =a, azi = b, a3 = ¢ because Oe; =(a, b, ).

Furthermore, since the Jacobian is 1, a change of variables
yields

ijEa pe @) " ¢y (u) dxdydz
= JJfEabc (Ou) ¢; (Ou) dxdydz
e =fffsgn (x) - ¢; (Ou) dxdydz.

The last equality follows because Egp¢ (O (1)) = E1o0(u).
As in (A4), we may substitute

apy tapd, tapds for ¢ (Ou)toyield
(Eq,p,es $12= _” (a11 sgn (x) " p/r+ay; sgn (x) y/r

+ a5 sgn (x) z/r) dxdydz.

It is not hard to verify that the second and third terms inte-
grate to zero, so that the integral becomes

"7111’ "J:J.fsgn (x) “x/r dyk‘xd’ydzk I
2m

=const‘a=-—3-'a. (AS)

If we now repeat the preceding argument using ¢, instead of
¢, the result becomes

(Egpe, P27 = b‘J‘J‘J.Sg,n .(y) - y/rdxdydz

=const * b (A6)
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where the nonzero constant has the same numerical value (%n)
as in (AS5). Likewise,

(Eqpe, 03 (A7)

But, since (Eype, @10 = (Egpe, $1) (orthogonal projections pre-
serve components), the equations

(Eal’rc, ¢1>
<Eal'wc’ ¢2>
(Egpe, $3) = const = ¢

= const * ¢.

= const *a

=const - b

are valid.

The unit vector for the best surface normal is obtained by
minimizing || £,p, - I'll, among unit vectors (a, b, ¢). Since /
is a normalization of the input signal §, there are constants
p, 0 such that

I=pi+o0.

PO ¢ Hy s . e P
Thus, minimizing || E,p. — 1|l is equivalent to minimizing

I Eape = (p $+0)'II?
=N Eape - P8I =1l (Eape = 09I
According to Lemma 2, this is the same as
(consta - p - 01)2 + (const b - pey)? + (const ¢ - pc3)2

where ¢; = (§, ¢;) is the convolution of the unnormalized input
image with ¢;. Clearly, (a, b, ¢) should be chosen as const™! -
p - (cy, cq, c3), 1e., as scalar multiple of (¢, ¢a, ¢3). Thus, the
direction of the best surface normal is the same as (¢y, ¢3, ¢3),
which is the desired result. '

Note that (c¢y, ¢q, ¢3) provides a direction, but not neces-
sarily a unit vector. To obtain a unit vector, (cl, ¢4, ¢3) should
be multiplied by 2/37 times the variance of ()
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